OoMA Fact Sheet

$G=(2 / 3) \times 10^{-7}$ dyne-cm ${ }^{2} /$ gram 2
$c=3 \times 10^{10} \mathrm{~cm} / \mathrm{sec}$
$k=(1 / 7) \times 10^{-15} \mathrm{erg} / \mathrm{K}$
$h=(2 / 3) \times 10^{-26}$ erg-sec
$\hbar=10^{-27}$ erg-sec
$N_{A}=6 \times 10^{23}$ nucleons/gram
$m_{p} / m_{e}=1836 \quad m_{p} c^{2}=938 \mathrm{MeV}$
$m_{e} \approx 10^{-27} \mathrm{gm} \quad m_{e} c^{2}=511 \mathrm{keV}$
$e=4.8 \times 10^{-10} \mathrm{esu}=1.6 \times 10^{-19}$ Coulomb
$\alpha=e^{2} / \hbar c=1 / 137$
$L_{\odot}=4 \times 10^{33} \mathrm{erg} / \mathrm{sec}$
Fusing H to He yields 0.7% of $m c^{2}$
He to $\mathrm{C} \& \mathrm{C}$ to Fe about 0.1% of $m c^{2}$ each
Solar Constant $=1.4 \mathrm{~kW} / \mathrm{m}^{2}$ at 1 AU
$M_{\odot}=2 \times 10^{33}$ grams $\quad R_{\odot}=7 \times 10^{10} \mathrm{~cm}$
$R_{\oplus}=6371 \mathrm{~km} \quad M_{\oplus}=3 \times 10^{-6} M_{\odot}$
$M_{J}=10^{-3} M_{\odot}$
Hubble radius $=c / H_{\circ}=1.3 \times 10^{28} \mathrm{~cm}$
Critical density $\sim 10^{-29} \mathrm{~g} / \mathrm{cm}^{3}$
$\sigma_{T}=(2 / 3) \times 10^{-24} \mathrm{~cm}^{2}$
$\sigma_{S B}=5.67 \times 10^{-5} \mathrm{erg} / \mathrm{cm}^{2} / \mathrm{sec} / \mathrm{K}^{4}$
Flux from a blackbody surface is $\sigma_{S B} T^{4}$
1 Farad $=9 \times 10^{11} \mathrm{~cm}$
1 ohm $=1 /\left(9 \times 10^{11}\right) \mathrm{sec} / \mathrm{cm}$
1 gram calorie $=4.2$ Watt-sec or Joules
Dietary calories are really kilocalories.
1 kiloton (kT) of TNT $=$ KE of 1000 met-
ric tonnes @ $2.9 \mathrm{~km} / \mathrm{sec} . \quad\left[1 \mathrm{kT}=10^{12}\right.$
gram-cal exactly]
Supernova kinetic energy $=10^{51}$ ergs
$1 \mathrm{AU}=(3 / 2) \times 10^{13} \mathrm{~cm}$
1 radian $=2 \times 10^{5}$ arc-seconds
1 square arcsec $=2.4 \times 10^{-11}$ steradians
$1 \mathrm{pc}=3 \times 10^{18} \mathrm{~cm}$
$1 \mathrm{erg}=6 \times 10^{11} \mathrm{eV}$
$1 \mathrm{eV} \sim 12,000 \mathrm{~K} \quad 1 \mathrm{eV} \sim 1.2 \mu \mathrm{~m}$
$h c / k \approx 1.44 \mathrm{~cm} \mathrm{~K}$
$1 \mathrm{Jy}=10^{-23} \mathrm{ergs} / \mathrm{cm}^{2} / \mathrm{sec} / \mathrm{Hz}$
1 year $\approx \pi \times 10^{7}$ seconds
1 Mpc is $1 \mathrm{~km} / \mathrm{sec}$ for 1000 Gyr
One atmosphere or 1 bar $=10^{6}$ dyne $/ \mathrm{cm}^{2}$
Maximum mass for white dwarfs: $1.4 \mathrm{M}_{\odot}$

Typical mass of neutron stars: $1.4 \mathrm{M}_{\odot}$

Stellar spectra - from "early" = hot to "late" = cool:
Oh Be A Fine Girl Kiss Me Later Tonight Luminosity class - the Roman numeral: "I" = supergiant = low surface gravity "III" = giant, "V" = dwarf = main sequence star $=$ high surface gravity.

Sp.Type	$\log \left(L / L_{\odot}\right)$	$\mathrm{M} / \mathrm{M}_{\odot}$	$\mathrm{T}_{\text {eff }} \mathrm{K}$
O5V	5.82	40	40,000
B0V	4.66	18	28,000
B5V	2.94	9	15,500
A0V	1.78	3	9900
A5V	1.15	2	8500
F0V	0.88	1.7	7400
F5V	0.54	1.3	6580
G0V	0.15	1.1	6030
G5V	-0.11	0.9	5520
K0V	-0.38	0.8	4900
K5V	-0.78	0.7	4130
M0V	-1.22	0.5	3480
M5V	-1.90	0.2	2800
L0	-3.65		2200
L5	-4.11		1700
T0	-4.57		1300
T5	-5.02		1000

1 magnitude is -4 db
A decibel (db) is a factor of $10^{0.1}$ in power.
$0^{\text {th }}$ mag at $\mathrm{V} \approx 10^{3}$ photons $/ \mathrm{cm}^{2} / \mathrm{sec} / \AA$.
$m_{b o l}=0$ for $2.5 \times 10^{-5} \mathrm{erg} / \mathrm{cm}^{2} / \mathrm{sec}$.
Bands central wavelengths in $\mu \mathrm{m}$:
$\mathrm{U}=0.36, \mathrm{~B}=0.44, \mathrm{~V}=0.55, \mathrm{R}=0.7$, $\mathrm{I}=0.9, \mathrm{Z}=1.0, \mathrm{~J}=1.25, \mathrm{H}=1.6, \mathrm{~K}=$ $2.2, \mathrm{~L}=3.5, \mathrm{M}=4.6, \mathrm{~N}=10, \mathrm{Q}=20$
AB magnitudes have the same zeropoint flux in F_{ν} (3631 Jy) in all bands.
Johnson or "Vega" magnitudes have zeropoints that follow the spectrum of an A0V star.
$10^{n / 10}=1.26,1.6,2,2.5,3.2,4,5,6.3,8$.

