
ASTRONOMY 271 WINTER 2008

This course is an introduction to radiation in astrophysics. The material will be pre-
sented so as to develop the ability to read the astrophysical literature; there will not be
enough time to go into great depth. The text is Rybicki and Lightman, Radiative Processes
in Astrophysics.

Schedule:

1. Basic Definitions and Results
2. Low Energy Line Photons Emission/Absorption
3. High Energy Line Photons Emission/Absorption
4. Classical Theory of Radiation I: Retarded Potentials
5. Classical Theory of Radiation II: Larmor Formula
6. Thermal Sources of Radiation: free-free
7. Thermal Sources of Radiation: solid dust particles
8. Atomic Spectroscopy
9. Molecular Spectroscopy
10. Synchrotron Emission I
11. Synchrotron Emission II
12. Compton Effect
13. Scattering: Electrons + particles
14. Masers
15. Stars
16. Disks
17. AGN
18. ISM and IGM

Grading: There will be a written final exam.

Useful references will be supplied at various times.
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Astronomy 271 – Study Problems – Set No. 1

1. What are the units of the Einstein B′s?

2. What is the relationship between the Einstein A and the oscillator strength, f?

3. Fabian et al. ( 2007, ApJ, 661, 102 ) report 21 cm mapping of nearby galaxies. How well
can you reproduce their statement that a flux of 0.5 mJy in a beam of diameter 10” over
a velocity width of 2.5 km s−1 corresponds to an atomic hydrogen column density of 1.5
× 1019 cm−2? Remember that a beam size is usually quoted as a Full Width Half Maximum.

4. Dent et al. (2005, MNRAS, 359, 663) report CO emission for nearby stars. If the
gas has an excitation temperature of 100 K, what minimum mass of CO do you derive
from their observations toward 49 Cet? Use their result that in the J = 3-2 transition that
the integrated intensity is 0.34 K km s−1 for a star at a distance of 61 pc. You need to
adopt a beam size; take 10”.

5. Prochaska et al. (2001, ApJS, 137, 21) report data for quasar absorption line sys-
tems. Use the data in their Figure 2 to re-derive the Ni II column density given in their
Table 3. The relevant atomic physics is given in their Table 2.
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Astronomy 271 – Study Problems – Set No. 2

1. If the source function in a stellar atmosphere, S, varies as a + bτ , then we showed in
class that the emergent intensity is:

I = a + b µ (1)

where
µ = cos θ (2)

and θ is the angle of the line of sight relative to the normal of the atmosphere. Use these
results to explain why the limb darkening in the Sun is much more pronounced in the
ultraviolet compared to the infrared.

2. Assume a quasar has a power law emission such that its specific luminosity, Lν , varies
as ν−1. Assume that the quasar is surrounded by atomic hydrogen and that all of the
ionizing photons are absorbed by this gas and that ultimately every ionization leads to a
recombination that produces a Lyman α photon. Compute the expected equivalent width
of the Lyman α emission line.

3. Assume a quasar is powered by accretion onto a black hole. Compute the minimum
mass black hole necessary to explain a source with a luminosity of 1013 L�. If this source
is powered by spherically symmetric accretion of fully ionized gas in free-fall, is it optically
thin or thick to electron scattering? Assume that 10% of the gravitational energy released
by the accreted mass is converted into luminous energy.

4. Assume Eddington-limited accretion onto a black hole. If a black hole has an initial
mass of 1 M�, how long does it take to grow to a black hole of mass 109 M�?
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Astronomy 271 – Study Problems – Set No. 3

1. The radio flux from ζ Pup at 6 cm is 1.4 mJy. If the distance to the star is 500 pc and
its outflow speed is 3000 km s−1, estimate the mass loss rate in units of M� yr−1.

2. Song et al. (2005, Nature, 436, 363) report a flux at 10 µm of 71.5 Jy is for the
main-sequence star BD +20 307. Assume a distance of 90 pc, a grain temperature of 650
K and a grain opacity at this wavelength of 1000 cm2 g−1. What is the minimum mass of
the dust? How does this compare to the mass of the Earth’s Moon?

3. The solar corona may have a base electron density of 108 cm−3 at T = 2 × 106 K.
Assume that the corona has an inner radius equal to that of the Sun, the corona is isother-
mal and that it obeys the equation of hydrostatic equilibrium. Compute the X-ray free-free
emission from this model corona and compare with the total luminosity of the Sun.
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Astronomy 271 – Study Problems – Set No. 4

1. Show that the total free-free energy radiated by an electron during an encounter with a
proton is typically less than the electron’s initial kinetic energy.

2. In deriving the relationship between the rate of radiative association and the cross
section for photo-ionization, we made two approximations. We ignored stimulated emis-
sion that must occur during radiative recombination and we approximated the Planck
function as a Wien function. Show that these two approximations cancel each other.

3. Consider an optically thin cloud of dust. Assume that the density of the dust varies as
R−q while the emissivity of the dust varies as ν+p. Show that the specific luminosity of
the dust cloud varies as:

Lν ∝ ν−3+ 2 q +0.5 p q− 0.5 p (1)

Note that if q = 1, then Lν varies as ν−1, independent of q.

4. Assume an ionized nebular with a temperature of 10,000 K. If the O III 5007 line
is equally strong with Hβ, derive the ratio for n(O+2)/n(H+). You might use Tables 3.6
and 4.2 in Astrophysics of Gaseous Nebulae and Active Galactic Nuclei by Osterbrock and
Ferland.
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Astronomy 271 – Study Problems – Set No. 5

1. Assume an ionized gas of 10,000 K. What is the ratio of the free-free optical depth
to the pulsar dispersion measure? If a source has an optical depth at frequency, ν that
is less than 1, derive an expression for the maximum electron density from the value of
the dispersion measure. Then derive a lower bound to the size of the intervening region
between us and the pulsar.

2. Assume a radio pulsar could be discovered in a short period, eccentric orbit around
the massive black hole at the center of the Milky Way. How could you use the pulsar
timing to measure the predicted general relativistic advance of the periastron?

3. Consider the Crab Nebula and assume the magnetic field has a magnitude of 0.001
Gauss. What is the lifetime of an electron that produces a 10 keV X-ray? How does this
compare with the estimated age of the Crab of ∼1000 years?

4. Assume a magnetic field of 5 × 107 Gauss. What wavelength of light corresponds
to emission at the nonrelativistic cyclotron frequency? On the basis of the energy den-
sity and hydrostatic equilibrium, show that main-sequence stars are unlikely to possess
magnetic fields of this magnitude but white dwarfs might.
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Astronomy 271 – Study Problems – Set No. 6

1. Assume that the sky has an optical depth of 0.1 along the line of sight. What is the
surface brightness of the sky as illuminated by the Sun?

2. If the Moon has an albedo of 0.05, compute its surface brightness and compare with
your estimate for the sky as given above.

3. The Rayleigh scattering cross section varies as λ−4. Qualitatively explain why the
clear sky appears white near the horizon but blue near the zenith.

4. Consider an optically thin cloud in the very center of a spherical galaxy. Show that this
cloud cannot appear as a bright reflection nebulosity but only as dark patch.
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Extra Study Problem for the HST COS Proposal

The key document is the COS Handbook:

http : //www.stsci.edu/hst/cos/documents/handbooks/current/cos cover.html (1)

What is the correct way to insure COS safety when performing moderate-resolution obser-

vations near Lyman α? How to include the sky background?

What is the sky background?

At line center, the flux from the Sun in Lyman α is approximately 3.4 × 1011 photons

cm2 s−1 Å−1 (Figure 2a in Lemaire et al. 1978, ApJ, 223, L55). This result is achieved by

correcting for absorption in the upper atmosphere of the Earth; this correction amounts to

about a factor of 2. In energy units, this photon flux corresponds to a result, Fλ, of 5.6 erg

cm−2 s−1 Å−1. The mean intensity, Jλ is:

Jλ =
Fλ
4π

(2)

Therefore, Jλ = 0.45 erg cm−2 s−1 Å−1 ster−1. Equivalently, then Jλ = 1.06 × 10−11 erg

cm−2 s−1 Å−1 arcsec−2. The mean intensity provides an upper limit to the intensity of the

scattered light. There may be times when there is sufficient atomic hydrogen in the upper

atmosphere that the specific intensity may be as high as the mean intensity.

The Lyman α emission line from the Sun is about 1 Å broad. In the upper atmosphere, the

hydrogen has a much narrower profile and the scattering only occurs over a relatively narrow

spectral interval. We can write that

φ(v) ∝ exp−
mv2

2 k T = exp−
v2

b2 (3)

where:

b =

(
2kT

m

)1/2

(4)

When v = 0.833b, the line profile falls to half of its value at line center. Therefore, the

FWHM of the line is 1.67b. At T = 2000 K, this means that the FWHM of the line corre-

sponds to 9.6 km s−1.

Problem No. 1: The COS Handbook says to adopt a temperature of 2000 K for the

atomic hydrogen in the upper atmosphere and the line then has a “width” of 3 km s−1.
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[Section §10.3.4, paragraph 2]. I cannot reproduce their result.

2. A FWHM of 9.6 km s−1 in velocity corresponds to a FWHM of 0.039 Å. Therefore,

at line center, the maximum intensity of scattered light, I, would be:

I =

∫
Jλ dλ ≈ Jλ ∆λFWHM (5)

This yields I = 4.1 × 10−13 erg cm−2 s−1 arcsec−2.

Problem No. 2: The COS handbook (same section and paragraph) quotes a maximum

surface brightness of 6.3 × 10−13 erg cm−2 s−1 arcsec−2. This is 50% larger than computed

above. However, it is possible that scattering over the line extends further than the FWHM.

This discrepancy is interesting but probably not physically interesting.

COS has an entrance aperture of angular diameter of 2.5 arcsec which corresponds to a

solid angle of 4.9 arcsec2. Therefore, using the COS-Handbook value of the surface bright-

ness, the total flux into the COS aperture, Ftotal, is about 3.1 × 10−12 erg cm−2 s−1.

If all the energy from the sky acted like a point source then the apparent flux, Fapparent,

would be:

Fapparent =
Ftotal

∆λFWHM

(6)

This means that Fapparent ≈ 8.0 × 10−11 erg cm−2 s−1 Å−1. COS uses the unit of FEFU

=10−15 erg cm−2 s−1 Å−1 so Fapparent = 80,000 FEFU. This is much greater than the safety

limit.

However, the light from an extended source does not follow the same optical path through

the spectrograph as does the light from a point source. According to the COS handbook,

the “aperture width” for the G130M mode is 1.12 Å. Therefore, the point source-equivalent

flux, Fequivalent, from the sky appears as:

Fequivalent =
Ftotal
1.12

(7)

or Fequivalent = 2.8 × 10−12 erg cm−2 s−1 Å−1. In COS units, this flux is 2800 FEFU.

According to Figure 5.2, the sensitivity to a point source with G130M is 0.014 counts s−1

resel−1 s−1 FEFU−1. We therefore expect that at maximum, the count rate from the geo-

cornal light could be 39 counts s−1 resel−1.
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Problem No. 3: This expected count rate from the maximally-bright geocorona is a

factor of 2 larger than given in the COS Handbook (last paragraph in §10.3.4) which states

that it is 20 counts s−1 resel−1.

A particular complication is that according to Table 11.3, 40 counts per resel−1 s−1 is just

at the limit when a source must be screened. Therefore, all observations with G130M are

potentially hazardous to COS since the geocoronal Lyman α scattering could be very bright.

The true COS limits are given in Tables 11.1 and 11.2. The maximum allowed count rate is

100 resel−1 s−1.





Lecture 1 – Basic Definitions and Results

We are interested in the flow of radiation; what is often called “radiative transfer”. We
follow the intensity, Iν (units of joule m−2 s−1 Hz−1 ster−1) and describe the sources and
sinks of photons. The first sink term is absorption. In this process, a photon is destroyed
and an atom (or molecule) goes from a lower energy state to a higher energy state.

hν + X →X∗ (1)

where X denotes the atom in the lower energy level and X∗ denotes the atom in the upper
energy level. If ds denotes an increment in path length, then the absorption coefficient,
κν , (units of m−1) is defined such that:

dIν = −κν Iν ds (2)

Therefore:
dIν

ds
= −κν Iν (3)

If the atom has a cross section at frequency ν of σν (units of m2) and the density of atoms
is n (m−3), then we note that

κν = n σν (4)

Often, we also use the opacity, χν defined so that:

χν =
κν

ρ
(5)

where ρ is the mass density of the material. Since ρ = µn where µ is the mean molecular
weight, then

χν =
σν

µ
(6)

If we define the mean free path for a photon of frequency ν as lν , then

lν = κ−1
ν =

1
nσν

(7)

If light with intensity, I0
ν is incident upon a medium of uniform κν and if we define s =

0 to be the boundary of the medium, then the intensity as a function of s is given as the
solution to the differential equation (3):

Iν = I0
ν e−κν s (8)

Another important parameter to introduce is the dimensionless quantity, the optical depth,
τν . We define

dτν = κν ds (9)
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For a homogeneous medium, then
τν = κν s (10)

The attenuation of the light is modest if τν < 1; such a situation is described as being
“optically thin”. The attenuation of the light is large if τν > 1; such a situation is described
as being optically thick.

In addition to absorption, light can be produced by emission. Schematically, this occurs
when an atom (or molecule) undergoes a transition from an an upper energy level (X∗) to
a lower energy level (X). Thus:

X∗→X + hν (11)

We define the emissivity, εν as the rate at which energy is emitted per unit solid angle.
Then, if we only include the source term:

dIν = εν ds (12)

or
dIν

ds
= εν (13)

If we include both the source term and the sink term, then we may write that

dIν

ds
= −κν Iν + εν (14)

This expression is called the equation of transfer and is the fundamental equation used to
describe the flow of radiation energy.

The equation of transfer is often re-written in the following fashion. Divide the equation
by κν , and use the definition of the optical depth to get:

dIν

dτν
= −Iν +

εν

κν
(15)

We introduce a new quantity called the source function, Sν (units of joule m−2 s−1 Hz−1

ster−1) such that
Sν =

εν

κν
(16)

Thus the equation of transfer becomes:

dIν

dτν
= −Iν + Sν (17)

If we measure through a uniform medium (Sν is constant) in terms of optical depth
instead of physical distance, then the solution to the equation of transfer for the emergent
intensity from a uniform medium of optical depth, τ is

I0
ν = Sν

(
1 − e−τν

)
(18)
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Note that if the medium is optically thin (τν < 1), then

I0
ν ≈ Sν τν (19)

while if the medium is optically thick (τν > 1), then

I0
ν ≈ Sν (20)

An opaque medium (that is, an optically thick medium) is a “black body”. Therefore,
for black body radiation, we may set, Sν equal to the Planck function or

Sν =
2hν3

c2

1
exp

(
hν
kT

)
− 1

(21)

For an opaque object, the emergent intensity is independent of its composition and depends
only upon its temperature.

Two related quantities to the intensity of radiation are the mean intensity and the flux
or flow of energy. The mean intensity, Jν , is defined as the average over solid angle of the
intensity. Therefore, at any particular location, we define

Jν =
1
4π

∫ 2π

0

∫ π

0
Iν(θ, φ) sin θ dθ dφ (22)

Note that Jν and Iν have the same units.
If we define θ relative to the Z-axis, then the flux of energy along the Z axis, Fν , is

given by the expression

Fν =
∫ 2π

0

∫ π

0
Iν(θ, φ) cos θ sin θ dθ dφ (23)

The flux has units of joule m−2 s−1 Hz−1 or watts m−2 Hz−1.
In an isotropic radiation field where the light moves equally in all directions, let Iν(θ, φ)

= I0
ν . Then:

Jν = I0
ν (24)

and
Fν = 0 (25)

In an isotropic radiation field, there is no flux because there is no net transport of energy.
Another important case is where a surface is radiating out into space. Assume a

situation (such as the surface of a star or an aperture looking into a cavity.) In this case
we assume that Iν is only a function of θ and is independent of φ. We write that

Iν(θ) = I0
ν (26)

3



for 0 ≤ θ ≤ π/2. and
Iν(θ) = 0 (27)

Therefore

Fν = 2π

∫ π
2

0
I0
ν cos θ sin θ dθ (28)

By setting x = sin θ, then it is easy to evaluate the integral and we find that

Fν = π I0
ν (29)

From above, we may therefore write that for a black body,

Fν = 2 π
hν3

c2

1
exp

(
hν
kT

)
− 1

(30)

Often we are interested in the flow of all the energy and not just the energy at a
particular frequency. We can write for the total flux, F , that

F =
∫ ∞

0
Fν dν (31)

The integrated flux has units of watts m−2. For radiation from a plane surface, then

F =
∫ ∞

0
2 π

hν3

c2

1
exp

(
hν
kT

)
− 1

dν (32)

With the substitution
x =

hν

kT
(33)

Then:

F = 2π
k4T 4

c2h3

∫ ∞

0

x3

ex − 1
dx (34)

Consider an atom with an upper energy level U and a lower energy level, L. We now
want to describe the emission and absorption by this atom. In order to do this exactly, we
need to understand how the transition occurs by using quantum mechanics. However, even
without a detailed understanding of the system, we can determine some general properties
of a spectral line.

Assume that the atom can undergo a “spontaneous” transition from the upper to the
lower level with a rate (units of s−1) of AUL where this quantity AUL is often called the
“Einstein A”. The mean lifetime of the atom is the upper level is the inverse of the
spontaneous decay rate or A−1

UL. The units of this mean lifetime are s. The emissivity of
the atom is given by the expression:

εν =
1
4π

AUL hν nU φ(∆ν) (35)
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where φ(∆ν) (units of Hz−1) is called the line profile. The rate of production of line photons
depends upon the number of atoms in the upper level, the energy per photon, the Einstein
A. We also include the factor 1

4π because we are interested in the production of photons
into each solid angle as well as the total rate of production of photons. Finally, we include
φ(∆ν), the line profile, because we want to know the spectral energy distribution of the
emission at different frequencies. The line photons are not all emitted at exactly the same
frequency. Instead there is a spread of frequencies, and the function φ(∆ν) describes this
spread.

Because the line photons are emitted near the frequency ν, we can define the frequency
offset from line center, ∆ν as

∆ν = ν − ν0 (36)

where ν0 is the frequency at line center. Then we expect that∫ +∞

−∞
φ(∆ν) d∆ν = 1 (37)

Alternatively, we may write this equation as:∫ +∞

0
φ(∆ν) dν = 1 (38)

since:
dν = d∆ν (39)

The difference between these two equations is the lower limit of the integral. Since the
emission always occurs at frequencies relatively near ν0 so it does not make a real difference
whether we integrate ∆ν to −∞ (physically slightly unrealistic) or to −ν0 (physically
realistic but mathematically more complex).

An important example of line broadening is that produced by Doppler motions of the
atoms in the system. If we observe emission from a gas, then along the line of sight, some
atoms will be approaching us and others receding. We expect that:

∆ν

ν
= −vr

c
(40)

where vr is the radial velocity of the gas atom and c is the speed of light. In a 1-dimensional
Maxwell-Boltzmann distribution,

f(vr) dvr ∝ exp

(
−mv2

r

2kT

)
dvr (41)

where m denotes the mass of the atom. The velocity distribution is symmetric around its
mean value which here we take to be 0 m s−1. We therefore expect that

f(∆ν) d(∆ν) ∝ exp
(
−mc2∆ν2

2kTν2

)
d(∆ν) (42)
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We expect that
φ(∆ν) ∝ f(∆ν) (43)

Therefore, with the normalization condition, we find for a line undergoing thermal broad-
ening that:

φ(∆ν) =

√
mc2

2πkTν2
exp

(
−mc2∆ν2

2kTν2

)
(44)

In addition to emission, the atom can absorb light. We define the “Einstein B” such
that BLU

κν = nL BLU hν
1
4π

φ(∆ν) (45)

With this definition, BLU has a similar appearance to AUL. Warning: while everyone
agrees about the definition of the Einstein A, different authors do or do not include the 1

4π
term in their definition of the Einstein “B”. The units of BLU (or BUL) are different from
those of AUL. In particular, the units of BLU are equal to the units of AUL divided by an
intensity. Thus BLU has units of m2 s−1 joule−1. You may also think of the cross section
in the line and write,

σν = BLU hν
1
4π

φ(∆ν) (46)

As pointed out by no lesser an authority than Einstein, we must also allow for the
possibility of stimulated emission. That is, as with all harmonic oscillators, there can be
forced oscillations. We therefore, assume that there may be “stimulated emission” which
is the reverse of absorption. In stimulated emission, we expect that:

hν + X∗→ hν + hν + X (47)

In this scheme, there is conservation of energy, and a photon is produced from an atom
which is already excited. We denote the coefficient for stimulated emission as BUL, and it
acts like a “negative absorption” Thus, it contributes to the opacity as:

κν = −nU BUL hν
1
4π

φ(∆ν) (48)

We now estimate the relationship between the Einstein A and B′s. Consider the two
level atom. In a steady state, the rate at which atoms leave level U equals the rate at
which they enter level U . The rate at which they leave U depends both upon the rate of
spontaneous emission and the rate of stimulated emission. The rate per unit volume of
spontaneous emission is

1
4π

AUL nU φ(∆ν) (49)

The rate per unit volume of stimulated emission is the result of photons arriving from all
directions and therefore depends upon the mean intensity, Jν . We can write that the total
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rate per unit volume of stimulated emission is

Jν nU BUL
1
4π

φ(∆ν) (50)

The rate per unit volume at which atoms enter level U is given by the rate per unit volume
of absorptions from level L and is given by the expression:

JνnL BLU
1
4π

φ(∆ν) (51)

Therefore, in a steady state,

1
4π

AUL nU φ(∆ν) + Jν nU BUL
1
4π

φ(∆ν) = JνnL BLU
1
4π

φ(∆ν) (52)

This equation can be re-written as:

AUL nU + Jν nU BUL = JνnL BLU (53)

We can re-arrange the terms to find:

Jν =
AUL nU

nLBLU − nUBUL
(54)

or

Jν =
AUL
BUL

nLBLU
nUBUL

− 1
(55)

This relationship is derived for a steady state at any temperature. We may therefore set
Jν equal to the Planck function at any temperature. This gives the following:

2hν3

c2

1
exp

(
hν
kT

)
− 1

= Jν =
AUL
BUL

nLBLU
nUBUL

− 1
(56)

The solution to this expression is that

2hν3

c2
=

AUL

BUL
(57)

and

exp

(
hν

kT

)
=

nLBLU

nUBUL
(58)

which is the same as:

exp

(
− hν

kT

)
=

nUBUL

nLBLU
(59)
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In atomic spectroscopy, it is often found that a level is “degenerate”. This means that
there might be more than one “sublevel” at the same energy. If g is used to denote the
number of sublevels in a level, then we have both gL and gU for the lower and upper energy
levels, respectively. We can generalize the usual Boltzmann relationship so that

nU

nL
=

gU

gL
exp

(
− hν

kT

)
(60)

Therefore:
gL BLU = gU BUL (61)

At this point, we have now established that there is a simple, relationship between the
Einstein A and the Einstein B′s. First, any atom which has a high value of A, that is any
atom which can be a strong emitter, also must have a large value of B which means that it
also is a strong absorber. Second, of necessity, BUL is not zero and is positive. The process
of stimulated emission must occur if thermodynamic equilibrium can be achieved. The
Einstein A and B′s are properties of the atom and not of the gas temperature or pressure.

The total opacity of the gas depends upon the difference between true absorptions and
stimulated emissions. We may write that

κν = nL BLU hν
1
4π

φ(∆ν) − nU BUL hν
1
4π

φ(∆ν) (62)

Collecting terms, this means that:

κν = nL BLU hν
1
4π

φ(∆ν)
(

1 − nU BUL

nL BLU

)
(63)

In thermodynamic equilibrium, we therefore have that:

κν = nL BLU hν
1
4π

φ(∆ν)
(

1 − exp

[
− hν

kT

])
(64)

This is the “normal” condition of a gas.
A gas need not be in thermodynamic equilibrium. If, by some process the gas can be

kept out of equilibrium and if, in fact, the population in the upper energy level can be kept
high by some process, then, κν can become negative. That is, there can be more stimulated
emissions than absorptions. Therefore, when we write that

Iν = I0
ν e−κν s (65)

we find a net effect in the emergent intensity compared to the incident intensity, I0
ν , not a

decrease. A device which can do this is called a laser = light amplification [by] stimulated
emission [of] radiation.
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Lecture 2 – Low Energy Line Photons: Emission/Absorption

To illustrate some of the formal results from radiative transfer, we consider low energy
photons where hν < kT . We start by considering the 21 cm line of hydrogen (see Spitzer
Physical Processes in the Interstellar Medium). This line arises from the hyperfine splitting
of the hydrogen atom. The proton and electron spins can be parallel (F = 1; statistical
weight = 2F + 1 or 3) or anti-parallel (F = 0 and statistical weight = 0.) The frequency
of the line is 1.420 Ghz (corresponding to a wavelength of 21.11 cm) and the Einstein A is
2.869 × 10−15 s−1 which corresponds to a mean lifetime in the upper level of ∼1.1 × 107

years.
Consider the case where there a neutral cloud of gas in front of a continuum source

(such as a quasar or galactic H II region). Let Icont denote the continuum source. The
intensity that we detect, Iν , is a combination of attenuation of the background plus the
emission from the cloud. Therefore:

Iν = Sν
(
1 − e−τν

)
+ Icont e−τν (1)

where Sν is the source function in the cloud. We can re-write this equation as:

Iν = (Sν − Icont)
(
1 − e−τν

)
+ Icont (2)

If Sν > Icont, the line is seen in emission; if Sν < Icont, the line is seen in absorption. If Sν

= Icont, no line is detected. Thus whether the cloud adds or removes energy into the beam
depends upon the relative size of the source function. We implicitly define the “brightness
temperature” of a source, Tb, as:

Icont =
2ν2 k Tb

c2
=

2 k Tb

λ2
(3)

Furthermore, if the gas has temperature, T , then:

Sν =
2 ν2 k T

c2
(4)

Therefore, the criterion for producing an absorption line is that T < Tb while an emission
line results if T > Tb. This is consistent with our everyday notion that energy flows from
the hot reservoir to the cold reservoir. There is no energy exchange, or no spectral line
formed, in the special case that T = Tb.

Consider an observation where the background continuum is negligible. [There is always
some continuum from the 2.7 K microwave background.] In the case where τ >> 1, at
least at line center, then the observed intensity measures the temperature of the gas. In
this way, we know that in the Milky Way, the characteristic temperature of the neutral
hydrogen is ∼100 K. In order to have confidence that we are measuring the intensity, we
need to resolve the source. One way to tell if we resolve the source is to map it.
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If the source is optically thin, we may write:

Iν ≈ Sν τν (5)

We define the “column density”, N , with units of cm−2, as:

N =
∫

n ds (6)

where n is the density and ds is an increment of distance measured along the line of sight.
For the 21 cm line of hydrogen, since hν << kT , the correction for stimulated emission is
very important, and:

τν = NL
BLU hν

4π
φ(∆ν)

hν

kT
(7)

Furthermore, since hν << kT , there are approximately three times as many atoms in the
upper level as in the lower level. Therefore, we can relate the column density in the lower
level to the total column density, N(H), as:

N(H) = 4NL (8)

Furthermore, we can write that:

BUL =
BLU

3
(9)

Therefore, using the Einstein relation between the AUL and BUL, we find that:

τν =
N(H)

4

(
3 AUL c2

2 h ν3

)
(hν)2

4πkT
φ(∆ν) (10)

If we integrate over all values of ∆ν, then:
∫

Iν d(∆ν) = Sν

∫
τν d(∆ν) =

3
4

N(H)
AUL

4π
hν (11)

Recognizing that 3/4 of the atoms are in the upper level, this expression is equivalent to
finding the intensity from the emissivity multiplied by the path length.

We now use:
Iν =

2 k Tb

λ2
(12)

Therefore, we can write:

N(H) =
32π

3 λ2

k

AUL hν

∫
Tb d(∆ν) (13)

Using the conversion between frequency and velocity:

∆ν = ν
V

c
(14)
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and assuming that we consider brightness temperature as a function of velocity, then this
expression becomes:

N(H) =
32π

3
k

h cλ2 AUL

∫
Tb dV = 1.823× 1013

∫
Tb dV (15)

where V is measured in cm s−1.
We can use 21 cm data to measure the mass of atomic hydrogen, Mtotal, within a galaxy

at distance D from the Sun. If Ω is the telescope beam, then the projected area of the
galaxy in the telescope beam is Ω D2. If mH denotes the mass of a hydrogen atom, then:

Mtotal = Ω D2 N(H) mH (16)

This expression is independent of the gas temperature and density. We do not need to
resolve the source to measure its mass. The brightness temperature can be a function of
the telescope beam.

Absorption lines at 21 cm also have been observed. Typically, we measure the optical
depth through the line. Note that because of the importance of stimulated emission, τ
depends upon the gas temperature. Therefore, the interpretation of the 21 cm optical
depth rests upon knowing the gas temperature.

The hyperfine level of atomic hydrogen is a particularly simple line to consider; there
are more complex radio lines as well. An important example is the rotational lines of CO
which are usually seen in emission (see, for example Goldsmith 1972, ApJ, 176, 597). The
rotational quantum number J ranges upwards from 0. The statistical weight of each level
is 2J + 1 while the energy of each level is approximately given by

E = h cB J (J + 1) (17)

where B = 1.9313 cm−1 for 12CO. [Note that the isotope shifts for the rotational transitions
are quite significant since the moment of inertia of 13CO is quite different from that of
12CO.] Thus the transition between the J = 1 and J = 0 level occurs at a frequency of
about 115 GHz or wavelength of about 2.7 mm. The Einstein A for emission between
(J + 1) and J is:

A =
64 π4 ν3 µ2

3 h c3

(
J + 1

2 J + 3

)
(18)

where µ denotes the dipole moment of the molecule. For 12CO, we can take µ = 0.1098
Debye (Chackerian & Tipping 1983, J. Mol. Spectroscopy, 99, 431); a Debye equals 10−18

statcoulomb-cm. Thus the EinsteinA for the J = 1-0 transition of this molecule is 7.1 ×
10−8 s−1 implying a mean lifetime in the upper level of about 0.45 year. The lifetimes in
the higher rotational levels are notably shorter.

The CO population is distributed over a number of rotational levels. If we assume a
single excitation temperature, T , then the partition function, ζ is:

ζ =
J=∞∑

J=0

(2J + 1) exp
(
−h cB J(J + 1)

kT

)
(19)
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Approximating this sum as an integral, then

ζ =
kT

h cB
(20)

Remember that the column density in the J ′th level, N(J), is related to the total column
of CO, N(CO), by:

N(J) =
(2J + 1) exp−

[
h c B J(J +1)

kT

]

ζ
N(CO) (21)

If the line is optically thick, then the intensity is just determined by the source function
and, in LTE, by the Planck function. If the line is optically thin, then:

Iν =
2ν2

c2
k Tmb = Sν τν (22)

where Tmb is the “main-beam” Rayleigh-Jeans brightness temperature. In the Rayleigh-
Jeans approximation, then

Tmb = T τν (23)

If, again, we integrate over the entire spectral line, then for high temperatures where
the correction for stimulated emission is simple, we expect for the J = 2-1 transition that:

∫
τ2,1dV = B12 N(1)

hν

4π

hν

kT

c

ν
(24)

We approximate:

N(1) ≈ 3
ζ

N(CO) =
3 h cB

k T
N(CO) =

3 h ν

4 k T
N(CO) (25)

To derive this result, remember that the energy of the J = 2 level is 6h cB while the energy
of the J = 1 level is 2h cB so that for the 2-1 transition, hν = 4h, c, B. while

B12 =
5
3

B21 =
5
3

c2

2hν3
A21 (26)

Therefore:

B12 =
64 π4 µ2

9 h2 c
(27)

Then: ∫
τ2,1dV =

4π3

3
µ2 h ν2

(kT )2
N(CO) (28)

Therefore for the 2-1 transition:

N(CO) = 3 k2 T

∫
Tmb dV

4π3 µ2 hν2
(29)
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Note that unlike atomic hydrogen, the total column of CO depends upon the temperature.
As a first approximation, a telescope beam might be described as a azimuthally-

symmetric Gaussian such that the increment of sensitivity, dΩ as a function of offset angle,
θ, from the pointing is given by

dΩ = 2π exp
(
−θ2

θ2
0

)
θ dθ (30)

With this defintion, then
Ω = πθ2

0 (31)

If we define θFWHM as the Full Width Half Maximum of the beam, then

θFWHM = 2
√

ln 2 θ0 (32)

Consequently, the effective area on the sky, A, of the telescope beam for a source at distance,
D, is

A = π D2 θ2
FWHM

4 ln 2
(33)

If the mass of a CO molecule is mCO, then the total mass of the molecular gas, M(CO),
is:

M(CO) = N(CO) A mCO (34)
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Lecture 3 – High Energy Line Photons: Emission/Absorption

We now consider high energy photons where hν > kT so that stimulated emission is not
too important. Again, a useful reference is Spitzer’s Physical Processes in the Interstellar
Medium. First consider a cold cloud in front of a continuum source with intensity I0, such
as occurs in the interstellar medium or in the absorption line spectra of quasars. The
intensity at the Earth, Iν , is:

Iν = I0 exp(−τν) (1)

We define the residual intensity of an absorption line, rν , as:

rν =
Iν

I0
(2)

Because stimulated emission is unimportant, then:

τν = NL
BLU hν

4 π
φ(∆ν) (3)

where NL is the column density in the lower energy level. Instead of using the Einstein B,
we often use, instead the dimensionless line oscillator strength, f , defined such that:

π e2

me c
f =

BLU hν

4 π
(4)

where me is the mass of an electron of charge e.
We often measure the equivalent width, Wν , measured in units of Hz, of a line defined

as:
Wν =

∫
I0 − Iν

I0
d(∆ν) (5)

More frequently, astronomers use Wλ, measured in units such as Å, such that

Wλ

λ
=

Wν

ν
(6)

where λ ν = c. From above, we can write that:

Wν =
∫

(1 − exp(−τν)) d(∆ν) =
∫

(1 − rν) d(∆ν) (7)

In the optically thin case where at all frequencies τν << 1, the solution is simple:

Wν = NL
π e2

me c
f (8)

or

Wλ = NL
π e2 λ2

me c2
f (9)

1



One test of whether a line is optically thin is to examine its residual intensity. Another
test is to compare lines with different oscillator strengths from the same lower level.

The analysis can be more difficult if the line is optically thick at the center. In this
case, the line is described as “saturated”. While a lower bound to the column density can
be determined from the equivalent width, its true value may be difficult to determine. One
approach is to assume a Gaussian line profile so that:

φ(∆ν) =
1√
π b′

exp

(
−

[
∆ν

b′

]2
)

(10)

Usually, instead of expressing the line-width in frequency units, we do so in velocity units.
We define b, such that:

b = b′
( c

ν

)
(11)

We can write that:

τ(∆ν) = τ0 exp

(
−

[
∆ν

b′

]2
)

(12)

A “curve of growth” is essentially a plot of Wλ vs. τ0. The basic idea is that Wλ

increases linearly until τ0 ∼ 1. Then, Wλ flattens and large changes in NL or τ0 lead to
only small changes in Wλ. In this regime, it is difficult to make a good measure of NL.
However, the line width serves as a good measure of b. That is:

Wλ =
b λ

c

∫ ∞

−∞

[
1 − exp(−τ0 exp[−x2])

]
dx (13)

Asymptotically:

Wλ ≈
2 b λ

c
(ln τ0)1/2 (14)

All spectral lines have very weak “damping wings”. This can be caused by natural
broadening or perturbations from neighbors. We write that in the far wings:

φ(∆ν) =
δ/π

δ2 + (∆ν)2
(15)

where
δ =

1
4π

∑

L

AUL (16)

where the sum is performed into all lower levels. Therefore, in the far wings of the line:

τ(∆ν) = NL
π e2

me c
f

δ

π(∆ν)2
(17)
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When the column density is large enough, the line is said to be on the damping portion of
the curve of growth. One can show that Wλ varies as N1/2

L , but, typically, the line can be
resolved and therefore the equivalent measure is not performed.

An interesting example of the curve-of-growth is the determination of D/H in the
interstellar medium. Typically, the H lines are damped while the D lines can lie on
the optically thin portion of the curve of growth. Thus even though there is a factor of
105 difference in the abundances of the two species, the relative column densities can be
accurately determined.

Another important contemporary example of the curve-of-growth is the analysis of
quasar absorption line systems. One class is the ”Damped Lyman α where the hydrogen
line is so broad because of the relatively high column density of atomic hydrogen.

The analysis of the curve of growth for stellar atmospheres (see, for example. Bohm-
Vitense, Introduction to Stellar Astrophysics, v. II: Stellar Atmospheres is somewhat more
complex than for the interstellar medium because the “cold” intervening material emits as
well as absorbs. Consider an infinite plane parallel atmosphere. If we measure optical depth
downwards through the atmosphere with τ = 0 at the “top”, then assume for simplicity
that the source function, S, can be written as:

S = a + b τ (18)

Looking upwards out from the atmosphere, define µ as the cosine of the angle relative to
the normal. Therefore, if ds is the element of path length, we can write:

κ ds = −dτ

µ
(19)

Then for the different lines of sight through the atmosphere, we can write that the
equation of transfer along each direction for I(τ, µ), is:

µ
dI

dτ
= I − S (20)

or:
dI

dτ
− I

µ
= −S

µ
(21)

Note that S does not vary as µ but only τ while I depends upon both τ and µ. This
equation can be solved by multiplying by e−τ/µ to give:

d

dτ

(
I e−τ/µ

)
= − S

µ
e−τ/µ (22)

The solution is to integrate on both sides between τ1 and τ2 to give:

I(τ2, µ) e−τ2/µ − I(τ1, µ) e−τ1/µ = −
∫ τ2

τ1

S

µ
e−τ/µ dτ (23)
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To find the intensity at the surface, we take τ1 = 0. If the atmosphere is infinte, but I does
not exponentially increase with τ2, then the above equation becomes:

I(µ) =
∫ ∞

0

S

µ
e−τ/µ dτ (24)

With S given above, then at τ = 0, then:

I(µ) = a + b µ (25)

The flux at the surface of the star is:

F = 2 π

∫ 1

0
(a + bµ) µdµ = π

(
a +

2
3

b

)
= π S

(
τ =

2
3

)
(26)

Thus the flux from the star is determined by the source function at optical depth 2/3.
We observe absorption lines in the spectrum of the star because optical depth 2/3 in

the line occurs at a higher physical distance than optical depth 2/3 in the continuum.
Consequently, in the line, the received flux is less than in the nearby continuum as long
as b > 0 which is the same as the temperature increasing with depth in the atmosphere.
[Note we are ignoring scattering which can complicate the analysis.] If the line is relatively
“weak” then the line is formed only slightly higher than the continuum. As a result, in
a Taylor series expansion, the strength of the line depends linearly upon the line opacity
which typically depends linearly on the concentration of the atom in the lower level and
thus linearly upon the abundance. The line is said to be on the linear portion of the
curve of growth. However, if the line is very opaque, then optical depth 2/3 is reached at
essentially the “top”of the atmosphere. In this case, the strength of the line depends only
upon the source function at the top of the atmosphere compared to the source function
where the continuum achieves optical depth 2/3. Thus the line strength is approximately
independent of the abundance of the absorbing atoms and the line is described as saturated.

Emission lines with hν > kT often are optically thin. In this case:

Iν = Sν τν (27)

Since Sν = εν/κnu and τν = κν L where L denotes the path length through the medium,
then:

Iν = εν L (28)

Often, emission lines are formed very far from thermodynamic equilibrium. An impor-
tant example are the recombination lines of hydrogen. In a gaseous nebula (H II region,
Planetary Nebula, quasar) the hydrogen is largely ionized (see, for example, Osterbrock and
Ferland Astrophysics of Gaseous Nebulae and Active Galactic Nuclei. The gas recombines
into excited levels and then cascades through the different levels until the atom reaches the
ground state. The efficiency of the emission depends upon the line. For example, about
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0.4 of all recombinations lead to Hα corresponding to the n = 3 to n = 2 transition at
6563 Å while about 0.1 of all recombinations lead to Hβ corresponding to the n = 4 to
n = 2 transition at 4861 Å. Thus it is expected that the flux in the 6563 line is about 3
times greater than the flux in the 4861 line.

Ionized nebulae also display emission of “forbidden lines”. These are lines with low
values of the Einstein A so that in high density regions, the atom often is collisionally
de-excited before it emits. In astrophysics, however, the densities are often low enough
that collisional excitation is followed by radiative de-excitation. Thus:

e + X → e + X∗ (29)

followed by:
X∗ → X + hν (30)

An important example is excitation from the ground state of O+2. Remember that the
notation for the energy level is:

2S+1LJ (31)

where S is the total spin, L represents the total orbital angular momentum and J the total
vector angular momentum (orbital + spin). The L angular momentum is given as letters
such that L = 0 is denoted by S; L = 1 is denoted as P ; L = 2 is denoted as D and L =
3 is denoted as F . The six-electron O+2 ion has an electronic ground state configuration
of 1s2 2s2 2p2. The lowest energy level is 3P with 3 fine structure levels. The lowest fine
structure level is 3P0 and then 3P1 and 3P2. The statistical weight of each level is given by
(2J + 1) or 1, 3 and 5 for the three different terms. The 1D level has no fine structure.
Note that since its total spin is 0, then J = 2 and its statistical weight is 5. The forbidden
transitions are:

1D → 3P2 (32)

at 5007 Å [air] and AUL = 0.0210 s−1. Also
1D → 3P1 (33)

at 4959 Å [air] and AUL = 0.0071 s−1. The transition between 1D and 3P0 is very forbidden
[very low value of A] and essentially never seen. Because 4959 Å and 5007 Å have the same
upper level, we expect that the emission in an optically thin system yields:

F (5007)/F (4959) ≈ 3.0 (34)

The 1S energy level is even higher and the transition:
1S → 1D (35)

at 4363 Å [air] with AUL = 1.60 s−1 is observed as well. The flux ratio:

F (4363)/F (5007) (36)

is a temperature diagnostic since it is sensitive to the gas temperature.
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Lecture 4 – Classical Theory of Radiation I: Retarded Potentials

The classical theory of radiation is derived from Maxwell’s equations (see, for exam-
ple, Griffith Introduction to Electrodynamics). Instead of using the electric and magnetic
fields, we use the scaler and vector potentials. The first step is to introduce the “retarded
potentials”. Information cannot travel faster than the speed of light, and therefore the
potentials are determined by the charge and current densities at the ”retarded time”, tr
defined as

tr = t − d

c
(1)

where t is the time at the location of the observer and d is the distance between the observer
and the distance of the charge contributing to the potential. If ρ defines the charge density
and "J defines the current density, while the scaler potential is φ and the vector potential
is "A, then:

φ("r, t) =
∫

ρ("r′, tr)
d

dV ′ (2)

where dV ′ is an element of volume and the charge density is measured at the retarded
time. Similarly:

"A("r, t) =
1
c

∫ "J("r′, tr)
d

dV ′ (3)

These results are stated without proof as being consistent with Maxwell’s equations and
the usual derivation of the fields from the potentials.

Now consider the application to the potentials from a moving charge, q. A key point is
the effective volume of the moving charge density is not the same as the effective volume
of the same charge density if the particle is stationary. Break down the motion of the
volume element into a radial and transverse components. If ds denotes the distance along
the radial direction and dA the projected area, then the element of volume is dA ds. To
first order, there is no effect on dA by the radial motion, but there is on ds. Imagine light
leaving both from the “back” of the volume element and the “front” of the volume element.
The light from the “front” part has less distance to travel compared to the “light” from the
back. If the volume element is not moving, this does not matter. However, if the volume
element is moving with a radial speed vr, then the during the time it takes for the light to
get from the back to the front of the volume element, ds′/c equals the time the distance
the volume element travels divided by its speed or

ds′

c
=

ds′ − ds

vr
(4)

Therefore, with a little algebra:

ds′ =
ds

1 − vr/c
(5)
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Note that this correction is independent of the size of ds. Therefore, even “shrinking” an
extended charge to a tiny volume, we need to include this effect. If d̂ denotes a unit vector
in the "d direction so that d̂ = "d/d, then:

vr = d̂·"v (6)

We may therefore write that

φ("r, t) =

(
q

d − "d·"v/c

)

t− d/c

(7)

Similarly:

"A =

(
q"v/c

d − "d·"v/c

)

t− d/c

(8)

These are the Lienart-Wiechart potentials.
Now consider a model of an oscillating electric dipole of an application of these poten-

tials. We assume two tiny spheres separated by distance h aligned along the Z-axis. The
upper sphere located at (0, 0, h/2) has charge q and the lower sphere located at (0, 0,−h/2),
has charge −q where

q = q0 cos(ω t) (9)

The dipole moment, "p, is:
"p = p0 cos(ω t) ẑ (10)

where p0 = q0 h. Assume that the observer lies at distance R from the origin at polar angle
θ. Since it is not moving, the contribution to the scaler potential from the upper sphere is:

φU =
q0 cos[ω(t − dU/c)]

dU
(11)

By the law of cosines,
dU =

√
R2 − R h cos θ + h2/4 (12)

Similarly, the contribution to the potential for the lower sphere is:

φL = −q0 cos[ω(t − dL/c)]
dL

(13)

where:
dL =

√
R2 + R h cos θ + h2/4 (14)

We now make three approximations. First, we assume that we are far from the dipole in
the sense that R >> h. As a result, we may write that:

dU ≈ R

(
1 − h

2 R
cos θ

)
(15)
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and
dL ≈ R

(
1 +

h

2 R
cos θ

)
(16)

We also assume that h << λ where λ = 2 π c/ω. Therefore, we can approximate:

cos[ω( t − dU/c)]) ≈ cos
(

ω(t − R/c) +
h ω

2 c
cos θ

)
(17)

Using the trigonometric identify for the cosine of the sum of two angles and then using
that h/λ << 1, then:

cos[ω(t − dU/c)] ≈ cos[ω(t − R/c)] − h ω

2 c
cos θ sin[ω(t − R/c)] (18)

Similarly, we can expand the cosine term for φL so that:

cos[ω(t − dL/c)] ≈ cos[ω(t − R/c)] +
hω

2 c
cos θ sin[ω(t − R/c)] (19)

We now write for the potential from the dipole that:

φ = φU + φL ≈
q0 h cos θ

R

(
−ω

c
sin(ω[t − R/c]) +

1
R

cos(ω[t − R/c])
)

(20)

In regions where R >> λ, this expression can be approximated as:

φ ≈ − p0ω

c

cosθ
R

sin[ω(t − R/c)] (21)

This result for the potential depends only upon p0 and therefore is independent of the
details of the dipole moment.

We next evaluate the vector potential. Assuming a very thin wire, then the current, "I
can be derived from the current density and we write:

"I =
dq

dt′
ẑ = −q0 ω sin(ωt′) ẑ (22)

Consequently, the vector potential is:

"A =
∫ h/2

−h/2

[−q0ω sin[ω(t − d/c)] ẑ
c d

dz (23)

To first order, we can write d ≈ R and therefore:

"A = −p0 ω

cR
sin[ω(t − R/c)] ẑ (24)
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To put "A into spherical coordinates, we use:

ẑ = cos θ R̂ − sin θ θ̂ (25)

Or:
"A = −p0ω cos θ

cR
sin[ω(t − R/c)]R̂ +

p0ω sin θ

cR
sin[ω(t − R/c)]θ̂ (26)

With the potentials, we can now determine the fields. In spherical coordinates without
any azimuthal variation, we write that

"∇φ =
∂φ

∂R
R̂ +

1
R

∂φ

∂θ
θ̂ (27)

Far from the dipole, we take only the terms that vary as R−1 and therefore:

"∇φ ≈ p0ω2 cos θ

c2R
cos[ω(t − R/c)]R̂ (28)

We also find that:

∂ "A

∂t
= −p0ω2 cos θ

cR
cos[ω(t − R/c)]R̂ +

p0ω2 sin θ

cR
cos[ω(t − R/c)] θ̂ (29)

We therefore find for the electric field that:

"E = −"∇φ − 1
c

∂ "A

∂t
= −p0ω2 sin θ

c2 R
cos[ω(t − R/c)] θ̂ (30)

Since "A is independent of azimuth, then the magnetic field is:

"B = "∇× "A =
1
R

(
∂(R Aθ)

∂R
− ∂AR

∂θ

)
φ̂ (31)

Keeping only the terms that vary as R−1, then:

"B = −p0ω2 sin θ

R c2
cos[ω(t − R/c)]φ̂ (32)

We have found that "E and "B are mutually perpendicular, in phase, vary as 1/R and have
the same amplitude as expected for spherical light waves. Thus we have found that the
oscillating dipole emits light at frequency ω. The Poynting vector, "S is:

"S =
c

4π
"E× "B =

p2
0ω

4 sin2 θ

4 π R2 c3
cos2[ω(t − R/c)] R̂ (33)

Averaged over a cycle, then:

< "S > =
p2
0ω

4 sin2 θ

8πR2 c3
R̂ (34)
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To find the total power radiated, we integrate over a sphere surrounding the dipole. An
element of area, "da, is:

"da = R2 sin θ dθ dφR̂ (35)

Thus, the average power radiated by the dipole, < P >, is

< P > =
∫ 2π

0

∫ π

0
< "S > ·"da (36)

Therefore:

< P > =
p2
0ω

4

3 c3
(37)

This result is a specific illustration of Larmor’s formula which is that the instantaneous
power, P , emitted by an accelerating charge, q, is

P =
2 q2 u̇2

3 c3
(38)

where "u denotes the velocity vector of the charge.
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Lecture 5 – Classical Theory of Radiation II: Radiation Reaction

We can use our formalism to describe the interaction of light with material. The general
Larmor formula for the instantaneous power, P , emitted by an accelerating charge, q, is

P =
2 q2 u̇2

3 c3
(1)

where !u denotes the velocity vector of the charge. First consider a free electron and an
incident light wave with an electric field, !E, described as:

!E = E0 sinω0 t ẑ (2)

Using Newton’s second law for the response of the electron, we write:

me!̈x = q !E (3)

Therefore:

ẍ2 =
q2 E2

0 sin2 ω0t

m2
e

(4)

Averaging over a cycle, we find from Larmor’s formula that the average power radiated is:

< P > =
q4E2

0

3 m2
e

(5)

We can also write that if σ denotes the electron cross section that:

< P > = σ < |!S| > (6)

where !S denotes the Poynting vector or:

!S =
c

4π
!E× !B =

c

4π
E2

0 sin2 ω0t n̂ (7)

where n̂ denotes a unit vector in the direction of the propagation of the light wave. Thus:

< |!S| > =
cE2

0

8 π
(8)

Therefore:

σ =
8 π q4

3 m2
e c4

=
8 π

3
r2
0 (9)

where

r0 =
q2

mec2
(10)
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and r0 is the classical radius of the electron or 2.82 × 10−13 cm. The electron scattering
cross section is 6.65 × 10−25 cm2. In a gas of pure hydrogen, then the electron scattering
opacity is σ/mH where mH denotes the mass of a hydrogen atom. Thus the electron
scattering opacity for this gas is 0.40 cm2 g−1.

An important application of electron scattering is the “Eddington limit”. Consider a
parcel of matter of density, ρ, cross sectional area dA and height dz at distance D from a
star of mass, M∗, and luminosity, L∗. The inward gravitational force on the star, Fgrav is:

Fgrav =
G M∗ ρ dA dz

D2
(11)

If we only consider the contribution by electron scattering, then the outward radiative
force, Frad, is determined by the rate at which photons of momentum hν/c are scattered
by free electrons:

Frad =
(

L∗ dA

4 π D2 c

)
(ρχ dz) (12)

If the gravitational force exceeds the radiative force, then the luminosity must be bounded
such that:

L∗ <
4 π GM∗ c

χ
(13)

This relationship is easily satisfied for the Sun. It can be used to place a lower bound to
the masses of O-type stars whose luminosities can exceed 105 L#. This relationship is also
important in sources powered by accretion such as black holes. Thus both X-ray binary
stars and quasars are characterized by their luminosity relative to the Eddington limit.

We now consider the radiative reaction. When power is radiated away into space, the
radiation is doing work on the accelerating charge. If !Frad denotes this radiative reaction,
then we know that between two time intervals, t1 and t2 that:

−
∫ t2

t1

!Frad·!u dt =
2 q2

3 c3

∫ t2

t1

!̇u·!̇u dt (14)

We can integrate by parts:
∫ t2

t1

!̇u·!̇u dt =
[
!u·!̇u

]t2

t1
−

∫ t2

t1

!̈u·!u dt (15)

For an oscillator, we choose times so that term in the square brackets is zero. In this case:
∫ t2

t1

(
!Frad −

2 q2 !̈u

3 c3

)
·!u dt = 0 (16)

Therefore:
!Frad =

2 q2 !̈u

3 c3
= mτ!̈u (17)
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where:

τ =
2 q2

3 m c3
(18)

These arguments do not prove that this is the correct description of the radiative
reaction, but they are self-consistent.

We can now apply these results to various circumstances. First, consider the emission
from a simple harmonic oscillator where a classical particle moves like a spring. We can
write for the restoring force, !F that:

!F = −k !x = −m ω2
0 !x (19)

Therefore, the equation of motion of the particle is:

m!̈x = −mω2
0 !x + m τ!̈u (20)

We now make the approximation that the motion is only slightly damped in which case:

!̈u = −ω2
0 !u (21)

Since all the motion is along the X-axis, we can now write this equation as:

ẍ + ω2
0τ ẋ + ω2

0 x = 0 (22)

This is the usual equation for the damped harmonic oscillator. The amplitude is determined
by the initial conditions, and we write that:

x = x0 eαt (23)

where, in general, α is complex and we take the real portion of the solution. The differential
equation becomes:

α2 +
(
ω2

0τ
)
α + ω2

0 = 0 (24)

The solution is:
α ≈ ±iω0 −

1
2
ω2

0τ (25)

With the starting conditions that at t = 0, x = x0 and ẋ = 0, then

x(t) = x0e
−Γt/2 cos ω0t =

x0

2

(
e−Γt/2+ iω0 t + e−Γt/2− iω0t

)
(26)

where

Γ = ω2
0τ =

2 q2ω2
0

3 m c3
(27)

We can Fourier transform this result with

xF (ω) =
1
2π

∫ ∞

0
x(t)eiωt dt (28)
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Therefore:
xF =

x0

4π

[
1

Γ/2 − i(ω + ω0)
+

1
Γ/2 − i(ω − ω0)

]
(29)

We are only interested in positive values of ω where xF is appreciably different from zero.
Therefore, we write:

xF ≈
x0

4π

1
Γ/2 − i(ω − ω0)

(30)

Therefore:
x2

F =
(x0

4π

)2 1
(ω − ω0)2 + (Γ/2)2

(31)

We first use this expression to describe the shape of a spectral line. We can write that

∆ν =
ω − ω0

2π
=

∆ω

2π
(32)

We see that far from the line that the intensity of the emission varies as (∆ν)−2. The
normalization of the line profile yields:

φ(∆ν) =
Γ/(4π2)

(∆ν)2 + (Γ/4π)2
=

δ/π

(∆ν)2 + δ2
(33)

The correspondence between the classical damping line damping and the quantum me-
chanical case is achieved by setting:

δ = Γ/(4π) =

(
∑

L

AUL

)
/(4π) (34)
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Lecture 6 – Free free emission

We now consider the power and spectrum radiated when an electron is accelerated by a
nucleus of charge Z. We assume that the nucleus is stationary and that the electron radiates
because of its acceleration caused by the electric charge of the nucleus. We assume that
the electron has an impact parameter b and an initial speed v in the X direction. We
assume that the acceleration induced by the nucleus is a relative small perturbation on the
electron’s classical motion. The collision time, tcoll, is

tcoll =
b

v
(1)

If ∆v denotes the change in speed, then we can approximate that the acceleration, a, is:

a ≈ ∆v

tcoll
(2)

We estimate ∆v with the simple approximation that the electron continues at constant
speed along the X axis and only acquires a Y component of speed:

ay = − Z q2 b

me (b2 + x2)3/2
(3)

With dt = dx/v, then:

∆v =
∫ ∞

−∞
ay dt = − Z q2 b

v

∫ ∞

−∞

dx

me (b2 + x2)3/2
(4)

With the substition that x = b y, and y = tan θ then:

∆v = −2 Z q2

me b v

∫ ∞

0

dy

(1 + y2)3/2
= −2 Z q2

me b v
(5)

Using the Larmor formula that:

P =
2 q2 a2

3 c3
(6)

The time-averaged power radiated during a collision is:

P =
2 q2(∆v)2 v2

3 c3 b2
=

8 Z2 q6

3 c3 m2
e b4

(7)

The total energy radiated during the collision, E is:

E = P tcoll =
8 Z2 q6

3 c3 m2
e b3 v

(8)
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We are interested in the spectrum of the emission. We can write that

ẍF =
∫ ∞

−∞
ẍ(t) eiωt dt (9)

We recognize that x(t) is only appreciable different from 0 during the collision time. For
large values of ω, the exponential oscillates through many cycles during the collision and
the integral is essentially 0. For small values of ω the integral is a constant. Therefore
equal power is emitted in all frequency bins up to ωmax where:

ωmax ≈
π

tcoll
=

πv

b
(10)

We therefore write for the energy radiated per frequency, dE/dω, that:

dE

dω
=

E

ωmax
(11)

so that:
dE

dω
=

8 Z2 q6

3 π c3 m2
e v2 b2

(12)

Since ω = 2πν, then:

dE

dν
= 2π

dE

dω
=

16 Z2 q6

3 m2
e c3 v2 b2

(13)

To compute the spectrum from an ensemble of particles, we integrate over all possible
collisions. We can write that the emissivity, εν is such that:

4πεν = ni ne < σv >
dE

dν
(14)

We write that
dσ = 2π b db (15)

We therefore get that:

4πεν = nine

∫ bmax

bmin

2π b db v
dE

dν
(16)

Or:

4πεν = ni ne <
1
v

>
32π Z2 q6

3 m2
e c3

ln
bmax

bmin
(17)

Since the limits on b only enter logarithmically, then do not need to be evaluated too
exactly. The usual approach is to take

bmax ≈
v

ω
(18)
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In the nonrelativistic limit, the usual approach is to adopt a minimum value of b determined
by when ∆v becomes comparable to v and this entire approach breaks down. In this case:

bmin =
4 Z q2

m v2
(19)

Alternatively, we assume that the minimum size is given by the de Broglie wavlength. In
this case:

bmin =
h

m v
(20)

The emissivity is often written as:

4πεν = nine <
1
v

>
32π2 Z2 q6

3
√

3m2
e c3

gff (21)

where gff is the Gaunt factor and:

gff =
√

3
π

ln
bmax

bmin
(22)

The normalized Maxwell-Boltzmann distribution of speeds for a single particle is:

f(v) dv = 4π v2
( me

2π k T

)3/2
e−me v2/(2 k T ) dv (23)

In order to emit a photon of energy hν, the minimum speed, vmin, is given by:

vmin =
(

2 hν

me

)1/2

(24)

Then

4πεν = ni ne
128 π3 Z2 q6

3
√

3 m2
e c3

gff

( me

2πk T

)3/2
∫ ∞

vmin

v e−mev2/(2 k T ) dv (25)

The integral is easy to evaluate with the substitution that u = (me v2)/(2 k T ), and we get:

4πεν = ni ne
32
√

2π3/2 Z2 q6

3
√

3 m2
e c3

(me

k T

)1/2
e−hν/(kT ) gff (26)

Numerically, this expression is

εν = 5.44× 10−39 Z2 ne ni T
−1/2 e−(hν)/(kT ) gff erg cm−3 s−1 ster−1 Hz−1 (27)

An important application is the total energy emitted, Λ, (erg cm−3 s−1) by the gas:

Λ = 4π

∫ ∞

0
εν dν =

(
2πk

3 me

)1/2 32πq6

3 h me c3
Z2 T 1/2 ne ni gff (28)
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Also, from Kirchoff’s law, we can derive the free-free absorption coefficient:

Bν(T ) =
εν

κν
(29)

In the radio regime, we can use the Rayleih-Jeans approximation so that

κν =
εν c2

2 ν2 k T
(30)

Therefore:

κν =
4 q6

3 me k c

(
2π

3 k me

)1/2

ν−2 T−3/2 Z2 ne ni gff (31)

There are a very large number of astrophysical applications of these results. For H II
regions, we see that the opacity increases at lower frequencies. Therefore, there is some
frequency where we expect the ionized gas to be opaque. The flux, Fν , from such a region
then is determined by the temperature and subtended solid angle, Ω:

Fν =
2ν2kT

c2
Ω (32)

Thus, in this model, we expect that Fν varies as ν2. At sufficiently high frequencies, the
H II region is optically thin. Therefore if L is the physical path length through the cloud,
we expect that:

Fν = εν LΩ (33)

In this case, except for the slow frequency variation of gff , Fν is independent of frequency.
An important example of considering the entire free-free emission from a gas is when

the matter is very hot; typically more than 107 K. The total free-free emission increases
with temperature and the line emission can become negligible when the matter becomes
nearly completely ionized. The X-ray emission from clusters of galaxies is often largely
dominated by free-free emission.

A third example is the radio emission from the winds around hot stars. The mass loss
from hot stars is important in their evolution and the return of matter into the interstellar
medium. The outflow speed, V , can be measured from the shape of their P Cygni lines.
Also, the line profiles can be modelled to estimate the mass loss rate. Assume a spherically
symmetric mass loss where the density is n and Ṅ is the mass loss rate in an ion. Then if
there is no ionization or recombination, we can write that

n =
Ṅ

4πr2V∗
(34)

If N is the column density of the matter in the line of sight derived from the line profile,
then

N =
∫ ∞

R∗

n dr (35)
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Consequently, we can write that:

Ṅ = 4π R∗ V N (36)

Another approach to estimating the mass loss rate is less sensitive to the details of
the physical conditions in the outflow: this is to observe the free-free emission from the
circumstellar envelope. This approach is described in Lamers & Cassinelli. Assume that
the circumstellar gas is photoinized and therefore has a characteristic tempearture of 104

K. The opacity varies as n2
eLν−2 and therefore at low enough frequencies, the inner portion

of the circumstellar envelope is optically thick while the outer portion is optically thin. Let
b denote the impact parameter (as a function of mass loss parameters and frequency) where
the gas becomes optically thin. If the source lies at a distance D from us, then from the
inner portion of the object, we can write that the observed flux, Fν , is:

Fν =
2ν2kBT

c2

πb2

D2
(37)

From the outer portion of the object, we can write that if R denotes the impact parameter
of each line of sight that since n varies as R−2 and the free-free opacity varies as n2 that
the integral along the line of sight which is proportional to τ gives:

τ =
(

b

R

)3

(38)

With the approximation that
1 − e−τ ≈ τ (39)

Then the flux from the outer portion of the envelope is given by the expression:

Fν =
2ν2kBT

c2

∫ ∞

b

2πR

D

dR

D

(
b

R

)3

(40)

Therefore

Fν =
4ν2kBT

c2

πb2

D2
(41)

Thus the outer envelope contributes twice the flux as the inner envelope. If we can compute
the flux from the inner envelope, then we can estimate the total mass loss rate from the
star. Thus we need to estimate b.

We can write that if the line of sight defines the Z axis that

τ =
∫ +∞

−∞

KFF n2

ν2 T 3/2
dz (42)
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where KFF is a “constant” that includes the free-free Gaunt factor as a function of fre-
quency. In cgs unis, we can write (see Spitzer 1978, Physical Processes in the Interstellar
Medium)

KFF = 0.1731

(
1 + 0.130 log

T 3/2

ν

)
(43)

With

n =
Ṁ

4 π µV∗R2
=

Ṁ

4 π µV∗ (b2 + z2)
(44)

Therefore:

τ =
KFF Ṁ2

16 π2 ν2 T 3/2 µ2 V 2
∗

∫ +∞

−∞

dz

(b2 + z2)2
=

KFF Ṁ2

16 π2 ν2 T 3/2 µ2 V 2
∗

2
b3

∫ ∞

0

dy

(1 + y2)2
(45)

With the substitution that y = tan u, then the integral becomes∫ ∞

0

dy

(1 + y2)2
=
∫ π

2

0
cos2 du =

π

4
(46)

If we define b by the requirement that τ = 1, then:

b =

(
KFF Ṁ2

32 π ν2 T 3/2 µ2 V 2
∗

)1/3

(47)

The total radio flux from the circumstellar envelope is predicted to be

Fν =
6 ν2 kB T

c2

π

D2

(
KFF Ṁ2

32 π ν2 T 3/2 µ2 V 2
∗

)2/3

(48)

Thus, the spectrum. Fν , is predicted to vary as ν2/3. Furthermore, we find that:

Ṁ = 4
(

1
3

)3/4 F
3/4
ν c3/2 D3/2 µV∗

π1/2 ν1/2 k
3/4
B K

1/2
FF

(49)

Data for some mass losing hot stars are given in Abbott, Bieging & Churchwell (1981, ApJ,
250, 645)
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Lecture 7 – Solid Grains

Small solid particles are pervasive in cool astrophysical environments and even in some
hot ones. We therefore want to understand the emission of this material. Typically, the
emission occurs in the infrared while absorption is observed from the infrared through X-
rays. The optical properties depend upon the grain size, composition and shape, and there
are a huge range of possibilities.

First consider spherical grains. The full Mie theory is fairly complicated mathemati-
cally, but the idea is straightforward enough. One imagines a plane parallel electromag-
netic wave incident upon a sphere. One considers the propagation of the waves produced
by matching the boundary conditions of the fields at the surface of the sphere. For grains
of radius a, we define a dimensionless parameter, x:

x =
2πa

λ
(1)

We write that Q is the ratio of the cross section to πa2, the results for x << 1 that:

Qscat =
8 x4

3

(
m2 − 1
m2 + 2

)2

(2)

and

Qabs = −4 x Im

(
m2 − 1
m2 + 2

)
(3)

where m denotes the complex index of refraction of the material in the sphere so that

m = n − i k (4)

where n and k and the real and imaginary parts of this index. The meaning of this index
of refraction is that if ~kw denotes the wave vector of a wave propagating in the direction ~r
so that:

~kw = (n − i k)~k0 (5)

where |~k0| = ω/c and ~k0 points in the direction of the propagation of the wave. The electric
field for this wave can be written as:

~E = ~E0 e−k (~k0·~r) ei(n~k0·~r−ω t) (6)

Thus k measures the attenuation of the wave through the medium or true absorption. For
x >>1, we expect that both Qabs and Qscat approach 1. Thus, for large grains, it is the
surface area that controls the scattering and absorption while for small grains, it is the
volume. For small particles the total cross section is:

σabs = Qabs π a2 = −8 π2 a3

λ
Im

(
m2 − 1
m2 + 2

)
(7)
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Since the mass of a grain, Mgr, is:

Mgr =
4π

3
a3 ρs (8)

Then:

σabs = −6 Mgr π

λρs
Im

(
m2 − 1
m2 + 2

)
(9)

After some algebra, one can show that:

Im

(
m2 − 1
m2 + 2

)
= − 6 n k

(n2 − k2 + 2)2 + 4n2 k2
(10)

In a classical theory of conductors, we expect that at long wavelengths that

n ≈ k ≈
(

λ σ0

c

)1/2

(11)

where σ0 denotes the DC conductivity of the material. Therefore, at long wavelengths, we
expect that:

σabs ∝ λ−2 (12)

To compute the emission from grains, we often use the opacity per gram or χν which is
σabs/Mgr. Consider emission from an optically thin region, we can write for the observed
flux, Fν that:

Fν = εν LΩ (13)

where L denotes the path length through the medium and Ω denotes the solid angle sub-
tended by the source. If we the object lies at distance from us D, then if A is the projected
area of the source on the sky:

A = Ω D2 (14)

Using:
εν = κν Bν(T ) = χν ρ Bν(T ) (15)

where ρ denotes the space density of the dust. Then we find that:

Fν = χν Bν(T )
A Lρ

D2
(16)

We can write for the mass of the dust, Mdust:

Mdust = ρ AL (17)

Therefore for an optically thin region:

Mdust =
Fν D2

χν Bν(t)
(18)
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At low frequencies, this expression can be approximated as:

Mdust ≈
Fν D2 λ2

2 χν k T
(19)

Since we can often infer a temperature of the material from its spectrum, we can determine
the mass of dust if we know the opacity.

It is important to calculate the grain temperature. In a steady state, we assume that
the particle temperature is achieved by balancing the rate of absorption of energy with the
rate of emission. Therefore, if Jν is the mean intensity of the radiation, then:∫ ∞

0
4π Jν Qν(abs) π a2 dν =

∫ ∞

0
4π Bν(T )Qν(abs) πa2 dν (20)

Consider a few simple cases. First, assume a large grain with Qν(abs) = 1 for all frequencies
of interest in orbit at distance D around a star of radius, R∗ and temperature, T∗. This
equation can be re-written as: ∫ ∞

0
Jν dν =

∫ ∞

0
Bν(T ) dν (21)

Remembering the definition of the mean intensity, then far from the star:∫ ∞

0
Jν =

∫ ∞

0

Fν

4π
=

4πR2
∗ σSBT 4

∗
4π (4π D2)

=
σSBT 4

π
(22)

or

T =
T∗√

2

(
R∗
D

)1/2

(23)

This is the same expression as the mean temperature of a planet of zero albedo.
Often, the grains are relatively small compared to the wavelength at which they emit,

and therefore we should not take Qν as constant. For simplicity, one approach is to assume
that Qν varies as a power law so that:

Qν = Q0

(
ν

ν0

)p

(24)

If the star radiates like a blackbody, then the equation for thermal equilibrium becomes:∫ ∞

0

νp 4π R2
∗ π Bν(T∗)

4π (4πD2)
dν =

∫ ∞

0
νp Bν(T ) dν (25)

We need to evaluate I where :

I =
∫ ∞

0

2hν(3 + p)

ehν/kT − 1
dν (26)
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Using a substitution of variables, we see that:

I = const T (4 + p) (27)

Therefore:

T = T∗

(
R2
∗

4 D2

)1/(4 + p)

(28)

Therefore, the temperature profile is flatter than for a pure blackbody. The small grains
emit inefficiently compared to blackbodies and therefore they are warmer in order to return
the absorbed energy into space.

Mass-losing red giants display infrared excesses, and here we describe how one can
interpret the available data. Let Ṁgr denote the mass loss rate of grains which we assume
to be in a steady state with a constant outward radial velocity, V . At distance r from the
star, the mass density of grains, ρgr is:

ρgr =
Ṁgr

4πr2V
(29)

Knowing the temperature of the grains, we can compute the luminosity of the source.
Assume that the grains have opacity χν . We may then write that

χν =
Qν π a2

4π/3 ρs a3
=

3 Qν

4 ρs a
(30)

Also, we have that:

Lν = 4 π

∫ ∞

0
Bν(Tgr(r)) (ρχν) 4π r2 dr (31)

We can then write that:

Lν =
3 π Qν Ṁgr

V ρs a

∫ ∞

0
Bν(Tgr(r)) dr (32)

This becomes:

Lν =
6 π Qν h ν3 Ṁgr

V c2 ρs a

∫ ∞

0

dr

e
h ν
k T

− 1
(33)

We define the variable, x, such that

x =
h ν

k T∗

(
4 r2

R2
∗

) 1
4 + p

(34)

or

r =
1
2

(
k T∗
h ν

) 4 + p
2

R∗ x
4 + p

2 (35)
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Therefore:

Lν =

(
6 π Qν h ν3 Ṁgr

V c2 ρs a

) (
R∗(4 + p)

4

) (
k T∗
h ν

) 4 + p
2

(∫ ∞

0

x1+ p/2

ex − 1
dx

)
(36)

Since Qν varies as νp, then we see that Lν varies as ν1+ p/2.
Note that in the small grain limit, we can write (Spitzer 1978, Physical Processes in

the Interstellar Medium) that:

Qν = −4
2π a ν

c
Im

(
m2 − 1
m2 + 2

)
(37)

where m denotes the index of refraction of the grain material at frequency, ν. If m is
independent of ν, then we can re-write the equation for the infrared emission as:

Lν =

(
60π2 hν4Ṁgr R∗

V c3

) (
k T∗
h ν

) 5
2
(∫ ∞

0

x 1.5

ex − 1
dx

) (
−Im

m2 − 1
m2 + 2

)
(38)

In this case, Lν is independent of the grain size and depends upon the grain composition.
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Lecture 8 – Atomic Spectroscopy

This discussion is mainly focused on emission lines. Astrophysics of Gaseous Nebulae and
Active Galactic Nuclei by Osterbrock and Ferland is a very useful reference.

To understand the emission line spectrum of a system of atoms, we need to know their
ionization state, energy levels, transition probabilities and populations among the different
states. In regions of “high” density, we often assume that the time scales are short enough
that the system achieves thermal equilibrium and therefore the temperature can be used.
In this case, the ionization balance is described by the Saha equation. Remember, however,
that even using the Saha equation can be nontrivial because the ionization depends upon
the partition functions. We expect that for number densities denoted by n, total number
N in volume V so that n = N/V and that:

nT (X) =
∑

n(X+j) (1)

N(X+j+1) Ne

N(X+j)
=

ζj+1ζe

ζj
e−I0/kT (2)

where I0 denotes the ionization potential and ζ denotes the partition function for each
particle. In this formulation, for the electron, when we include its spin:

ζe =
2
h3

(2πmekT )3/2 V (3)

while ζ for the ions is more complicated. For hydrogen, for example, when the nuclear spin
is included then:

ζ+ =
2
h3

(2πmHkT )3/2 V (4)

and for the neutral atom:

ζ0 =
4
h3

(2πmHkT )3/2

(
jmax∑

1

j2e−Ej/kt

)
V (5)

where Ej is the j′th energy level with statistical weight 4j2. Note that for the hydrogen
atom, the sum in the right hand side of this equation diverges unless there is a finite value
of jmax. Typically, this is given by the density of the medium. The third equation we need
is that for hydrogen:

ne = n(H+) (6)

Even for hydrogen, the full Saha calculation can become fairly complex when H2 and H−1

are included and be particularly important in lower temperature stars. At low tempera-
tures, we can write for a pure hydrogen gas that:

[n(H+)]2

n(H)
=

(2πmekT )3/2

h3
e−I0/kT (7)
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In lower density regions such as the interstellar medium, the state of the gas is usually
very far from thermal equilibrium. We often still approximate the kinetic energy of the
atoms and electrons by a Maxwellian distribution, but the states of ionization and the
populations of the energy levels can be very far from their equilibrium values. One common
approximation is to consider the steady state balance of ionization and equilibrium. In this
case, we write the photo-ionization rate, Γ (s−1) as:

Γ =
∫ ∞

ν0

4π
Jν

hν
σν dν (8)

where Jν denotes the mean intensity of the ionization radiation, σν denotes the cross section
for photoionization, and hν0 = I0. The steady state condition is that:

Γ n(H) = ne n(H+) α(T ) (9)

where α(T ) (cm3 s−1) denotes the rate of radiative recombination and is effectively <
σepv >, the collision rate coefficient between ions and electrons where the effective cross
section is σep.

We can compute the rate of recombination from the rate of photo-ionization. Ignoring
stimulated recombination, we can write that:

α(T ) = Γ
n(H)

nen(H+)
(10)

We evaluate Γ for the case where the mean intensity is given by the Planck function and
we use the Saha equation to derive the relative fraction of ionized and neutral hydrogen.
We therefore find that in the situation where I) >> kT that

α(T ) = (2πme k T )−3/2 eI0/kT (8πh3)
∫ ∞

ν0

σ

(
ν2

c2

)
e−hν/kT dν (11)

In the simple, but incorrect, approximation that:

σν = σ0

(ν0

ν

)2
(12)

then the integral can be evaluated exactly and we find that:

α(T ) ≈ 8π σ0 h2 ν2
0

(2πme)3/2 c2

(
1

kT

)1/2

(13)

With σ0 = 6 × 10−18 cm2, then α = 1.6 × 10−13 cm3 s−1 at T = 10,000 K. A more
accurate number is about 3 × 10−13 cm3 s−1, but this answer is not too bad. At lower
temperatures, the recombination rate is larger.
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In the interstellar medium, the mean free path for an ionizing photon can be very
short – much less than a parsec. Therefore, it is often a good approximation to assume
that around a star or other source of ultraviolet radiation of a “Stromgren Sphere”. In
this case, the total rate of ionizations from the star, I∗ is balanced by the total rate of
recombinations. The radius of the sphere, rS , is given implicitly by the equation:

4π

3
r3
S n2

e α(T ) = I∗ (14)

Inside the H II region, the gas temperature is typically near 10,000 K, but the ionization
fraction is not determined by the Saha equation.

The emission lines from ionized nebulae include both the recombination lines of hy-
drogen and helium and the excitation of forbidden lines. The states of ionization of the
minor elements such as oxygen are controlled by the balance between photo-ionization and
radiative recombination. Of course each element has its own cross sections. Ions such as
O+2 have low lying energy levels which can be collisionally excited. The levels may be ra-
diatively de-excited and therefore not populated according to thermodynamic equilibrium.
Some of the most famous optical lines are O III (from O+2) at 5007 Å and 4959 Å.

O+2 has 6 electrons whose hydrogenic configuration is 1 s2 2s2 2p2. The open shell 2p
electrons can be configured in different ways. The lowest level is 3P with fine structure
levels of 3P2, 3P1 and 3P0. In the usual notation that the superscript refers to 2S + 1
where S is the total spin, the letter refers to the total orbital angular momentum and the
subscript refers to the total angular momentum, J . The upper electronic level is 1D with
no fine structure. The transition 5007 Å corresponds to 1D to 3P2 and 4959 Å corresponds
to 1D to 3P1. The transition 1D to 3P0 occurs at 4932 Å but is so highly forbidden that it
is rarely seen. Since 5007 and 4959 result from the same upper level, the intensity ratio is
controlled only by the relative values of the Einstein A′s and is therefore expected to be 3.

The O+2 ion also has a 1S level which lies above the D1 level. The wavelength of the
transition between 1S and 1D is 4363 Å. This line is often used to infer the temperature of
the gas since the relative rate of excitation into the 1S level relative to the rate of excitation
into the 1D level is sensitive to the gas temperature.

There are also density diagnostics in the gas. A particular set is O II (O+) at 3726 Å
and 3729 Å. The transitions are 2D5/2 to the ground state 4S3/2 at 3729 Å and2D3/2 to the
ground state at 4S3/2 at 3726 A. At low densities, the emission is just given by the ratio
of collisional excitations into the upper levels which just depends upon the ratio of the
statistical weights. Thus the 3729 AA line is expected to be 1.5 times stronger than the
3726 Å line in the low density limit. In the high density limit, the ratio of the line strengths
depends upon the number in the level multiplied by the Einstein A. The Einstein A from
the 3729 Å line is about 0.23 times as strong as that for the 3726 Å line and therefore the
expected line ratio in the high density limit is = 0.34.

Emission line strengths have been used to infer elemental abundances within ionized
nebulae. The optical line intensities are sensitive to the gas temperature which is charac-
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teristically near 10,000 K. While the infrared lines are quite insensitive to gas temperature,
they can be sensitive to the gas density. For example, the O III transitions at 88 µm from
the lowest ground state (3P1 to 3P0 and 52 µm from the two excited fine structure levels
(3P2 to 3P1) are good measures of the oxygen abundance if the density is low enough to
ignore collisional de-excitation of the upper level.

The prime source of heating within a nebula is from photo-ionization. We can write
that the rate of heating, Λ (erg s−1) is:

Λ =
∫ ∞

ν0

4π
Jν

hν
σν (hν − hν0) dν (15)

Thus the thermal balance is determined by writing:

Λ n(H) =
∑

ne n(X+i) (∆E) < σeXv > (16)

where we assume that ion X+i is collisionally excited into an energy level that is ∆E above
the ground state which is then radiated as photons. The coefficient for the collision rate is
given as < σeXv >. Note that the heating rate is suite similar to the ionization rate which
is proportional to the recombination rate. Therefore, the heating varies approximately as
n2 as does the cooling. Consequently, the temperature is not sensitive to density. However,
the value of < σv > typically is temperature sensitive. The main coolants from an ionized
nebula lie at energy levels tyically much higher than kT . Consequently, relatively few
electrons have enough energy to excite an ion into an excited state and the fraction of such
electrons is temperature-sensitive. A result is that a very wide variety of ionized nebulae
have “characteristic” temperatures near 10,000 K.
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Lecture 10 – Pulsars

Pulsars are fascinating objects and they probe physics at the extreme. There are
compelling arguments that radio pulsars are magnetized, rotating neutron stars. Assume
that the magnetic field of the neutron star can be described as that from a magnetic
dipole, ~m, that is oriented at angle α relative to the spin axis. Outside of the star there
is a time-varying magnetic field, and we can calculate the radiation from this field as a
time-varying magnetic dipole. Previously, we considered electric dipole radiation. Note
that if we imagine a current, I, in a loop of cross sectional area, a, then

~m =
I a n̂

c
(1)

where n̂ is a unit vector normal to the surface area of the loop and c is the speed of light.
In cgs units, we can write for a unit vector, r̂ in the direction ~r that:

~B =
3r̂(r̂·~m) − ~m

|~r|3
(2)

Alternatively, if the dipole is oriented along the Z axis, so that

~m = m0 ẑ (3)

with m0 = (I a)/c, and using:

ẑ = r̂ cos θ − θ̂ sin θ (4)

then in spherical coordinates, we can write that

~B =
m0

|~r|3
(
2 cos θ r̂ + sin θ θ̂

)
(5)

Thus for a star of radius, R∗, the maximum magnetic field, B0 is given by:

B0 =
2 m0

R3
∗

(6)

We can calculate the radiation from a magnetic dipole in a manner analogous to that
of the electric dipole. However, we need only compute the retarded vector potential, ~A
since the scaler potential is zero for a magnetic dipole. Skipping the details, for now, the
instantaneous radiated power, P , is:

P =
2| ~̈m|2

3 c3
(7)
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The projection of the magnetic dipole, m0 cos α along the rotation axis is constant while
the magnitude of the time-varying portion of the magnetic dipole is m0 sinα. If the star
rotates with angular velocity ω, then:

| ~̈m| = ω2 m0 sinα (8)

Therefore, we can write for the total power radiated that:

P =
ω4 B2

0 R6
∗ sin2 α

6 c3
(9)

If I denotes the moment of inertia of the star, then if homogeneous, we can write that:

I =
2
5

M∗ R2
∗ (10)

Consequently, the rotational energy, Erot, is

Erot =
1
2

I ω2 =
1
5

M∗ R2
∗ ω2 (11)

By considering the period of the pulsar, T , so that ω = (2π)/T , then if the spin down of
the pulsar radiates into free space, we expect that:

P =
8 π4 B2

0 R6
∗ sin2 α

3 c3 T 4
= −dErot

dt
(12)

Also:

−dErot

dt
= −8π2 M∗ R2

∗
5 T 3

dT

dt
(13)

Thus
dT

dt
=

1
T

5 π2 B2
0 R4

∗ sin2 α

3 c3 M∗
(14)

It is possible to make very exact measurements of a pulsar’s value of T and dT/dt and
therefore, assuming values for M∗, R∗ and α, it is possible to estimate B0. Typical values
are B0 ≈ 1012 Gauss.

This theory of pulsar spin-down makes an exact prediction. We can write that

ω̇ = K ω3 (15)

Thus:
ω̈ = 3 K ω2 ω̇ (16)

Therefore:

ω̈ =
n ω̇2

ω
(17)
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where n, the “braking index”, is predicted to equal 3. Observationally, about 5 pulsars
have had accurate measurements made of the braking index, and it is typically less than
3. The idealized model that we have discussed does not work perfectly.

Radio pulsars appear to be powered by their spin-down. However, there exist the
“anomalous X-ray pulsars” which emit about 100 times as much power as allowed from the
spin down of a neutron star. These objects are now thought to be “magnetars”; pulsars
with extremely large magnetic fields, and the energy of the systems is probably derived
from dissipation of this magnetic energy.

Observations of pulsars show that the pulses at low frequencies arrive later than the
pulses at high frequencies. This can be explained as a plasma dispersion effect. Assume a
plane parallel wave propagating through an ionized medium. We assume that the electric
field in the wave is of the form:

~E = ~E0 ei(~k·~r−ωt) (18)

where:
~E0 = Exx̂ + Eyŷ + Ez ẑ (19)

with Ex, Ey and Ez being constants. We describe the wave vector as ~k so that

~k·~r = kx x + ky y + kz z (20)

where, again, kx, ky and kz are constants. With this approach, then we can write that:

~∇· ~E = (i kx Ex + i ky Ey + i kz Ez) ei(~k·~r−ωt) = i~k· ~E (21)

Similarly, with a little algebra, we find that:

~∇× ~E = i~k× ~E (22)

and
∂ ~E

∂t
= −iω ~E (23)

With this approach, Maxwell’s differential equations can be reconfigured as algebraic equa-
tions. For the electric field, we can write that the equation relating the field to the local
density:

~∇· ~E = 4π ρ (24)

becomes:
i~k· ~E = 4πρ (25)

where ρ is the charge density. Similarly,

~∇× ~E = −1
c

∂ ~B

∂t
(26)
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becomes:
~k× ~E =

ω

c
~B (27)

while for the magnetic field, we write that:

i~k· ~B = 0 (28)

and
i~k× ~B =

4π

c
~j − i

ω

c
~E (29)

where ~j is the current density.
We now make consider a very simple case where instead of a vacuum, there are charges.

We assume that only the electrons move and that their motion is dominated by the electric
field since they are assumed to be at rest except for the field. In this case:

me~̇v = −q ~E (30)

Assuming that the electron just oscillates as the electric field, then

~̇v = −i ω ~v (31)

so that

~v =
q ~E

iωme
(32)

We can write for the current density that:

~j = −q ne ~v (33)

Therefore:
~j = σ ~E (34)

where the conductivity, σ, is given by:

σ =
i ne q2

ω me
(35)

The conservation of charge for a flow is:

∂ρ

∂t
+ ~∇·~j = 0 (36)

In our expressions, this becomes:

−iωρ + i~k·~j = 0 (37)
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Therefore:
ρ =

1
ω

~k·~j =
σ

ω
~k· ~E (38)

We can now write Maxwell’s equations with the charge density and current density
terms as:

i~k· ~E
(

1 − 4πσ

iω

)
= 0 (39)

and:

i~k× ~B = −i
ω

c
~E

(
1 − 4πσ

iω

)
(40)

and
i~k· ~B = 0 (41)

and
i~k× ~E = i

ω

c
~B (42)

We have therefore re-arranged Maxwell’s equations for a plasma to the equivalent of
the equations in a vacuum if we define the complex dielectric constant, ε, as

ε =
(

1 − 4πneq
2

meω2

)
=

(
1 −

ω2
p

ω2

)
(43)

which implicitly defines the plasma frequency, ωp such that:

ω2
p =

4π ne q2

me
(44)

If we assume that ~k propagates in the Z direction while the electric field is in the
X direction and the magnetic field in the Y direction, then we find for the solution to
Maxwell’s equations for the wave that:

c2 k2 = ε ω2 (45)

Using the definition of ε, this equation becomes:

k =

√
ω2 − ω2

p

c
(46)

The value of k is imaginary and the wave is attenuated if ω < ωp. Alternatively, we can
write that:

ω2 = ω2
p + c2 k2 (47)
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For any wave, the group velocity, vg is given by:

vg =
∂ω

∂k
≈ c

√
1 −

ω2
p

ω2
(48)

As a result, the waves propagate more slowly at the lower frequencies. If the pulsar is at
distance s from us, then the time the pulse, tp, takes to reach us is:

tp =
∫

ds

vg
≈s

c

(
1 +

∫
ω2

p

2 ω2
ds

)
(49)

Using the definition of the plasma frequency, we see that the relative delays in the pulsar
pulse arrival as a function of time directly measure the dispersion measure, D, defined as:

D =
∫

ne ds (50)
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Lecture 11 – Synchrotron Radiation

There are many astrophysical environments with relativistic electrons in a magnetic
field. The synchrotron emission from these systems can be very powerful and is the most
common form of “non-thermal” emission that astronomers consider.

Assume a relativistic electron with charge, q, mass, me, and relativistic factor, γ, such
that

γ =
1√

1 − v2/c2
(1)

If there is magnetic field, ~B and no electric field, then the energy of the particle is constant
and:

d

dt
(γ me ~v) =

q

c
~v× ~B (2)

Since the energy is constant, then γ is constant and the equation becomes similar to the
non-relativistic case:

γ me
d~v

dt
=

q

c
~v× ~B (3)

We consider the components of ~v that are perpendicular, ~v⊥ and parallel, ~v‖ to the magnetic
field so that:

~v = ~v⊥ + ~v‖ (4)

The solution to the equation of motion is that ~v‖ is constant while ~v⊥ undergoes circular
motion. If we assume that ~B defines the Z axis so that ~B is B0ẑ and write

~v⊥ = vx x̂ + vy ŷ (5)

Then the equation of motion for the X and Y components of the velocity can be written
as:

γ me
dvx

dt
=

vy

c
q B0 (6)

and
γ me

dvy

dt
= −vx

c
q B0 (7)

Combining these equations, we get:

d2vx

dt2
=

q B0

γ me c

dvy

dt
= − q2 B2

0

γ2 m2
e c2

vx (8)

The solution to this equation is that

vx = v0 cos(ωB t) (9)

where:
ωB =

q B0

γ me c
(10)
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and v0 is a constant that is given by the initial conditions. This result is the same as for
the nonrelativistic case if γ = 1. The motion of the electron is a helix. The “pitch angle” is
the angle between the magnetic field and the velocity vector of the electron. For constant
magnetic field, the pitch angle also is constant.

Since the electron is accelerated, it radiates. The relativistic generalization of Larmor’s
formula is that:

P =
2 q2

3 c3
γ4

(
a2
⊥ + γ2a2

‖

)
(11)

where the a′s denote the components of the electron’s acceleration that are parallel and
perpendicular to its velocity. We take a‖ = 0 and:

a⊥ = ωB v⊥ (12)

Therefore:

P =
2 q4B2

0

3 m2
e c5

γ2 v2
⊥ (13)

We can consider some approximations. For example, in an ensemble of relativistic
electrons, we might imagine that the distribution of pitch angles is uniform, Therefore, if
θ denotes the angle between v⊥ and v0, then

< v2
⊥ > = v2

0

1
4π

∫ 2π

0

∫ π

0
(sin2 θ) sin θ dθ dφ =

2
3

v2
0 (14)

For highly relativistic particles where v0 ≈ c, then:

P ≈ 4 q4 B2
0

9 m2
e c3

γ2 (15)

Since the energy of an electron is γmec
2, then the characteristic time, tsyn, for an electron

to lose its energy by synchrotron radiation is:

tsyn =
γ me c2

P
≈ 9 m3

e c5

4 q4 B2
0 γ

(16)

In addition to the total power emitted by a synchrotron electron, we want to describe
its spectrum. Following the arguments in Rybicki and Lightman, we note the following.
The emission from a relativistic electron is beamed into a cone of opening angle γ−1. We
assume that the pulse of light is only strong for a fraction of the orbital motion given by
the time interval in the frame of the electron:

∆t ≈ 2
γωB sinα

(17)

where α is the angle between the magnetic field and the line of sight. Because of this, the
pulse of light from each motion of the electron in the magnetic field is much shorter than
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the gyration time. It is useful to note that if we assume v is nearly c, then we can write
that the arrival time of the pulse, ∆tA is “shrunk” by the interval

∆tA = ∆t
(
1 − v

c

)
≈ ∆t

2γ2
(18)

Therefore, the pulse arrives over a time interval:

∆tA ≈ 1
γ3ωB sin α

(19)

From Fourier analysis, the upper cutoff frequency of the radiation, ωc is:

ωc ≈ (∆tA)−1 = γ3 ωB sin α (20)

We expect that νc = ωc/(2π). Because ωB varies as γ−1, we expect that νc varies as γ2.
Therefore, for a relativistic synchrotron electron, both the total power and the characteristic
maximum frequency varies as γ2 so that the power emitted per unit frequency, Pν , scales
as a function G(ν/νc).

Consider an observational case where the energy distribution of electrons, N(E) dE, is
a power law such that:

N(E) dE = N0 E−p dE (21)

We can write for the total power emitted by this ensemble, Pν(tot), that:

Pν(tot) =
∫ Emax

Emin

N0 E−p G

(
ν

νc

)
dE (22)

Make the substitution that x = ν/νc and recognize that νc = K E2. Therefore, we can
re-write this equation so that:

x =
ν

K E2
(23)

so:
E =

( ν

K x

)1/2
(24)

and
dE = −1

2

( ν

K

)1/2
x−3/2 dx (25)

and
Pν(tot) = ν(−p/2+ 1/2)

∫ xmax

xmin

N0

2
x(p/2− 3/2) K(p/2− 1/2) G(x) dx (26)

Therefore, if
Pν ∝ ν−s (27)
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then:
s =

p − 1
2

(28)

For many nonthermal radio sources, we do not independently know the magnetic field
and the energy distribution of the electrons. One approach is to assume equipartition
so that the energy density in the magnetic field, B2/(8π), equals the energy density in
relativistic particles. However, this is highly uncertain. Nonthermal radio sources can
be distinguished from thermal sources by (1) their spectral energy distribution, (2) their
surface brightness, (3) their variability and (4) their polarization.
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Lecture 12 – Scattering

So far, we have only considered direct emission as a photon source function. In fact,
however scattering also contributes to the source function. The simplest case is isotropic
scattering. For a flow of photons along the X-axis, through a medium with particle density,
n, we can write that the optical depth, dτ is:

dτ = n (σscat + σabs) dx (1)

dI

dx
= −n (σabs + σscat) I + ε + nσscat J (2)

where J is the mean intensity of the radiation field so that

J =
1

4π

∫ π

0

∫ 2π

0
I(θ, φ) sin θ dθ dφ (3)

We can therefore re-write the equation of transfer as:

dI

dτ
= −I + (1 − a)Sem + a J (4)

where a is the albedo of the particles defined so that:

a =
σscat

σscat + σabs
(5)

and Sem is the usual source function for emission so that

Sem =
ε

n σabs
(6)

In the common case that Sem = B, the Planck function, then

dI

dτ
= −I + (1 − a)B + a J = −I + S (7)

where S is the generalized source function that includes scattering.
Consider a few simple examples. If a = 1 and the system is optically thin and S is

constant, then the intensity that we observe, Iobs is:

Iobs = S
(
1 − e−τ

)
≈S τ (8)

On a cloudless day, we can approximate the mean intensity of the light from the Sun that
has luminosity, L, and distance from the Earth, D, as:

J ≈ 1
(4π)2

L

D2
(9)

1



Thus:
Iobs ≈ J τ ≈

τ L

16π2D2
(10)

Note that we expect that Iobs < J .
As an example, model the sky as a plane parallel atmosphere with vertical scattering

optical depth, τ . If θ denotes the angle with respect to the zenith and if µ = cos θ, then:

I(θ) = J
(

1 − e−τ/µ
)

(11)

The flux received by a detector aimed at the zenith, F , is

F =
∫ 2π

0

∫ π/2

0
J
(

1 − e−τ/µ
)

cos θ sin θ dθ dφ (12)

Or:

F = π J − 2π J
∫ π/2

0
e−τ/µ cos θ sin θ dθ = π J − 2π J

∫ ∞
1
e−τx

dx

x3
(13)

where x = 1/ cos θ. Therefore:

F = π J − 2π J E3(τ) (14)

This compares with the direct flux from the Sun, F∗, which is assumed to lie at zenith
angle θ∗ so that

F∗ = 4π J e−τ/µ∗ (15)

If, for example, τ = 0.1 and θ∗ = 45◦, then F/F∗ = 0.048. Most of the flux we could detect
would come directly from the Sun.

Consider a plane parallel atmosphere where z and τ are measured downward from the
top. In such an atmosphere, we can write that

dx = − dz

cos θ
= −dz

µ
(16)

Consequently, along each direction defined by θ, the equation of transfer becomes:

µ
dI

dτ
= I − (1 − a)B − a J (17)

In the two-stream approximation, we only consider light that moves in the directions µ =
±1. We define I+ as the upward intensity and I− as the downward intensity. We can write
that

J =
1
2

(I+ + I−) (18)

Each stream of radiation must satisfy the transfer equation so that

dI+
dτ

= I+ − (1 − a)B − a J (19)
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and
dI−
dτ

= −I− + (1 − a)B + a J (20)

It is useful to define the flux, H, such that

H =
(I+ − I−)

2
(21)

By summing the equations, we find that:

dI+
dτ

+
dI−
dτ

= 2
dJ

dτ
= 2H (22)

Thus:
dJ

dτ
= H (23)

Subtracting the two equations, we find that:

dI+
dτ
− dI−

dτ
= 2

dH

dτ
= 2 J − 2(1 − a)B − 2 a J (24)

Thus:
dH

dτ
= J(1 − a) − (1 − a)B (25)

We can eliminate H by writing:

d2J

dτ2
=

dH

dτ
= J(1 − a) − (1 − a)B (26)

If, for simplicity, B is constant, then the solution to the differential equation is:

J = C1 e
√

1−aτ + C2 e
−
√

1−aτ + B (27)

where C1 and C2 are constants to be determined by the boundary conditions. In order to
keep the mean intensity well bounded within the atmosphere, we take C1 = 0. We find
from our solution that:

dJ

dτ
= H = −

√
1− aC2 e

−
√

1−aτ (28)

At the surface of the atmosphere where τ = 0, I− = 0 because there is no incident radiation.
Therefore

I−(0) = 0 = J(0) − H(0) (29)

Therefore:
C2 + B = −

√
1− aC2 (30)

Therefore:
C2 = − B

1 +
√

1− a
(31)
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Then:
J = B − B

1 +
√

1− a
e−
√

1−aτ (32)

and

H =
√

1− a
1 +

√
1− a

e−
√

1−aτ B (33)

The intensity in the upwards direction, I+ is:

I+ = J + H = B − B e−
√

1−aτ
(

1 −
√

1− a
1 +

√
1− a

)
(34)

There are a number of interesting results to be derived from this approximation. For
example, deep in the atmosphere, we see that J approaches B which means that the mean
intensity approaches the thermal source function. Also, deep in the atmosphere, we see
that H = 0. This is a consequence of assuming that B is constant. If there is a net flux,
then B cannot be constant. Consider I+ at τ = 0. If a = 0, then I+(0) = B; the emergent
intensity just equals the source function for an isothermal atmosphere. Another important
result is that when a ≈ 1, then I+(0) ≈ 0. This is important for understanding very strong
“scattering” lines in stellar atmospheres. An example are the calcium H and K lines in the
spectrum of the Sun where the residual intensity in the line is quite small compared to the
continuum.
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Lecture 13 – Non-LTE Line Formation

The appearance of a spectral line formation depends upon the source function. In Local
Thermodynamic Equilibrium, LTE, we take Sν = Bν(T ). In many environments this
approximation works very well. However, there are often circumstances where the system
is not well-described by LTE. In these cases, we need to consider the rates which control
the level populations in order to determine the source function which then enters into the
equation of transfer.

In a two level atom with lower and upper energy levels separated by energy ∆E with
statistical weights gL and gU , Einstein coefficient, AUL, define collisional rate coefficient
CLU for L to U and coefficient CUL for collisions from U to L. We know that in a steady
that that if n is the density of colliders that:

nnLCLU = nnU CUL (1)

Furthermore, we know that in LTE that:
nU
nL

=
gU
gL

e−∆E/kT (2)

Therefore:
CLU = CUL

gU
gL

e−∆E/kT (3)

We expect that:
CUL = < σv > (4)

where σ is the cross section for de-excitation and v is the speed of a collider. In principle,
we should take v in the center of mass of the atom and the collider. Often, however, the
colliders are electrons which are much lighter than the atoms that are being excited and
this correction is not necessary.

For an atom within a radiation field, we can write in a steady state that:

nL
(
nCLU + BLU J

)
= nU

(
nCUL + BUL J + AUL

)
(5)

where

J = 4π
∫ +∞

−∞
Jν(∆ν)φ(∆ν) d(∆ν) (6)

When the value of n is high, then the system approaches LTE. However, when n is low,
the other terms in this expression become important and the level populations can deviate
quite significantly from their LTE values.

Now consider situations where we investigate “high” and “low”. In a star, we typi-
cally observe to continuum optical depth, τc, of 2/3. We also have from the equation of
hydrostatic equilibrium that if z is measured outwards:

dp

dz
= −ρ g (7)
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Remembering that if τ is measured inwards that:

dτ = −χρ dz (8)

Then:
dp

dτ
=

g

χ
(9)

Although χ is not constant, in the region where the continuum is formed, we expect that:

p ≈ 2
3
g

χ
(10)

Using the ideal gas law so that p = nk T , we find that very approximately, the density
where the continuum is formed, ncr, is therefore:

ncr ≈
g

k T χ
(11)

In this formulation, typically, the largest uncertainty is the opacity which is a strong
function of temperature, density and composition. If electron scattering dominates and
hydrogen is the main constituent, then χ = 0.40 cm2 g−1. However, in the Sun, most of
the atoms are neutral, and the main source of opacity is H− by the process:

hν + H−→H + e− (12)

The energy threshold for this process is only 0.75 eV and the cross section can be as high
as 4 × 10−17 cm2 at 8500 Å. However, only a tiny fraction of the hydrogen is in the form
of H− and the opacity is typically 0.01 to 1 cm2 g−1. Taking the acceleration by gravity
at the sun of g = 2.7 × 104 cm s−2, T = 7000 K and χ = 1 cm2 g−1, then ncr ∼ 2 ×
1016 cm−3. For comparison, the number density of molecules in the Earth’s atmosphere
at its surface typically is 2.7 × 1019 cm−3. For collisional de-excitation of an atom, the
characteristic cross section might be 10−16 cm2. The average speed, v, of a hydrogen atom
is

v =
(

8 k T
πmH

)1/2

(13)

This yields v = 1.2 ×106 cm s−1. Thus a typical value of CUL is 10−10 cm3 s−1 and nCUL
in the solar photosphere is typically 106 s−1. The sodium D lines (at 5890 Å and 5896 Å)
have AUL = 6.3 × 107 s−1. Therefore, this strong line can be out of LTE even in a main
sequence star like the Sun.

We can use this analysis to estimate the calcium abundance in the Sun from the H
(3968.5 Å) and K (3933.6 Å) lines. The K line has a residual intensity near 0 at line center
and about 0.5 at 5 Å from line center. Therefore, at 5 Å from line center, we assume
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that a = 0.5. Therefore, if ρH and ρCa denote the mass density of hydrogen and calcium,
respectively, with opacities of χH and χCa, then with a ≈ 0.5, we expect that:

ρH χH ≈ ρCa χCa (14)

or
n(H)mH χH = n(Ca)mCa χCa (15)

Let us further assume that essentially all the calcium is singly ionized and that essentially
all of it is in the ground state. Therefore, from Lecture 3, we find that:

χ(Ca+)[∆ν] =
πe2

mec
f

δ

π(∆ν)2

1
mCa

(16)

where:
δ =

AUL
4π

(17)

With ∆ν = 9.69 × 1011 Hz, f = 0.69 and AUL = 1.5 × 108 s−1, we have that: χ(Ca+) =
1100 cm2 g−1. At the “top” of the photosphere, we take χH = 0.1 cm2 g−1. Therefore:

n(Ca)
n(H)

=
χH
χCa

mH

mCa
(18)

This expression computes to n(Ca)/n(H) = 2 × 10−6 which is the accepted number and
considerably better than we should expect given the level of approximation that we used.

An important astrophysical situation where lines are very far from LTE are masers.
These are environments where there is a population inversion so that there is a negative
optical depth where

dτ = nLBLU φ(∆ν) − nU BUL φ(∆ν) (19)

which occurs when
nU BUL > nLBLU (20)

or when:
nU
nL

>
gU
gL

(21)

Note from above, in a 2-level atom in a steady state, we have that:

nU
nL

=
nCLU + BLU J

nCUL + BUL J + AUL
(22)

Remember that:
BLU =

gU
gL

BUL (23)

and
CLU ≤

gU
gL

CUL (24)
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Consequently, in a two level system:

nU
nL
≤ gU
gL

(25)

In order to invert the level population, we need to consider at least a 3 level system.
Some of the important features of astrophysical masers are the following. The surface

brightness of a radial line can be very high. If I0 is the background continuum, then:

I = I0 e
−τ + S

(
1 − e−τ

)
(26)

The general non-LTE source function is:

Sν =
εν
κν

(27)

Note that when τ is negative then so is κ, so that I is always positive. Compelling evidence
that an emission line is produced by a maser is provided by observations of very high surface
brightnessess. If line flux is F in solid angle Ω, then:

I =
F

Ω
=

2 k Tb
λ2

(28)

Thus lines with high fluxes in small solid angles are masers. Brightness temperatures in
excess of 1012 K have been observed in molecular lines such as OH.

Other important characteristic of masers is that they exhibit narrow lines, high polar-
ization, and measurable time variability.
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Lecture 14 – Stellar Atmospheres

One of the most important applications of radiative transfer is the description of stellar
atmospheres. To begin, we assume that the atmosphere is plane parallel and grey in the
sense that the opacity is independent of frequency. Furthermore, we assume that all the
energy is carried by radiation with an integrated flux, F . If Te is the effective temperature
of the star and σSB is the Stephan-Boltzmann constant, then

F = σSB T
4
e (1)

In the atmosphere, we write that

µ
dIν
dτ

= Iν − Sν (2)

where µ = cos θ is defined relative to the vertical measured outwards. Integrating over all
frequencies, this equation becomes:

µ
dI

dτ
= I − S (3)

Note that locally, we can write that in local thermodynamic equilibrium that:

S =
∫ ∞

0
Sν dν =

∫ ∞
0
Bν dν =

σSB T
4

π
(4)

Previously, we considered the two stream approximation. Here, we solve the equation
with the Eddington approximation. We integrate over 4π steradians to find that

d

dτ

∫ 2π

0

∫ 1

−1
I µ dµdφ =

∫ 2π

0

∫ 1

−1
I dµ dφ −

∫ 2π

0

∫ 1

−1
S dµ dφ (5)

or:
dF

dτ
= 4π J − 4π S (6)

where J is the mean intensity. Assuming that the flux is constant through the atmosphere,
then we find that:

J = S (7)

We now multiply the equation of transfer by µ and integrate over 4π steradians to find
that:

d

dτ

∫ 2π

0

∫ 1

−1
I µ2 dµ dφ =

∫ 2π

0

∫ 1

−1
I µ dµ dφ −

∫ 2π

0

∫ 1

−1
S µdµ dφ (8)

We evaluate each of these terms. For the first quantity, we make the diffusion approximation
that I is nearly isotropic. In this case, we find that

d

dτ

∫ 2π

0

∫ 1

−1
I µ2 dµ dφ ≈ dJ

dτ

∫ 2π

0

∫ 1

−1
µ2 dµ dφ =

4π
3
dJ

dτ
(9)
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By definition:

F =
∫ 2π

0

∫ 1

−1
I µ dµ dφ (10)

Since S is independent of angle, we also have that:∫ 2π

0

∫ 1

−1
S µdµ dφ = 0 (11)

Using J = S, the equation of transfer then reduces to:

4π
3
dS

dτ
= F (12)

or:
S =

3
4π

F τ + C (13)

where C is a constant. Using our results for S and F given above, we find that
At the outer boundary of the stellar atmosphere where τ = 0, we assume that there is

no incoming radiation and therefore:

S =
I

2
=

F

2π
(14)

Therefore using the boundary condition at τ = 0, then

C =
F

2π
(15)

or:

S =
F

π

(
3
4
τ +

1
2

)
(16)

Using the results from above, we therefore find for the temperature that:

T 4 = T 4
e

(
3
4
τ +

1
2

)
(17)

In an atmosphere with a net flux, we expect a temperature gradient.
The Eddington approximation is very useful as a place to begin to understand a star’s

atmosphere, but it is obviously incomplete. For example, flux is not exactly conserved
through the atmosphere. Another uncertainty is that typically, in a real atmosphere, the
opacity varies as a function of frequency. Consider now “real” space with Z pointing
outwards along the normal of the atmosphere so that:

dτν = −χν ρ dz (18)
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where ρ is the mass density and χν is the opacity. In “real” space, the equation of transfer
at each frequency is:

µ
dIν
dz

= −χν ρ Iν + εν (19)

We divide by χνρ and use that in LTE the source function is the Planck function to find
that:

µ

ρχν

dIν
dz

= −Iν + Bν (20)

Multiplying by µ and integrating over 4π steradians and over all freqeuncies, we get that:

1
ρ

∫ ∞
0

∫ π

0

∫ 2π

0
µ2 1

χν

dIν
dz

dν sin θ dθ dφ = −F (21)

Using the Eddington approximation and that J = B, this equation can be re-written as:

1
3ρ

∫ ∞
0

1
χν

dBν
dz

≈ − F (22)

Therefore, flux will be preserved through the atmosphere is we use the Rosseland mean
opacity, χ defined such that:

1
χ

=

∫∞
0

1
χν

dBν
dz dν∫∞

0
dBν
dz dν

(23)

Using:
dBν
dz

=
∂Bν
∂T

dT

dz
(24)

Then using the cancellation of dT/dz, we find that:

1
χ

=
(∫ ∞

0

1
χν

∂Bν
∂T

dν

)
/

(
∂B

∂T

)
(25)

Since:

B =
σSBT

4

π
(26)

Then:
∂B

∂T
=

4σSBT 3

π
(27)

Therefore, the mean opacity to be used in the atmosphere is usually taken as:

1
χ

=
π

4σSB T 3

∫ ∞
0

1
χν

∂Bν
∂T

dν (28)

With a model atmosphere, it is possible to predict such observable quantities as the
absorption line strengths, the shape of the continuum and limb darkening. There are, of
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course, a huge number of applications of these results. Consider the formation of a weak
line.

Line opacities are necessary for abundance determinations. As a first approximation,
we might write the source function as

Sν = aν + τνbν (29)

with
aν = Sν(τν = 0) (30)

where
bν =

∂Sν
∂τν

(τν = 0) (31)

Or, for the moment, measuring z downwards, then:

bν =
∂Sν
∂z

∂z

∂τν
= κ−1

ν

∂Sν
∂z

(32)

In the absence of scattering, the emergent flux is

Fν = π

(
aν +

2
3
bν

)
= π

(
aν +

2
3
κ−1
ν

∂Sν
∂z

)
(33)

There are two “extremes”. (i) The line can be very strong in which case κν is large and
bν is relatively small. Therefore, the flux in the line is controlled by aν , the source function
at the top of the atmosphere. (ii) If the line is weak, then the line opacity is only a small
addition to the continuum. We write that the total opacity, κ, is given by the sum of the
line opacity, κL and the continuum opacity, κL so that:

κ = κL + κC (34)

Using a Taylor series expansion of the opacity, then the flux in the line, FL is

FL = π

(
a +

2
3
κ−1
C

(
1 − κL

κC

)
∂Sν
∂z

)
(35)

While the flux in the continuum is:

FC = π

(
a +

2
3
κ−1
C

∂Sν
∂z

)
(36)

Therefore, the residual intensity, r, is given by:

r =
FC − FL

FC
=

2π
3
κL
κC

∂Sν
∂z

κCFC
(37)
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We can write that if the number density of absorbers in the lower level of the line is
nL, then

κL = nL
πe2

mc
f φ(∆ν)

(
1 − e−

hν
kT

)
(38)

Similarly if the continuum depends upon a density of continuum absorbers, nC , then

κC = nC σC

(
1 − e−

hν
kT

)
(39)

Finally, if we write the equivalent width as

Wν =
∫ ∞
−∞

rνd(∆ν) (40)

and using the normalization of the line broadening such that∫ ∞
−∞

φ(∆ν)d(∆ν) = 1 (41)

Then

Wν =
πe2

mc f
nL

nCσC
2π
3
∂Sν
∂z

κCFC
(42)

Furthermore, since the continuum opacity dominates, we can write that:

1
κC

∂Sν
∂z

≈ ∂Sν
∂τν

(43)

An even further approximation is to take:

FC ≈ π Sν (44)

With these approximations, we finally get:

Wν ≈
2
3
πe2

mc
f

nL
nCσC

∂ log Sν
∂τν

(45)

This expression is a key result in determining abundances in a stellar atmosphere.
When we observe weak lines, Wν depends linearly upon the oscillator strength, f , and also
directly upon nL/nC , the relative number of absorbers in the line compared to the number
of absorbers in the continuum. By measuring the equivalent width, we then measure this
ratio which, for the known temperature and density, allows us to estimate the abundance
of the line forming element. Note, by the way, that this procedure requires knowing the
temperature gradient in the atmosphere. If there is no gradient, there are no absorption
lines.
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Lecture 15 – Passive Disks

For pre-main sequence stars or white dwarfs, we often need to consider a passive disk. These
are systems where a dusty disk is illuminated by the central star, and then re-radiates in
the infrared. In an active disk, dissipation of accretion energy is important.

Consider a flat disk whose thickness is less than the radius of the star. We can compute
the temperature of the disk by assuming energy balance so that the rate of absorbing energy
equals the rate of emitting energy. Assume the that emits isotropically. Each portion of
the disk is illuminated by a hemisphere, which we will assume to appear as a semi-circle as
seen from the disk. The height measured from the plane is z and assume that the image
of the star is subdivided into rectangles of height dz. We then consider the illumination of
the disk by these rectangles of width, 2R. We can write that:

R2 + z2 = R2
∗ (1)

where R∗ denotes the radius of the star. If D measures the distance from the star to the
disk, if the star has effective temperature Te and therefore the surface intensity is σSBT 4

e /π,
then on each side of the disk, the incident flux, Fin, is given by the intensity multiplied by
the subtended solid angle multiplied by the cosine of the angle between the incident ray
and the plane of the disk or z/D. Therefore:

Fin =
σSBT

4
e

π

∫ R∗

0

2R
D

dz

D

( z
D

)
=

2σSB T 4
e

πD3

∫ R∗

0

√
R2
∗ − z2 z dz (2)

If there is a steady state so that the incident flux equals the outward flux which is siven
by Fout = σSBT

4, then

σSBT
4 =

2
3π
σSBT

4
e

(
R∗
D

)3

(3)

or:

T = T∗

(
2

3π

)1/4 (R∗
D

)3/4

(4)

Thus, we expect that T varies as D−3/4.
Given the temperature as a function of radius from the star, we can compute the

expected flux from the disk at Earth. Assume that we observe the disk at inclination
angle, i, such that if it is face-on then i = 0◦. The flux, Fν , from the disk at distance from
Earth, D∗, and with inner radius, Dinner, and outer radius, Douter, is:

Fν = cos i
∫ Douter

Dinner

Bν(T )
2πD dD

D2
∗

(5)

With the usual Planck function, and the substitution:

x =
h ν

k T
=

hν

k T∗

(
3π
2

)1/4( D

R∗

)3/4

(6)
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Therefore:

D = x4/3R∗

(
2

3π

)1/3(k T∗
hν

)4/3

(7)

and

dD =
4
3
x1/3 dxR∗

(
2

3π

)1/3(k T∗
hν

)4/3

(8)

then:

Fν =
4π h ν3 cos i

c2D2
∗

∫ Douter

Dinner

DdD

ex − 1
(9)

Or:

Fν = 12π1/3 cos i
(
R∗
D∗

)2 (2 k T∗
3h ν

)8/3 hν3

c2

∫ xouter

xinner

x5/3

ex − 1
dx (10)

This expression shows that over a range of frequency, we might expect that Fν varies as
ν1/3. The integral has a maximum value of 1.9, and therefore, there is a maximum allowed
value of Fν . The disk can be detected as an infrared excess. For the star, we expect that
on the Rayleihg-Jeans portion of Planck curve that:

Fν(∗) = 2π
(
R∗
D∗

)2 ν2 k T∗
c2

(11)

Thus Fν(∗) varies as ν2 and at low frequencies, the disk dominates the total emission from
the system.

For white dwarfs, it seems that the disks are largely composed of dust grains and very
flat. However, for pre-main-sequence stars, there is likely to be a large amount of gas in
the disk. The usual assumption for a disk is that it is in vertical hydrostatic equilibrium.
If z denotes the distance from the disk, then we suppose that:

dp

dz
= −ρ g (12)

Using the ideal gas law and assuming that the disk is vertically, isothermal, this expression
can be re-written as

dρ

dz
= −ρ µ g

k T
(13)

where µ denotes the mean molecular weight of the gas. In the Z direction, if we assume
that the star dominates the gravitational acceleration, then:

g =
GM∗
D2

z

D
(14)

Therefore, the hydrostatic equlibrium equation becomes:

d log ρ
dz

= −z GµM∗
D3 k T

(15)
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The solution is:

ρ = ρ0 exp
(
− z2

H2

)
(16)

where

H2 =
(

2 kB T D3

GM∗ µ

)
(17)

The value of the density in the midplane, ρ0 is determined by the surface density of the
disk, Σ. We can write that:

Σ =
∫ ∞
−∞

ρ dz =
√
π ρ0H (18)

Given the temperature variation of the flat disk given above, we expect that:

H =
(

2kB
GM∗ µ

)1/2

D3/2 T
1/2
∗

(
2

3π

)1/8 (R∗
D

)3/8

(19)

Thus H varies as D9/8 and thus the relative thickness of the disk, H/D, increases outwards.
If the disk is flat, we require that H < R∗. The critical distance where this occurs, Dcrit,
is:

Dcrit =
(

3π
32

)1/9( GM∗µ

kBT∗R∗

)4/9

R∗ (20)

In their models for flared disks, Chiang & Goldreich (1997) define the “grazing angle”,
α, as the angle between the surface of the disk and the line of sight to the star. Far from
the star, in a Taylor series expansion, the local value of α is given by:

α ≈ D d

dD

(
H

D

)
(21)

At location D, the line-of-sight to the star makes an angle H/D with respect to the mid-
plane of the disk. The deviation from the line-of-sight to the star is the angle α.

The inward flux on any element of the disk is balanced by the outward flux. We assume
that the light from the star all arrives at the same angle (unlike the flat disk where different
portions of the star made different incident angles to the surface of the disk). In this case,
the intensity from each portion of the disk is σSBT 4

∗ /π. The solid angle subtend by the
illuminating hemisphere of the star is πR2

∗/(2D
2). We then multiply by α to find the

incident flux. The temperature is then found from:

T =
(α

2

)1/4
(
R∗
D

)1/2

T∗ (22)

From above, we write that:

H2 =
(

2 kB T D3

GM∗ µ

)
(23)
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Set:
T = C1D

C2 (24)

Therefore:

H =
(

2 kB C1

GM∗ µ

)1/2

D
3 + C2

2 (25)

Then from equation (21), we have that:

α =
(

1 + C2

2

) (
2 kB C1

GM∗ µ

)1/2

D
1 + C2

2 (26)

Then from equation (22), we write that:

C1D
C2 =

(
1 + C2

4

)1/4 (2kB C1

GM∗µ

)1/8

D
1 + C2

8 R
1/2
∗ D−1/2 T∗ (27)

The terms in D give C2 = -3/7. Then, we can solve for C1 to find that the disk temperature
is given by the expression:

T =
(

1
7

)2/7(R∗
D

)3/7 (2kBT∗R∗
GM∗µ

)1/7

T∗ (28)

Since the disk is opaque, we can determine the flux from the source, Fν , by:

Fν =
2π cos i
D2
∗

∫ Rout

0
Bν(Tdisk)DdD (29)

where Rout denotes the outer boundary of the disk where the temperature is Tout. With
the dimensionless parameter, x:

x =
hν

kBT
(30)

From above:

Fν =
28π
3

cos iR2
∗

D2
∗

(
kBT∗
hν

)5/3 (kBT∗)3

(hc)2

(
2 kBT∗R∗
49GM∗ µ

)2/3 ∫ xout

0

x11/3

ex − 1
dx (31)

At high frequencies with xout > 10, the observed flux is insensitive to the outer boundary
condition since the integral in equation (31) is approximately 15. The spectrum is predicted
to vary as ν−5/3. At low frequencies where xout <2, we may re-write the expression for the
flux to find that:

Fν =
28π
11

cos iR2
∗

λ2D2
∗

(
T∗
Tout

)11/3( 2 kBT∗R∗
49GM∗ µ

)2/3

kB T∗ (32)

If the disk is opaque, then at low frequencies, Fν varies as ν2.
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Lecture 17 – Accretion Power and Active Disks

There are many astrophysical objects which are powered by accretion. If the accretor has
mass M∗ and radius R∗ and if Ṁ is the accretion rate, then the total luminosity, Ltotal,
can be

Ltotal =
G M∗ Ṁ

R∗
(1)

For a black hole, the appropriate radius may be that of the ”last stable orbit” at
approximately 3RS where

RS =
2 G M∗

c2
(2)

Furthermore, if the matter is approaching the black hole in a disk, then (see below), as it
moves inwards, half the released gravitational energy leads to the material moving faster.
Finally, some of the radiated energy shines into the black hole never to be seen again. As
a result, we might expect that for black holes:

Ltotal ≈0.1Ṁ c2 (3)

Although accretion may proceed in a complex fashion, for example, it may be strongly
modulated by the star’s magnetic field, two simple models are accretion through a disk
and spherical accretion. Consider accretion through a disk which is active is one where
the energy is largely derived from the local dissipation of infall. Consider a flat disk where
the distance from the star is denoted as D. The gas in the disk mainly moves in circular
orbits, but there is an inward radial drift of material. This inward drift is caused by viscous
torques on the gas in the disk. Assume that matter moves inwards from D =dD to D.
Because the gas is mainly moving in circular orbits, it moves faster as it drifts inwards.
Let Eorb denote the orbital energy. Then for mass element, m,

Eorb =
(

v2

2
− G M∗

D

)
m (4)

In the approximately circular orbits, we have:

v2 =
G M∗

D
(5)

Thus:
Eorb = −1

2
G M∗ m

D
(6)

The rate that orbital energy that is released during this infall, d∆Eorb/dt is:

d∆Eorb

dt
=

1
2

G M∗ Ṁ

D2
∆D (7)
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For ordinary work, the power, P , varies as F v where F is the exerted force and v is
the speed. For rotational motion, the power, P , varies as N Ω where N is the torque and
Ω is the angular speed. We can write that:

dEtorque

dt
=

d(ΩN)
dD

∆D (8)

With

Ω =
(

G M∗
D3

)1/2

(9)

In the disks, the viscous torque leads to:

N = −D2 Ω Ṁ (10)

Therefore:
dEtorque

dt
=

G M∗ Ṁ

D2
∆D (11)

Therefore, we can write that:

dEtotal

dt
=

dEtorque

dt
+

dEgrav

dt
=

3
2

G M∗Ṁ

D2
∆D (12)

If we make the assumption that the power is dissipated as light, and since there are two
sides to the disk, if T is the local effective temperature, the radiated power from a ring,
prad, is

prad = 2 (2π D ∆D) σSB T 4 (13)

We therefore find for an active disk that:

σSB T 4 =
3

8 π

(
G M∗ Ṁ

D3

)
(14)

This expression is only valid relatively far from the surface of the star since the viscous flow
near the star is controlled by its rotational speed which must be less than the orbital speed.
Since T varies as D−3, the SED (spectral energy distribution) predicted by an active disk
is similar to that of a passive disk.

In addition to the emission from the disk, we typically need to consider the emission
from the “boundary layer”, the region where the gas decelerates to the rotational speed of
the star or accreting object. There may be additional complications as well. For example,
accretion often leads to jet form and highly relativistic particles may be accelerated and
nonthermal emission produced. Continuum emission from the disk may lead to photo-
ionization in the surrounding gas.
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Supplementary Material – Compton Effect

The Compton effect is important in a number of astrophysical situations. The easiest
place to start is the scattering of a photon off an electron at rest.

hν + e→ hν ′ + e (1)

After the collision, the electron moves with speed v. We use the conservation of energy
and momentum, the principles of relativity and the result that light comes in photons.
The frequency of the photon before the collision is ν while after the collision, it is ν ′. The
photon is scattered through angle α while the electron recoils at angle β relative to the
line of the photon’s initial trajectory, denoted as the X-axis. We define the plane of the
collision as the X − Y plane.

Conservation of energy gives:

hν + mc2 = hν ′ + γ mc2 (2)

The conservation of momentum along the X-axis gives:

hν

c
=

hν ′ cosα
c

+ mγ v cosβ (3)

while the conservation of momentum along the Y -axis gives:

0 =
hν ′ sinα

c
− mγ v sinβ (4)

Remember that in relativistic dynamics:

γ =
1√

1 − v2

c2

(5)

We have written down 3 equations, with 3 unknowns. We can eliminate α and β to find
ν ′ as a function of ν.

We find from equations (3) and (4) that:

cos2 β =
(

1
mγv

)2
([

hν

c

]2

− 2h2νν ′ cosα
c2

+
[
hν ′ cosα

c

]2
)

(6)

and

sin2 β =
(

1
mγv

)2(hν ′ sinα
c

)2

(7)

Therefore, combining equations (6) and (7) and re-arranging the terms:

(γ m v c)2 =
(
[hν]2 − 2h2νν ′ cosα + [hν ′]2

)
(8)
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We can re-write the conservation of energy [equation (2)] to give:

γ2m2c4 =
(
[hν − hν ′] + mc2

)2 (9)

or
γ2m2c4 = h2

(
ν2 + ν ′2 − 2νν ′) + 2mc2h(ν − ν ′) + m2c4 (10)

Subtract equation (8) from equation (10), and we get:

γ2m2c2
(
c2 − v2

)
= −2h2νν ′ (1 − cosα) + 2mc2h(ν − ν ′) + m2c4 (11)

Using the definition of γ given in equation (5), we find that the left hand side of equation
(11) is:

γ2m2c2
(
c2 − v2

)
= m2c4 (12)

Consequently, equation (11) simplifies to:

(1 − cosα) =
(
mc2

h

)(
ν − ν ′

νν ′

)
(13)

We can re-write this as

(1 − cosα) =
(
mc2

h

)(
1
ν ′ −

1
ν

)
=
(
mc2

h

)(
λ′

c
− λ

c

)
(14)

Or if we define
∆λ = λ′ − λ (15)

and if we define the Compton wavelength,

λ0 =
h

mc
(16)

The numerical value of this Compton wavelength is 0.00243 nm. Then:

∆λ = λ0 (1 − cosα) = 2λ0 sin2 α

2
(17)

The cross section for the scattering event is energy dependent. If we define

x =
hν

mec2
(18)

and the Thompson cross section as σT , then

σ =
3σT

4

(
1 + x

x3

[
2x (1 + x)

1 + 2x
− ln(1 + 2x)

]
+

ln(1 + 2x)
2x

− 1 + 3x
(1 + 2x)2

)
(19)
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It is a useful exercise to show that for x << 1 that:

σ ≈ σT
(

1 − 2x +
26x2

5
+ ...

)
(20)

It is considerably easier to show that for x >> 1 that

σ ≈ 3σT
8x

ln(2x) (21)

The calculation above was performed for the situation where the electron is a rest.
Thus, by transforming into the electron’s frame of reference, we can compute how photons
scatter off electrons of arbitrary motion. It is therefore possible that there is a net transfer
of energy from the electrons into the radiation field, if the electrons are “hot” and the
photons are “cold”. Consider first the simplest case of a 1-dimensional collision where the
photon bounces backwards off the electron. In the laboratory frame, the photon energy
before the collision, EB is:

EB = hν (22)

In the rest frame of the electron, with velocity v, and with β = v/c and the usual definition
of γ, this energy, E′

B is:
E′
B = γhν (1 + β) = hν ′ (23)

The energy after the collision, E′
A is:

E′
A ≈ hν ′

(
1 − 2hν ′

mec2

)
= hν ′′ (24)

Then finally, the energy of the photon in the laboratory frame after the collision, EA, has
reversed direction so that

EA = γhν ′′ (1 + β) (25)

is:

EA ≈ hν γ2(1 + β)2
(

1 − 2 γ(1 + β)hν
mec2

)
(26)

Consider now a more general case of an electron at the origin moving with velocitty ~v
such that

~v = v0 (cosφ sin θ x̂ + sinφ sin θ ŷ + cos θ ẑ) (27)

Light is incident upon the scattering electron in direction −n̂ where

n̂ = cosφ′ sin θ′ x̂ + sinφ′ sin θ′ ŷ + cos θ′ ẑ (28)

In the electron’s frame, the Dopper shift of the incident photon is:

∆ν ′

ν ′ = γ

(
1 +

~v·n̂
c

)
(29)
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We observe a shift of the frequency of the scattered photon by an amount

∆ν ′′

ν ′′ = γ

(
1 +

~v·ẑ
c

)
(30)

Therefore, the total Doppler shift that we observe from the initial photon is:

∆ν
ν

=
∆ν ′

ν ′
∆ν ′′

ν ′′ = γ2
(

1 +
v0
c

cos θ
)(

1 +
~v·n̂
c

)
(31)

where:(
1 +

~v·n̂
c

)
=
(

1 − v0
c

[
cosφ cosφ sin θ sin θ′ + sinφ sinφ′ sin θ sin θ′ + cos θ cos θ′])

(32)
Now assume that the radiation field is isotropic in the laboratory frame. Ignoring the
aberration of starlight so that radiation field is not isotropic in the electron’s frame, and
to find the average Doppler shift we must compute:

∆ν
ν

=
γ2

(4π)2

∫ π

0

∫ π

0

∫ 2π

0

∫ 2π

0

∆ν
ν

(
θ, θ′, φ, φ′) sin θ sin θ′ dθdθ′dφdφ′ (33)

The azimuthal integrals all come to 0 so

∆ν
ν

=
γ2

4

∫ π

0

∫ π

0

(
1 +

v0
c

cos θ(1 − cos θ′) −
[v0
c

]2
cos2 θ cos θ′

)
sin θ sin θ′dθdθ′ (34)

Therefore, in the nonrelativistic limit:

∆ν
ν

= γ2 ≈
(

1 +
v2
0

c2

)
(35)

By including the aberration of starlight, the light seen by the electron is not isotropic but
instead has a pattern:

dΩ =
(

1 +
v0
c

cos θ
)

(36)

When including this term, the integral is increased by a factor of 4/3 since we now must
also average over cos2 θ.

An interesting application of this result is the Zeldovich-Sunyaev effect. The hot gas
within a cluster of galaxies scatters the isotropic microwave background radiation. The
number of photons is conserved, but the spectrum is shifted to higher energies. The amount
of the shift depends upon v2

0 or the temperature of the gas and the optical depth through
the hot gas. The Compton y-parameter is:

y =
4 k T
mec2

τ (37)
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Another application is that the electrons in a radiation field lose energy to Compton
scattering. If Uph denotes the energy density in the photon field and UB denotes the energy
density in the magnetic field, then the ratio of synchrotron energy loss to Compton loss is:

Psynch
Pcompt

=
UB
Uph

(38)
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