
24.5. Rayleigh-Taylor Instability

some initial conditions in (perhaps unstable) equilibrium, assume a small
perturbation to those conditions, and observe the results: if the perturbation
grows with time then an instability is indicated.

One such scenario is the Rayleigh-Taylor Instability: given two media
with densities ρu and ρ� and a local acceleration (i.e. gravity) field �g perpen-
dicular to the interface between the media, the media will be unstable if the
denser material is “on top.”

We assume initial conditions u = 0, ρ = ρ0(z), and P = P0. We then
examine the situation if a small density perturbation ρ1 is applied. This per-
turbation may also change the velocity and pressure, so the new conditions
are

ρ = ρ0 + ρ1

�u = u1

P = P0 + P1.

The standard approach is to model ρ1 as the complex function

(705) ρ1 = ρ1(z)ei(kx−ωt).

The utility of this approach is that ω will determine when our situation is
stable or not. Specifically, if ω2 > 1 then ω is real and the perturbation (i.e., its
real part) will merely oscillate with time; but if ω2 < 1 then our perturbation
will grow exponentially with time, indicating an unstable system.

We then proceed to apply each of the fluid equations of Sec. 24.2, beginning

ρu

ρl

g

Figure 60: Initial conditions for considering the Rayleigh-Taylor instability, just
after an initial perturbation has been applied.
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24. Fluid Mechanics

with the continuity equation (Eq. 666):

∂ρ

∂t
+ �∇ · (ρ�u) = 0.

Applying Eq. 705, we then obtain

(706) −iωρ1 + �∇ · (ρ0�u1) + �∇ · (ρ1�u1) = 0.

Since ρ1 and �u1 are both small their product is negligible, and the last term
can be dropped. Furthermore, if the fluids are incompressible then

(707) �∇ · �u = 0.

We then have

−iωρ1 + �u1 · �∇ρ0 = 0

−iωρ1 +
∂ρ0

∂z
uz

1 = 0

and so the amplitude of the density perturbations is

(708) ρ1 =
(∂ρ0/∂z)uz

1
iω

.

The next step is to determine the pressure perturbation, P1, that results
from the applied density perturbation. For this we begin with the next mo-
ment equation, of momentum conservation. A simplified statement of mo-
mentum conservation (Eq. 667) is

∂

∂t
(ρ�u) = −�∇P + ρ�g.

Expanding this using our perturbed quantities gives

∂

∂t
(ρ0�u1) = −�∇P1 − ρ1gẑ.

The gradient of the pressure perturbation (which has a form analogous to
Eq. 705), is

(709) �∇P1 = ikP1 x̂ +
∂P1

∂z
ẑ.

We thus have two equations for each of the two component directions:

(710) −iωρ0ux
1 = −ikP1 (x̂ direction)

and

(711) −iωρ0uz
1 = −ρ1g − ∂P1

∂z
(ẑ direction).
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24.5. Rayleigh-Taylor Instability

From the first of these (Eq. 710), we have

(712) P1 =
ω

k
ρ0ux

1

which is usually recast using the definition of incompressibility,

(713) �∇ · u = ikux
1 +

∂uz
1

∂z
= 0

to give

(714) P1 =
iω
k2 ρ0

∂uz
z

∂z
.

For the final piece of the puzzle, to determine ω2 and so determine whether
our stratified fluid is stable or not, we begin with Eq. 711:

−iωρ0uz
1 = −ρg − ∂P1

∂z

(715)

= −ρ1g − ∂

∂z

�
iω
k2 ρ0

∂uz
1

∂z

�(716)

= −ρ1g − iω
k2

�
∂

∂z

�
ρ0

∂uz
1

∂z

��
.

(717)

The density gradient is zero in all directions but ẑ, and even then it is zero
everywhere except at the boundary z = 0. Thus we have

(718) �∇ρ0 =
∂ρ0

∂z
ẑ = (ρu − ρ�) δ(z)ẑ.

With this and Eq. 708, we then have

(719)
∂

∂z

�
ρ0

∂uz
1

∂z

�
− k2ρ0uz

1 =
gk2

ω2 uz
1 (ρu − ρ�) δ(z).

Because of the delta function, two different expressions will result depend-
ing on whether or not z = 0. If not, then δ(z) = 0 and so Eq. 719 becomes

(720)
∂2

uz
1

∂z2 = k2uz
1

whose solution has the usual form:

(721) uz
1 = uz

10e−k|z|.

On the other hand, if z = 0 then we take Eq. 719 and integrate up across
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24. Fluid Mechanics

the boundary layer; schematically, we are calculating
� 0+

0− dz. Since ρ0uz
1 is

continuous at z = 0 (by Eq. 721),

(722)
0+�

0−

k2ρuz
1dz = 0.

Again making use of Eq. 721, integrating the second term in Eq. 719 will give

(723)
0+�

0−

∂

∂z

�
ρ0

∂uz
1

∂z

�
dz = −kuz

10 (ρu + ρ�) .

Finally, integrating over the delta function in the right-hand side of Eq. 719
yields

(724)
0+�

0−

gk2

ω2 uz
1 (ρu − ρ�) δ(z) =

gk2

ω2 uz
10 (ρu − ρ�) .

The key result of all this that we have now shown that

(725) ω2 = −gk
ρu − ρ�
ρu + ρ�

.

The implication is that if the denser material is “on top,” ρu > ρ�, ω2 < 0, and
the situation is unstable. If the the denser material starts out underneath, then
the situation is stable. This is why oil always floats on water (even if you try to
pour a layer of water onto a pre-existing layer of oil). It is also responsible for
the fascinating surface shape of the interface between supernova remnants and
the ISM, as seen (e.g.) in the Crab Nebula, and it is of fundamental importance
for inertially-confined fusion experiments.

In the case of instability, the density perturbation grows exponentially with
time so long as the perturbations are small. One sometimes defines the At-
wood Number

(726) A ≡ ρu − ρ�
ρu + ρ�

in which case the characteristic growth timescale is

(727) τRT = (Agk)−1/2 .

Since the wavenumber k = 2π/λ, this means

(728) τRT =

�
λ

2πAg

�1/2

So the shortest-wavelength perturbations grow most rapidly.
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24.5. Rayleigh-Taylor Instability

Once the perturbation amplitude is comparable to its wavelength, this lin-
ear regime begins to break down. We will then have alternating rising and
sinking plumes, moving at different relative velocities. In the presence of a ve-
locity shear and different densities, we have the Kelvin-Helmholtz-Rayleigh-
Taylor instability. It turns out that in the presence of velocity shear ω is always
complex, and so the fluid will always be unstable. The Kelvin-Helmholtz in-
stability is responsible for some cloud patterns on Earth, and it sculpts the
shapes of outflow jets from compact, accreting sources. The combined KHRT
instability is responsible for the characteristic “mushroom clouds” that form
above large (or even nuclear) explosions.
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