8.901 Course Notes

Lecture 3
o So, we’ve reduced the 2-body problem to a one-body problem. Next, we reduce the
dimensionality:

= We have a central force, so FoT
Thus we have no torque, since 7=rXF=0
Thus angular momentum is conserved in the 2-body system.

= That angular momentum is always perpendicular to the orbital plane, since
L-f=(FXur)f

W=(PXF)ur=0

= Since the orbit is always in a single, constant plane we can just describe it using 2D
polar coordinates, r and ¢
Thus we have L=Fxuv (by definition of L)
..=urve=ur’¢ = constant
— Equal area law (Kepler’s 2" follows — true for any central force (not just 1/r)

=  Next, we go from 2D to 1D:

. E:%,uv-mv(r)
:%m%%,u r’o+V(r)
LZ
L=ur’*y (from above), andso ¢’'= ——
ur
2
andso E :% urt+ o +V(r) . We call those last two terms Ve
ur
* The formal solution to solve for the orbital motion is:
_ dr
dt=
2
ﬁ [ E— Veff ( r )]

* For any given potential, one can integrate to get t(r) and then invert to find r(t).
Usually one gets nasty-looking Elliptic integrals for a polynomial potential.
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= Get more insight from graphical analysis.

by

//
F ’ V ('{3
* Plot Ve, and then the total system E on the same graph. Given L & E:

o Must have Vs < E (otherwise v* < 0)
© Motion shows a turning point whenever V= E.

* For different energies plotted:
© Ei: unbound orbit. Hyperbolic — interstellar comets!
o E,, Es: bound, eccentric orbits (outer (apastron) and inner (periastron) points)
© Eg: circular orbit (single radius).
©o E<E4 not allowed!
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* Let’s look at this motion in the plane (for the bound case):

We see that the possible paths will fill in the regions between an inner and an outer

radius (r; and r2). But there’s no guarantee that the orbits actually repeat periodically.
*  We get periodic orbits, and closed ellipses, for two special cases:

o 'V (r)oc% (Keplerian motion)

°©  V(r)ecr® (simple harmonic oscillator)

o “Bertrand’s Theorem” says that these are the only two closed-orbit forms.

=  These closed-form cases are also special because they have an “extra” conserved
quantity.
GuM

 Consider gravity: V(r)=— where M = m; + my

Define the “Laplace-Runge-Lenz” (LRL) vector,
AEf)Xf—G Mu’t  « this is conserved! Describes shape & orientation of orbit
dA_dp - -_dL 2 dF
—=—EXL+pX—GMu —
de dt P “ e
dp uM .
—+£=-G r
dt r2
dr _do.
at dt
L=ur’ ¢z

(second term goes to zero; L conserved!)

dA _
dt

-

(2—‘?:+G Mu’pp—GMu’ pp=0 ... Ais a conserved quantity!
But, what does the LRL vector mean?

— It describes the elliptical equations of motion!

_G/,L2Mf
r

So, X(,urz(pi)—GM‘uqu@ , which gives
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* A points in the orbital plane. Define it to point along the x-axis of our polar system:
F-A=rAcos g=T-(pXL)-GM ii’r
=L-(FXp)-GMi’r -
rAcosg=L"—~GM u’r

*  We can solve this for r:
__ L’IcgMmy
r ( (,0) = 2
1+(A/GM u’*)cos ¢
and this is just the equation of an ellipse that we saw in Lecture 2, with
e= A 5
GMu

L=VGM i a(1-¢é

and

*  We defined A to point along the x-axis ( ¢ = 0). This is the same direction where r is
minimized — so A (the LRL) points toward the closest approach in the orbit
(“pericenter”).

=  One remaining law: Kepler’s 3" Law
* Consider the area of a curve in polar coordinates.

dArea:%rzd(p , SO

dArea_lrz ; —lL—constant
dt 2 (p 2 u

» If we integrate over a full period, we get the area of an ellipse:
_P dArea_lj Ldt—g
ellipse | dt ) 0 u

2u
* And from geometry, A =mab (where b =a\/ 1—e’ is the semiminor axis)
* So set these equal:

A

ellipse

g—PZJF az\/ 1—€° . Plugging the previous expression for L in:
u
GMi'a(1—¢é’ —
%\/ MMG( <) P=ma*V1—€® , which simplifies to
GM 2n
\/ a3 = ? = QKepler

* Rearranging to the more familiar form, we find:

2_ M -1
Msun

2 3
Aan

GM

a
1AU

3

pP’= a . Orin Solar units,

(1yr
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= Other interesting bits and bobs:
GMu
2a

¢ A useful exercise for the reader is to show that E=-—

(use rdot = 0 at pericenter, r = a (1 —e), ¢=0)

*  We have r(phi) --- what about r(t) and phi(t) ?
© Unfortunately there’s no general, closed-form solution — this is typically
calculated iteratively using a numerical framework.
©  One can find parametric solutions (see Psets)

* The position vector moves on an ellipse, but you can show that the velocity vector
actually moves on a circle:

GMp/L T

v N

* Really esoteric: all these conservation laws are tied to particular symmetries:
© Energy conservation comes from time translation
©  Angular momentum conservation comes from SO(3) rotations
o The RLR vector A is conserved because of rotations in 4D (!!). r & p map onto
the 3D surface of a 4D Euclidean sphere. Cool — but not too useful.




