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Lecture 3
◦ So, we’ve reduced the 2-body problem to a one-body problem.  Next, we reduce the 

dimensionality:
▪ We have a central force, so F⃗∝ r⃗

Thus we have no torque, since τ⃗= r⃗×F⃗=0
Thus angular momentum is conserved in the 2-body system.

▪ That angular momentum is always perpendicular to the orbital plane, since
L⃗⋅r̂=( r⃗×μ ˙⃗r )⋅r̂
...=(r̂× r⃗ )⋅μ ˙⃗r=0   

▪ Since the orbit is always in a single, constant plane we can just describe it using 2D 
polar coordinates, r and φ
Thus we have L⃗= r⃗×μ v⃗   (by definition of L)

...=μr v φ=μ r2
φ̇  = constant

→ Equal area law (Kepler’s 2nd) follows – true for any central force (not just 1/r2)

▪ Next, we go from 2D to 1D:

• E=
1
2
μ v⃗⋅⃗v+V (r )

...=
1
2
μ ṙ2

+
1
2
μ r2

φ̇
2
+V (r)

L=μr2
φ̇ (from above), and so φ̇

2
=

L2

μ
2 r4

and so E=
1
2
μ ṙ2

+
L2

2μr 2 +V (r ) .   We call those last two terms Veff.

• The formal solution to solve for the orbital motion is:

dt=
dr

√ 2
μ [ E−V eff (r )]

• For any given potential, one can integrate to get t(r) and then invert to find r(t). 
Usually one gets nasty-looking Elliptic integrals for a polynomial potential.
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▪ Get more insight from graphical analysis.

• Plot Veff, and then the total system E on the same graph.  Given L & E:
◦ Must have Veff < E   (otherwise v2 < 0)
◦ Motion shows a turning point whenever Veff = E.

• For different energies plotted:
◦ E1: unbound orbit. Hyperbolic – interstellar comets!
◦ E2, E3: bound, eccentric orbits (outer (apastron) and inner (periastron) points)
◦ E4: circular orbit (single radius).
◦ E<E4:  not allowed!
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• Let’s look at this motion in the plane (for the bound case):

We see that the possible paths will fill in the regions between an inner and an outer 
radius (r1 and r2). But there’s no guarantee that the orbits actually repeat periodically.

• We get periodic orbits, and closed ellipses, for two special cases:

◦ V (r )∝
1
r

 (Keplerian motion)

◦ V (r )∝r2  (simple harmonic oscillator)
◦ “Bertrand’s Theorem” says that these are the only two closed-orbit forms.

▪ These closed-form cases are also special because they have an “extra” conserved 
quantity.

• Consider gravity: V (r )=−
Gμ M

r
   where M = m1 + m2

• Define the “Laplace-Runge-Lenz” (LRL) vector,
A⃗≡ p⃗× L⃗−G M μ

2 r̂  ← this is conserved! Describes shape & orientation of orbit

•
d A⃗
dt

=
d p⃗
dt

× L⃗+ p⃗×
d L⃗
dt

−G M μ
2 d r̂

dt
   (second term goes to zero; L conserved!)

d p⃗
dt

=−G
μ M

r2 r̂

d r̂
dt

=
d φ

dt
φ̂

L⃗=μr2
φ̇ ẑ

• So, 
d A⃗
dt

=(−
Gμ M

r2 r̂ )×(μ r2
φ̇ ẑ )−G M μ

2
φ̇ φ̂ , which gives

      
d A⃗
dt

=+G M μ
2
φ̇ φ̂−G M μ

2
φ̇φ̂=0  … A is a conserved quantity!

• But, what does the LRL vector mean?
→ It describes the elliptical equations of motion!

r
2

r
1
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• A points in the orbital plane. Define it to point along the x-axis of our polar system:
r⃗⋅A⃗≡r A cos φ= r⃗⋅( p⃗× L⃗)−G M μ

2 r
      ...= L⃗⋅( r⃗× p⃗)−G M μ

2 r  → 
r A cosφ=L2

−G M μ
2r

• We can solve this for r:

r (φ)=
L2

/G M μ
2

1+( A /G M μ
2
)cosφ

and this is just the equation of an ellipse that we saw in Lecture 2, with

e=
A

G M μ
2

 and

L=√G M μ
2 a(1−e2

)

• We defined A to point along the x-axis ( φ = 0).  This is the same direction where r is
minimized – so A (the LRL) points toward the closest approach in the orbit 
(“pericenter”).

▪ One remaining law: Kepler’s 3rd Law
• Consider the area of a curve in polar coordinates.

d Area=
1
2

r2 d φ , so

d Area
d t

=
1
2

r2
φ̇=

1
2

L
μ=constant

• If we integrate over a full period, we get the area of an ellipse:

A ellipse=∫
0

P
d Area

dt
=

1
2
∫
0

P
L
μ dt=

L P
2μ

. 

• And from geometry, A ellipse=πa b     (where b=a√1−e2 is the semiminor axis)
• So set these equal:

L P
2μ

=π a2√1−e2 .  Plugging the previous expression for L in:

1
2

√G M μ
2 a(1−e2

)
μ P=πa2 √1−e2 , which simplifies to

√
G M
a3 =

2π

P
=ΩKepler

• Rearranging to the more familiar form, we find:

P2
=( 4 π

2

G M )a3 . Or in Solar units,  ( P
1 yr )

2

=( M
M sun

)
−1

( a
1 AU )

3
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▪ Other interesting bits and bobs:

• A useful exercise for the reader is to show that E=−
G M μ

2 a
(use rdot = 0 at pericenter, r = a (1 – e),  φ=0)

• We have r(phi) --- what about r(t) and phi(t) ?
◦ Unfortunately there’s no general, closed-form solution – this is typically 

calculated iteratively using a numerical framework.
◦ One can find parametric solutions (see Psets)

• The position vector moves on an ellipse, but you can show that the velocity vector 
actually moves on a circle:

• Really esoteric: all these conservation laws are tied to particular symmetries:
◦  Energy conservation comes from time translation
◦ Angular momentum conservation comes from SO(3) rotations
◦ The RLR vector A is conserved because of rotations in 4D (!!). r & p map onto 

the 3D surface of a 4D Euclidean sphere.  Cool – but not too useful.

GMμ/L

vy

vx

v

eGMμ/L


