
13 Polytropes

Much of the challenge in making self-consistent stellar models comes from the
connection between T and L. The set of so-called polytrope models derives
from assuming that we can just ignore the thermal and luminosity equations
of stellar structure. This assumption is usually wrong, but it is accurate in
some cases, useful in others, and historically was essential for making early
progress toward understanding stellar interiors. A polytrope model assumes
that for some proportionality constant K and index γ (or equivalently, n),

P = Kργ

(308)

= Kρ1+1/n
(309)

We have already discussed at least two types of stars for which a polytrope
is an accurate model. For fully convective stars, energy transport is domi-
nated by bulk motions which are essentially adiabatic (since τdyn�τγ,diff); thus
γ = γad = 5/3. It turns out that the same index also holds for degenerate ob-
jects (white dwarfs and neutron stars); in the non-relativistic limit these also
have γ = 5/3, even though heat transport is dominated by conduction not
convection. When degenerate interiors become fully relativistic, γ approaches
4/3 and (as we saw previously) the stars can come perilously close to global
instability.

The key equation in polytrope models is that of hydrostatic equilibrium
(Eq. 192),

dP
dr

= −GM
r2 ρ

which when rearranged yields

(310)
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ρ
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= −GM.

Taking the derivative of each side, we have
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�
= −GdM,

and substituting in the mass-radius equation (Eq. 227) for dM gives

(312)
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dr

�
= −4πGρ.

It is then customary to define the density in terms of a dimensionless
density function φ(r), such that

(313) ρ(r) = ρcφ(r)n
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13. Polytropes

and n is the polytrope index of Eq. 309. Note that φ(r = 0) = 1, so ρc is the
density at the center of the star, while φ(r = R) = 0 defines the stellar surface.
Combining Eq. 313 with Eq. 309 above gives

(314) P(r) = Kρ1+1/n
c φ(r)n+1.

Plugging this back into Eq. 312 and rearranging yields the formidable-looking

(315) λ2 1
r2

d
dr

�
r2 dφ

dr

�
= −φn

where we have defined

(316) λ =

�
K(n + 1)ρ1/n−1

c
4πG

�1/2

.

When one also then defines

(317) r = λξ,

then we finally obtain the famous Lane-Emden Equation

(318)
1
ξ2

d
dξ

�
ξ2 dφ

dξ

�
= −φn.

The solutions to the Lane-Emden equation are the set of functions φ(ξ),
each of which corresponds to a different index n and each of which com-
pletely specifies a star’s density profile in the polytrope model via Eq. 313.
The solution for a given n is conventionally denoted φn(ξ). Each solution also
determines the temperature profile T(r) (as you will see in Problem Set 5).

What are the relevant boundary conditions for φ(ξ), and what are the pos-
sible values of this dimensionless ξ anyway? Well, just as with φ(r) we must
also have that φ(ξ = 0) = 1, and analogously we will have φ(ξ = ξsurf) = 0.
As for ξsurf (the value of ξ at the stellar surface), its value will depend on the
particular form of the solution, φ(ξ). A final, useful boundary condition is
that we have no cusp in the central density profile – i.e., the density will be a
smooth function from r = +� to −�. So our boundary conditions are thus

φ(ξ = 0) = 1

(319)

φ(ξ = ξsurf) = 0
(320)

dφ

dξ
|ξ=0 = 0

(321)

Just three analytic forms of φ(ξ) exist, corresponding to n = 0, 1, 5. So-
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Figure 26: Solutions to the Lane-Emden Equation, here denoted by θ instead
of φ, for n = 0 (most concentrated) to 5 (least concentrated). The applicability
of each curve to stellar interiors ends at the curve’s first zero-crossing. Figure
from Wikipedia, used under a Creative Commons CCO 1.0 license.

lutions give finite stellar mass only for n ≤ 5. Textbooks on stellar interiors
give examples of these various solutions. One example is n = 1, for which the
solution is

(322) φ1(ξ) = a0
sin ξ

ξ
+ a1

cos ξ

ξ

where a0 and a1 are determined by the boundary conditions. A quick com-
parison to those conditions, above, shows that the solution is

(323) φ1(ξ) =
sin ξ

ξ

which is the well-known sinc function. For a reasonable stellar model in which
ρ only decreases with increasing r, this also tells us that for n = 1, ξsurf = π.

The point of this dense thicket of φ’s and ξ’s is that once n is specified, you
only have to solve the Lane-Emden equation once. (And this has already been
done – Fig. 26 shows the solutions for n = 0 to 5.) Merely by scaling K and ρc
one then obtains an entire family of stellar structure models for each φn – each
model in the family has its own central density and total mass, even though
the structure of all models in the family (i.e., for each n) are homologously
related.
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