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Problem Set 7

Due: Friday, April 12, 2018, in class
This problem set is worth 105 points

1. Evolution on the red giant branch [20 pts]
Once a low-mass star leaves the main sequence and ascends the red giant branch, its luminosity is provided
by hydrogen burning in a thin shell surrounding a degenerate helium core. As hydrogen is burned in the shell,
the mass of the helium core grows and the star continues to ascend the giant branch. It turns out that both the
luminosity and the radius of red giants can be written as steep functions of their helium core mass alone, nearly
independent of any other quantity. These expressions are

L ' 2× 105L�

(
mc

M�

)6

, R ' 3700R�

(
mc

M�

)4

,

where mc is the helium core mass, and L and R are the luminosity and radius of the (entire) red giant, re-
spectively. Note that these expressions are “empirical” in that they are based on the results of stellar evolution
calculations and are not derived analytically.

(a) [10 pts] Use these relations to compute the evolution of a star (L and R as functions of time) as it ascends
the red giant branch. Take the initial core mass value to be mc = 0.1M� and the final value (at the tip of the
giant branch) to be mc = 0.45M�. Note that the luminosity L tells us the rate at which hydrogen is burned in
the shell around the core, and thereby tells us the rate of growth of the degenerate helium core: L = 0.007ṁcc

2.

(b) [10 pts] Plot the radius, luminosity, and effective temperature of the star as a function of time on the giant
branch. Also, plot the track of the evolving giant on an H-R diagram (i.e., logL versus log Teff , with log Teff

increasing to the left).

1



2. Core helium flash in red giants [15 pts]
(Adapted from Hansen, Kawaler, & Trimble, Problem 6.8)

Suppose you have a gram of pure 4He in the center of a pre–helium-flash red giant. The initial density and
temperature of the gram are, respectively, ρ = 2 × 105 g cm−3 and T = 1.5 × 108 K. This is hot enough to
burn helium by the triple-α reaction, which is the only reaction you will use. The energy generation rate per
unit mass for this reaction is given by

ε3α =
5.1× 108 ρ2 Y 3

T 3
9

e−4.4027/T9 erg g−1 s−1,

where Y is the helium mass fraction (which we will take to be 1) and T9 is the temperature in units of 109 K.

In this problem, you will follow the time evolution of the gram as helium burning proceeds by computing the
temperature T as a function of time. ε3α tells you how much energy is produced per unit time in this gram.
Compute the rate of change of temperature by coupling this to specific heat capacity:

δT =
(δE/∆m)

cV
.

The specific heat cV has contributions from the electrons and from the helium ions: cV = cV,e + cV,He, with

cV,e =
1.35× 105

(ρ/g cm−3)
(T/K)x (1 + x2)1/2 erg g−1 K−1,

and
cV,He =

3k

4mp
.

In the equation for cV,e, x is the dimensionless Fermi momentum; it can be computed using the fact that ρ ≈
2× 106x3 g cm−3.

Start the clock runnning at t = 0 with the stated initial conditions. For simplicity, assume that the density and
the helium concentration remain constant for all time and that no heat is allowed to leave the gram. Compute
T (t) numerically until that time when the material begins to become nondegenerate. (Use the nonrelativistic
demarcation line ρ ≈ 10−8g cm−3 (T/K)3/2; since we assume ρ is constant, this effectively means to compute
the temperature T at which the given ρ becomes non-degenerate, and then to integrate until you reach that
temperature.)

(a) [8 pts] Plot temperature T (t) versus time in days. You will be able to recognize the flash when it happens
because the temperature will suddenly skyrocket after not too many days of burning.

(b) [7 pts] After how many days does the helium flash occur? As a test of the quality of your numerical
integration scheme, do your best to determine this onset time precisely. You may need to adjust the parameters
of your numerical integrator to pin this down accurately.

2



3. White dwarf structure: analytic results [30 pts]
In this problem you will use a polytrope model to derive the mass-radius relation for white dwarfs. Before
beginning, you may want to review the previous polytrope problems as well as the discussion of polytropes in
section 5.3 of Chaudhuri.

(a) [10 pts] Show that for a polytrope with index n, the total mass M and outer radius R are related as

M = 4πR(3−n)/(1−n)

[
(n+ 1)K

4πG

]n/(n−1)

ξ
2−(n−3)/(n−1)
1

∣∣∣∣dφndξ
∣∣∣∣
ξ1

, (1)

where ξ1 is defined by φn(ξ1) = 0, and K is the constant in the polytropic relation p = Kρ1+1/n.

(b) [10 pts] For a white dwarf of sufficiently low mass, the electrons are non-relativistic and an n = 1.5
polytrope is a good model. Show that in this case

R/R⊕ = 1.76

(
ρc

106 g cm−3

)−1/6 (µe
2

)−5/6

, (2)

M/M� = 0.496

(
ρc

106 g cm−3

)1/2 (µe
2

)−5/2

, (3)

M/M� = 2.7

(
R

R⊕

)−3 (µe
2

)−5

, (4)

using your results from part (a) as well as from your previous work on polytropes. In these expressions,
ρc is the central density, and µe is the mean molecular weight per electron. (Low mass white dwarfs are
composed mostly of degenerate helium, hence µe = 2 for full ionization.) For completely ionized neutral
matter, µe = ρ/nemp. Also, R⊕ = 6378.1 km is the radius of the Earth, and R⊕/R� = 0.00917.

(c) [10 pts] For larger masses and higher central densities, the electrons become relativistic, and an n = 3
polytrope is a better description. Show that in this case,

R/R⊕ = 5.25

(
ρc

106 g cm−3

)−1/3 (µe
2

)−2/3

, (5)

M/M� = 1.46
(µe

2

)−2

. (6)

Thus there is a uniquely defined mass, the Chandrasekhar mass, which is the maximum mass of an object
that is supported by electron degeneracy pressure.
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4. White dwarf structure: numerical models [40 pts]
In the previous problem you considered the cases of non-relativistic and relativistic electrons separately. In
this problem you will build numerical models of white dwarfs, using an equation of state that makes a smooth
transition from the non-relativistic to the relativistic regime.

The Fermi pressure of a non-relativistic (NR) degenerate electron gas is

PNR =

(
3

π

)2/3
h2

20mem
5/3
p

(
ρ

µe

)5/3

= KNR

(
ρ

µe

)5/3

ρ5/3, (7)

where ρ is the total mass density, µe is the mean molecular mass per electron, and the constant KNR is approxi-
mately 1.00× 1013 in cgs units.

The Fermi pressure of an ultrarelativistic (UR) degenerate electron gas is

PUR =

(
3

π

)1/3
hc

8m
4/3
p

(
ρ

µe

)4/3

= KUR

(
ρ

µe

)4/3

, (8)

where KUR ≈ 1.24× 1015 in cgs units.

On a log-log plot, the functions PNR(ρ) and PUR(ρ) are straight lines with slopes 5/3 and 4/3 respectively.
They intersect at a density

ρ0 ≡ µe
(
KUR

KNR

)3

≈ 3.79× 106 g cm−3, (9)

where here and for the rest of this problem we have assumed µe = 2. We will patch together the two expressions
in an approximate way:

P =
PNRPUR√
P 2

NR + P 2
UR

=
KNR(ρ/µe)

5/3√
1 + (ρ/ρ0)2/3

. (10)

This expression has the correct asymptotic behavior for both low ρ and high ρ. It is therefore a simple way to
interpolate between the two regimes. (Note, you could use instead the exact formula for the Fermi pressure of
an arbitrarily relativistic degenerate gas that you derived in a previous problem set. This approximation turns
out to give nearly identical answers, and is easier to work with.)

Now that we have a relation P (ρ), we can proceed as we did for the polytropic model, by solving the equation
of hydrostatic equilibrium,

1

r2

d

dr

(
r2 1

ρ

dP

dr

)
= −4πGρ. (11)

(a) [7 pts] Nondimensionalize the preceding equation by defining θ ≡ ρ/ρ0, and s ≡ r/a, where a is a
constant with the dimensions of length that is formed from the constants KNR, ρ0, and G. You should find
that a ≈ 1.557× 108 cm.

(b) [5 pts] Turn the second-order differential equation into two first-order coupled differential equations, by
defining V ≡ dθ/ds.

Next, write a code to integrate the first-order coupled equations for θ and V . Start from the center, using the
boundary conditions θ(0) = θc and V (0) = 0, where θc is a constant that specifies the central density of the
white dwarf. Stop when θ goes to zero, thereby defining the outer radius. (To avoid numerical difficulties you
may want to stop when θ/θc = 10−3.) Perform the integration for 17 different choices for the central density:
ρc = 104, 104.5, 105, 105.5, ..., 1011.5, 1012 g cm−3.

While integrating, keep track of the dimensionless mass of the star,

M =

∫ smax

0

θ(s)s2ds, (12)

which can be converted into the actual mass,

M = 4πρ0a
3M = (0.090M�)M. (13)
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(c) [7 pts] Plot the masses of your white dwarf models (in M�) as a function of log10 ρc. Calculate the
maximum stable mass of a white dwarf.

(d) [7 pts] Plot radius (in units of R�/100) as a function of log10 ρc.

(e) [7 pts] Plot radius (in R�/100) as a function of mass (in M�).

(f) [7 pts] For a model with M = M�, plot the density as a function of radial distance. Repeat for M =
1.3 M�.
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