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Here η is

(671) η = β − 2
3

µ

which relates β, the bulk velocity coefficient, with µ, the shear velocity coeffi-
cient.

Conservation of Energy

The n = 2 moment expresses conservation of energy in the fluid, and equiv-
alently determines the pressure P as well. Its derivation is truly marvelous
but these notes are too narrow to contain it (well, almost). Nonetheless for
completeness the final result is:

(672)
∂

∂t

�
ρu2

2
+ e

�
+ �∇ ·

�
ρ�uu2/2 + �uµ

�
=

ρ�u · �F
m

+ �∇ ·
�
�u · ��Π

�
− �∇ ·�q

where ��Π is still the viscous diffusion tensor, e is the internal energy

(673) e =
P

γ − 1
,

q is the heat flow

(674) qi = Σi

�
viv2

j f d3v,

and µ (a different µ than immediately above) is the enthalpy (total heat con-
tent)

(675) µ = e + P =
γP

γ − 1
.

24.3 Shocks: Rankine-Hugoniot Equations

Shocks are a frequent topic of study in astrophysical (and other) fluid studies.
A shock occurs whenever a propogating wave is sufficiently intense that non-
linear wave theory no longer applies. In this case, the increased pressure at the
traveling wave front builds up and ultimately leads to a sharp discontinuity
in fluid velocity, ρ, and P.

In a coordinate system moving with a shock, under the right conditions
the three moment equations are simplified greatly. The resulting, simplified
statements of conservation of number (mass), momentum, and energy are the
Rankine-Hugoniot jump conditions:

(676) ρ�u = const.,

(677) P + ρu2 = const.,
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24. Fluid Mechanics

and

(678)
P
ρ

γ

γ − 1
+

1
2

ρu2 = const..

Using these three conservation equations, if we know the pre-shock condi-
tions (in region 1) then we can calculate the post-shock (region 2) conditions.

Velocity and Density

A shock wave zooms through; in the shock’s frame of reference, the un-
shocked material is moving at speed u1. What will be the speed of the shocked
medium: i.e., what is u2?

From the energy equation,

(679)
1
2

�
u2

1 − u2
2

�
=

γ

γ − 1

�
P2

ρ2

P1

ρ1

�
.

Invoking the continuity equation and rearranging gives

(680)
ρ1u1

2

�
u2

1 − u2
2

�
=

γ

γ − 1
(P2u2 − P1u1).

Applying the momentum equation and dividing out a factor of (u1 − u2)
yields

(681)
ρ1u1

2
(u1 + u2) =

γ

γ − 1
(−P1 + ρ1u1u2).
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Figure 58: Post-shock conditions vs. shock speed: velocity (top; Eq. 684), den-
sity (middle; Eq. 686), and pressure (bottom; Eqs. 691 and 692). The black dot
indicates M = 1; below this speed, there is no shock.
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24.3. Shocks: Rankine-Hugoniot Equations

We now bring in the Mach number, defined as the velocity relative to the
local soundspeed:

(682) M =
u
cs

= u
�

ρ

γP
.

This, plus another round of algebra, gives

(683)
u1 + u2

2
=

γ

γ − 1

�
u2 −

u1

γM2
1

�
.

Finally one can factor out the terms containing u1 and u2, divide, and find
that

(684)
u2

u1
=

γ − 1
γ + 1

+
2

γ + 1
1

M2
1

.

Since gamma ≈ 1.5 and shocks are supersonic M > 1, this means u2 < u1. The
velocity after the shock has passed will always be less than the speed of the
shock front. In the limit of a very fast-moving shock,

(685) lim
M→∞

u2

u1
=

γ − 1
γ + 1

.

From Eq. 684 and the continuity equation, the density relation is then also
quickly derived:

(686) ρ2 = ρ1
u1

u2

So as the shock speed increases the density will asymptotically approach

(687) lim
M→∞

ρ2

ρ1
=

γ + 1
γ − 1

.

Thus the density is always greater after the shock has passed through, but
never more than a ∼few times greater.

Pressure

To determine the new pressure, we start with the combined continuity and
momentum equations

P2 = P1 + ρ1u1(u1 − u2)

(688)

= P1 + ρ1u2
1

�
1 − u2

u1

�
.

(689)
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24. Fluid Mechanics

Using Eq. 682 to substitute for P1 and Eq. 684 for u2/u1, after some algebraic
gymnastics we have

P2 = ρ1u2
1

�
1

γM2
1
+

2(M2
1 − 1)

M2
1(γ + 1)

�(690)

= ρ1u2
1

�
1

γM2
1
+

2
γ + 1

− 2
M2

1(γ + 1)

�
.

(691)

The ratio of pressures requires a bit more work; defining r = ρ2/ρ1, it is

(692)
P2

P1
=

(γ + 1)r − (γ − 1)
(γ + 1)− (γ − 1)r

The pressure will also be greater after the shock has passed through; unlike
for density, a shock can increase the pressure to arbitrarily large values.

24.4 Supernova Blast Waves

A common shock is the sudden, cataclysmic injection of energy into the inter-
stellar medium by a supernova. The outer layers of the dying star are ejected
from the remnant core at extremely high velocities, where they interact with
an ISM that is essentially at rest. The evolution of the SN blast wave can
be considered in two distinct phases: the initial (energy-conserving) Sedov-
Taylor expansion phase, and the later (momentum-conserving) snowplow
phase.

Sedov-Taylor Expansion Phase

Soon after the supernova goes off, the ejecta’s energy content (thermal plus
kinetic) is much greater than what is being radiated away. Thus we can ap-
proximate the expansion as adiabatic. (Note that the Sedov phase really only
begins when the mass swept up in the blast wave shell becomes comparable
to the inidial ejecta mass; this takes roughly 70–100 yr.)

A common approach is to assume (reasonably) that the shock wave’s ex-
pansion will depend on the shock front radius r at time t, the ISM’s initial
density ρ1, and the energy injected E. One defines a characteristic, dimension-
less quantity

(693) ξ ≡ rtlEmρn
1 .

For ξ to be dimensionless and not retain units of length (L), mass (M), or time
(T) it must be true that

(694) [ξ] = 1 = LTl
�

ML2

T2

�m �
M
L3

�n
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24.4. Supernova Blast Waves

which implies

l = −2/5

m = −1/5

n = +1/5.

This dimensional argument immediately implies that the shock front radius
scales as

(695) rsh = ξ0

�
Et2

ρ1

�1/5

.

For reasonable assumptions, ξ0 is of order unity (typically with � 20%). This
also gives an expression for the speed of the expanding shock front,

ush =
2
5

ξ0

�
E

ρ1t3

�1/5
(696)

=
2
5

rsh/t.

(697)

We can compare these predictions to observations, e.g. of the relatively
young Crab Nebula. For E = 1051 erg, ρ1 = 10−24 g cm−3, and t = 1000 yr
our predictions come moderately close to reality:

rpred ≈ 5 pc ∼ robs ≈ 3 pc
(698)

upred ≈ 2000 km s−1 ∼ uobs ≈ 900 km s−1.
(699)

With the size and speed of the shock wave in hand, we can use the Rankine-
Hugoniot conditions to determine the density, bulk velocity, and pressure in-
side the shock front (just after the blast wave has passed through). Using the
nomenclature of Fig. 59, for a very strong (highly supersonic) blast wave, im-

rsh

ush

(shell)

Pcore ρ1ρ2

(ISM)

(swept 
   out)

P2

P1

Figure 59: Left: Schematic diagram of a supernova shock wave with finite shell
width. Right: Sedov solution for γ = 5/3 (Fig. 17.3 of Shu, Vol. II).
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mediately inside the blast front Eqs. 684, 686, and 691 will give

u2,Lab = −u2,Shock + ush = −
�

γ − 1
γ + 1

�
ush + ush =

2
γ + 1

ush

ρ2 =
γ + 1
γ − 1

ρ1

P2 =
2

γ + 1
ρ1u2

sh.

By combining these with the fluid equations (Eqs. 666, 667, and 672) and
setting u = (2/5)rsh/t (Eq. 697), one obtains a set of analytically-tractable
relations for the pressure, density, and velocity as a function of radius. These
relations are plotted in the right-hand panel of Fig. 59.

Snowplow Phase

Long after the supernova goes off, the ejecta has lost enough energy and is
expanding slowly enough that energy losses via radiation become significant.
This happens with the total radiated energy is comparable to the initial input
energy E, which typically takes ∼ 105 yr. At this point the energy of the shock
wave is no longer conserved, but its momentum should still be conserved. In
this case, the shock front acts like a snowplow coasting into a snow bank; the
series of collisions is inelastic and the wave continues to slow down at a new,
different rate.

At this late stage, the supernova blast wave with radius r has swept up a
spherical region of mass, which is carried along with the shock: this is just

(700) Mshell =
4
3

πr3ρ1.

In the momentum-conserving phase, we should have

(701) pshell = Mshell(t)ush(t) = const.

This means

(702) r3ṙ = const,

which implies

rsh ∝ t1/4 and
(703)

ush ∝ t−3/4.
(704)

24.5 Rayleigh-Taylor Instability

Another common use of fluid dynamics is to determine when a given system
becomes unstable. The approach used here is perturbation theory: assume
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24.5. Rayleigh-Taylor Instability

some initial conditions in (perhaps unstable) equilibrium, assume a small
perturbation to those conditions, and observe the results: if the perturbation
grows with time then an instability is indicated.

One such scenario is the Rayleigh-Taylor Instability: given two media
with densities ρu and ρ� and a local acceleration (i.e. gravity) field �g perpen-
dicular to the interface between the media, the media will be unstable if the
denser material is “on top.”

We assume initial conditions u = 0, ρ = ρ0(z), and P = P0. We then
examine the situation if a small density perturbation ρ1 is applied. This per-
turbation may also change the velocity and pressure, so the new conditions
are

ρ = ρ0 + ρ1

�u = u1

P = P0 + P1.

The standard approach is to model ρ1 as the complex function

(705) ρ1 = ρ1(z)ei(kx−ωt).

The utility of this approach is that ω will determine when our situation is
stable or not. Specifically, if ω2 > 1 then ω is real and the perturbation (i.e., its
real part) will merely oscillate with time; but if ω2 < 1 then our perturbation
will grow exponentially with time, indicating an unstable system.

We then proceed to apply each of the fluid equations of Sec. ??, beginning
with the continuity equation (Eq. 666):

∂ρ

∂t
+ �∇ · (ρ�u) = 0.

Applying Eq. 705, we then obtain

(706) −iωρ1 + �∇ · (ρ0�u1) + �∇ · (ρ1�u1) = 0.

Since ρ1 and �u1 are both small their product is negligible, and the last term
can be dropped. Furthermore, if the fluids are incompressible then

(707) �∇ · �u = 0.

We then have

−iωρ1 + �u1 · �∇ρ0 = 0

−iωρ1 +
∂ρ0

∂z
uz

1 = 0

and so the amplitude of the density perturbations is

(708) ρ1 =
(∂ρ0/∂z)uz

z
iω

.
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The next step is to determine the pressure perturbation, P1, that results
from the applied density perturbation. For this we begin with the next mo-
ment equation, of momentum conservation. A simplified Eq. 667 is

∂

∂t
(ρ�u) = −�∇P + ρ�g.

Expanding this using our perturbed quantities gives

∂

∂t
(ρ0�u1) = −�∇P1 − ρ1gẑ.

The gradient of the pressure perturbation (which has a form analogous to
Eq. 705, is

(709) �∇P1 = ikP1 x̂ +
∂P1

∂z
ẑ.

We thus have two equations for each of the two component directions:

(710) −iωρ0ux
1 = −ikP1 (x̂ direction)

and

(711) −iωρ0uz
1 = −ρ1g − ∂P1

∂z
(ẑ direction).

From the first of these (Eq. 710, we have

(712) P1 =
ω

k
ρ0ux

1

which is usually recast using the definition of incompressibility,

(713) �∇ · u = ikux
1 +

∂uz
1

∂z
= 0

to give

(714) P1 =
iω
k2 ρ0

∂uz
z

∂z
.

For the final piece of the puzzle, to determine ω2 and so determine whether
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24.5. Rayleigh-Taylor Instability

our stratified fluid is stable or not, we begin with Eq. 711:

−iωρ0uz
1 = −ρg − ∂P1

∂z

(715)

= −ρ1g − ∂

∂z

�
iω
k2 ρ0

∂uz
1

∂z

�(716)

= −ρ1g − iω
k2

�
∂

∂z

�
ρ0

∂uz
1

∂z

��
.

(717)

The density gradient is zero in all directions but ẑ, and even then it is zero
everywhere except at the boundary z = 0. Thus we have

(718) �∇ρ0 =
∂ρ0

∂z
ẑ = (ρu − ρ�) δ(z)ẑ.

With this and Eq. 708, we then have

(719)
∂

∂z

�
ρ0

∂uz
1

∂z

�
− k2ρ0uz

1 =
gk2

ω2 uz
1 (ρu − ρ�) δ(z).

Because of the delta function, two different expressions will result depend-
ing on whether or not z = 0. If not, then δ(z) = 0 and so Eq. 719

(720)
∂2

uz
1

∂z2 = k2uz
1

whose solution has the usual form:

(721) uz
1 = uz

10e−k|z|.

On the other hand, if z = 0 then we take Eq. 719 and integrate up across

the boundary layer; schematically, we are calculating
� 0+

0− dz. Since ρ0uz
1 is

continuous at z = 0 (by Eq. 721),

(722)
0+�

0−

k2ρuz
1dz = 0.

Again making use of Eq. 721, integrating the second term in Eq. 719 will give

(723)
0+�

0−

∂

∂z

�
ρ0

∂uz
1

∂z

�
dz = −kuz

10 (ρu + ρ�) .

Finally, integrating over the delta function in the right-hand side of Eq. 719
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yields

(724)
0+�

0−

gk2

ω2 uz
1 (ρu − ρ�) δ(z) =

gk2

ω2 uz
10 (ρu − ρ�) .

The key result of all this that we have now shown that

(725) ω2 = −gk
ρu − ρ�
ρu + ρ�

.

The implication is that if the denser material is “on top,” ρu > ρ�, ω2 < 0,
and so the density perturbation will grow exponentially with time. If the the
denser material starts out underneath, then the situation is stable. This is why
oil always floats on water (even if you try to pour a layer of water onto a pre-
existing layer of oil). It is also responsible for the fascinating surface shape of
the interface between supernova remnants and the ISM, as seen (e.g.) in the
Crab Nebula.
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