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Solving Einstein’s equations in the weak field, slow motion approximation.
How to project the solution in the TT-gauge.

A simple example: radiation emitted by a harmonic oscillator.
Gravitational radiation emitted by a binary system in circular orbit.

The Binary pulsar PSR 1931+16 and the double pulsar PSR J0737-3039.
The gravitational wave energy flux.

Gravitational wave luminosity of a binary system.

Orbital evolution of a binary system due to gravitational wave emission: period varia-

tion, wave amplitude, the signal phase.



How to estimate the GW-signal emitted by an evolving system:
THE QUADRUPOLE FORMALISM

G = Mpw + Py |hw| <<1

in a suitable gauge Einstein’s equations become

_ . . _ 1
Ophu(t,2') = =K T, (t,2"),  hy = hy — inuyh.
where Op = [—c%g—; +V2] and K = IGC—ZG
Fourier-expand 7}, and BW
. +w . .
Tw(t,z') = / T (w, z")e ™" dw,

+o0o
BuV(tvl’i):/ B (w,2)e ™ dw,  i=1,3

[e.9]

Op and [ operators commute and the wave equation becomes

+oo +o00
/ Op [FLMV(W, ;pi)e_iwt} dw = —K/ TMV(W, xi)e—iwt dw,

[e.e]

ie. . 1. o . o
/ {VQ + g] Ry (w, 2")e ™" dw = —K/ Ty (w,z")e ™" dw,

o0

this equation can be solved for each assigned value of the frequency:

w?] + i i
{VZ + g] hy(w,2') = —KT,,(w, x")

SLOW-MOTION APPROXIMATION

We shall solve the wave equation
w?] - 4 :
{VQ + g] hy(w,z") = =KT,,(w, x")

assuming that the region where the source is confined
|z <, T, # 0,

2mc

is much smaller than the wavelenght of the emitted radiation Agy = =€,

— >> € — Ew<<c — v <<c
w



The wave equation will be solved inside and outside the source, and the two solutions will
be matched on the source boundary

Let us first integrate the equations OUTSIDE the source
2 w?] ; ;
|:V —|—§:| hu,,(w,:c)zo

In polar coordinates, the Laplacian operator is
10 0 1 0 0 1 02
2 2
S P Bl T 0—| 4+ —— =
v r2or {r 87“] * r2 sen 0 00 { e 80] * r2 sen 260 0¢?
The simplest solution does not depend on ¢ and ¢

— A v o) Z v
huu(w’r) — Mr(w) ezzr+ MT(W)

This solution represents a spherical wave, with an ingoing part (~ e~*<"), and an outgoing (
~ e part.

Since we are interested only in the wave emitted from the source, we set Z7,, = 0, and
the solution becomes

This is the solution outside the source, and on its boundary x = €

How do we find A4, (w)?

To answer this question we need to integrate the equations inside the source

INSIDE THE SOURCE

24 L] ) = ~K T ()

This equation can be solved for each assigned value of the indices p, v.

Let us integrate each term over the source volume V/

2
A) / {VQ + w—2] By (w, 2 d*z = —K/ Ty (w, 2" d*x
14 ¢ 14
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Ay e, Al w

=47 € [ - e L (Zﬁ) elc’} ~ =4t A, (w)
r r c e

neglecting all terms of order > €

/ V2 hy(w,2") &Pz ~ —dn A, (W)
1%

Eq. A) now becomes

2

—41 A (w) -|-/ w_2 huy(w,xi) P = —K/ Tuy(wuxi> d>x
v C 1%
4

w? - , w? -
/ =2 B (w, ") &z < =2 | Py | maa §7T63 negligible

The final solution inside the source gives

‘ 167G
—Ar A, (w) = —K/ Ty (w,2") dx K = Z
v c
K i 4G i
Aﬂl/(w) = E v Tm,(w,x ) dB.T = F v Tm,(w,:c ) dB.T
SUMMARIZING:
By integrating the wave equation outside the source we find
} A, »
hw/(u},T) I <w> eter

r

by integrating over the source volume we find

Ay (w) = %/V Ty (w,2") d°r,

C

therefore

ct r

_ 4 s ,
Py (w, ) = 16 ¢ /v Ty (w,z") dx,

or, in terms of the outgoing coordinate (t — %, x)

_ 4 .
huu(tar) = _G ’ /V Tuu(t - gaxl) dgxa

cAr




This integral can be further simplified

NOTE THAT:

1) We still have to project onto the TT-gauge

2) By this approach we obtain an order of magnitude estimate of the emitted ra-
diation

We shall now simplify the integral over 7}, in eq. (2).

We are in flat spacetime, therefore

0 10 0
—TH =0 iy o0 R k=13
oxr? T c ot oxk ’ '

Integrate over the source volume:

/ EQTW d3r = _/ iTuk B
v cot v Oxk ’

Apply Gauss’s theorem to the R.H.S.

0
—T" d’r = / T dS
/v Ok S '

where S is the surface which encloses V.

On S, T* =0, therefore / T dS, =0, and
S

1
Lo / T @3z =0,
Cat v

ie.
/ T B = const, — k" = const.
1%

Since we are interested in the time-dependent part of the field, we put
ROt 1) = hyo(t,r) = 0;

(this condition is automatically satisfied when transforming to the TT-gauge) To simplify the
space components of

_ 4 .
hie(t,r) = £ /V Tyt — E,x’) &z, ik=1,3

we shall use the Tensor-Virial Theorem



Tensor-Virial Theorem
Let us consider the space components of the conservation low

oTH 19T™  9T™
oxr? 0 = ) c Ot + or? 0, Eh ’

multiply 1) by z* and integrate over the volume

—Q/ 770 oF d;z:3:—/ a—xk dx?
cot Jy v 0x!

9 (Tm $k) 3 i 0" g dx* k
__[/v T _/VT au (6‘xf_5i)

= —/ (T"i :L‘k) dSi+/ Tk g
s

|4

as before, / (T"i xk) dS; = 0, therefore
S

1
—2/ T"Oxkd:p?’:/ T da®
cot Jy v

Since T™ is symmetric in n and k,

1
—2/ Tk g dx3:/ Tk da?
cot Jy v

and adding the two we get

10
——/ (T"O x4 THO x”) dz? :/ T da®.
2c0t Jy 1%

We shall now use the 0- component of the conservation low:
oT%" 17" o1%
= 2) - — =0
oxv 0 = ) c Ot i ox’

multiply 2) by 22" and integrate

1 oTY
—g T% 2k 2m da® = — .
C 8t 7 % axl

0 (TOi xk x") 3 Ok 4 ox™
S B S — T 22 ey 0l ke 2 3
[ /v o dx /v < py T+ x 6:701) dx

= —/ (TOi z* x") dS; +/ (TOk "+ T :L‘k) da?
S \%

2F 2" da?

as before, the first integral vanishes, and

10
——/ T gk gn dx?’:/ (TO”C a4+ T xk) dax®.
cot Jy v



Let us differenciate with respect to 2° = ct:

1 0%
—2—2/ T 2% 2" do® = ——/ (TOIC "+ T xk) dz?
C 8t v v

and since we just found

1o

20t /v (T"O x4 70 x") da?

I
=
S

S
B
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finally
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1
The quantity — / TOzkz"d2? is the Quadrupole Moment Tensor of the system
cJv

1 : ‘
¢ (t) = = / T(t, 2") 2% 2"dz? |, (3)
v

c2

and it is a function of time only. In conclusion

kn 7 3 1 d2 kn
and since e
MWtﬂz—;-/ T — L oty dBa,
clr v c

we finally find
R =0, uw=0,3
(4)

. °G [
W (t,7) = P {agg q

m@—?} k,n=1,3

This is the gravitational wave emitted by a mass-energy system evolving in time
NOTE THAT
1) C—CZI ~8-107 s/gem  GW are extremely weak!

2) We are not yet in the TT-gauge

3) these equations are derived on very strong assumptions: one is that T# , = 0,

i.e. the motion of the bodies is dominated by non-gravitational forces. However, and remark-
ably, the result depends only on the sources motion and not on the forces acting on them.
Gravitational radiation has a quadrupolar nature.



A system of accelerated charged particles has a time-varying dipole moment
dpym = Z 4T

and it will emit dipole radiation, the flux of which depends on the second time derivative of
dEM.
For an isolated system of masses we can define a gravitational dipole moment

de =) mif,

i
which satisfies the conservation law of the total momentum of an isolated system

d -
“d.=0.
dt ¢

For this reason, gravitational waves do not have a dipole contribution.

It should be stressed that for a spherical or axisymmetric distribution of matter (or en-
ergy) the quadrupole moment is a constant, even if the body is rotating: thus, a spherical or
axisymmetric star does not emit gravitational waves;
similarly, a star which collapses in a perfectly spherically symmetric way has a vanishing ¢*
and does not emit gravitational waves.

To produce waves we need a certain degree of asymmetry, as it occurs for instance
in the non-radial pulsations of stars, in a non spherical gravitational collapse, in
the coalescence of massive bodies etc.
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HOW TO SWITCH TO THE TT-GAUGE
R0 =0, nw=0,3

{dz q"(t - f)}

dt? c

Bik(t,r) = E .

. 1 ik
G ((t — 2)) == / TO((t — 2),;c") z* aFda’
C C \a C

we shall make an infinithesimal coordinate transformation
!
rH =zt 4+ e

which does not spoil the harmonic gauge condition g*” I'*,, = 0, i.e. choosing €" such that
Ope* = 0, and imposing that

i,k =1,3 vanishing trace

5zk hTTik — 07
trasverse wave condition

ni hTTik =0

where

3u
I
R RST]

is the unit vector normal to the wavefront.

How to do it:
As a first thing we define the operator which projects a vector onto the plane orthogonal to the

direction of 7i:
: (5)

ij = 5jk — njnk

P is symmetric, it is a projector, because

J
PPy = Py,

J
and it is transverse:
n’ P ik = 0.

Next, we define the transverse-traceless projector

ijmn = P]mPkn - %P]kpmn

which “extracts” the transverse-traceless part of a ( (2) ) tensor. We want to compute

hTTjk = (Ph>]k - ijlmhlm

It is easy to check that Pji, satisfies the following properties
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- it is a projector, i.e.
ijmannrs = Fjkrs
- it is transverse, i.e.
1 k m n .
njpjkmn =n ijmn =n ijmn =n ijmn = 07
- it is traceless, i.e.

8 Pitmn = 0" Pitmn = 0., (8)

It is worth mentioning that
hf]gT - 7Djkmnhmn - ijmnﬁmn >

indeed, since HW = hy, — %nlwh
hjr and hjy, differ only by the trace, which is projected out by P because of (8). By applying
the projector to h;;, given in eq. (4) we find

pTTH =0, p=0,3

— 2G [ d? ; r
hTT k(t,?‘) —_ E . % T k(t— _‘)

where ¢’7 ¥ is the quadrupole moment of the source projected in the TT-gauge, i.e. it is the
Transverse-Traceless quadrupole moment

Tr __
(Jij — 7Dijlm(ﬂm

Sometimes is useful to define the reduced quadrupole moment
1
Qij = qij — 3 0ij qkk

the trace of which is zero by definition, and consequently

TT
i = PijimQuim = PijimQim
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Waves emitted by a harmonic oscillator

We shall now compute the GW-radiation emitted by a harmonic oscillator composed of two
masses m, oscillating at a frequency w with amplitude A.

AY 1 :—%lo—Acoswt
Ty = +%l0 + Acoswt

Let us compute the quadrupole moment
qik(t) — CLQ fV TOO(Z‘/,CL‘") 7t ok da3

X T = 22: cp® 0(x —x,) 6(y) 0(2)
n=1
sincev<<ec¢, — y~1 — p’=mec, therefore
4 = Qe = 0_12/‘/ mic® §(x — 1) 2° dx §(y) dy 6(z) d=
+ C_IQ/V mac® 6(x — m9) 2 dr 6(y) dy 6(z) dz
= m [azf + x%} =m BZ(Q) + 2A%cos® wt + 2Al, cos wt

= m [cost + A% cos 2wt + 24l cos wt}

(cos2a = 2cos? a — 1)

1
@ = —2/ mic® §(x — x1) do y? 6(y) dy 6(2) dz
cJv
1
+ ?/ mac? 0(x — ) dr y* 5(y) dy §(2) d=
v
since / y? 6(y) dy =0, gy =0;
.

in a similar way, since the motion is confined on the z-axis, the remaining compo-
nents of ¢;; vanish.

We now want to compute the wave emerging in the z-direction
In this case 7 = = — (0,0,1) and

Pjx = 05 — njng =

o O =
o = O
o O O
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where

1
QﬁT(t) = Pijkimim(t) = (Pji Prm — §ijle)QZm(t) :

Since the only non-vanishing component of ¢;; is ¢,,, we find

1 1
qTTjk - (P]xpkx - _ijPxx> Qe = (P]xpkx - §P]k> Qe

2
therefore
(fﬂT:<RmRm %Ri)%x—%%r
¢y = (Pyl«Pym — % yy) oz = —%qm ;
Ty = (nyPyx %PW) Gor = 0

similarly, the remaining components ¢’” .., ¢’ " .., ¢’* ., can be shown to vanish The wave which
travels along z therefore is

G d? z
WAL g2 o (t — E)a

hTT
ctz

— —hTT

Trr

Since
Qez(t) =m0 [cost + A%cos 2wt + 2Al, cos wt}

the only non vanishing components of the wave traveling along 7z are

hTTxx — _hTTyy —
d2
g_ﬂz > [cost + A% cos 2w(t — %) +2Aly cos w(t — %)]
= _G4_m w? [4142 cos 2w(t — E) +2Aly cos w(t — E)}
ctz c c

If, for instance, we consider two masses m = 10% kg, with [y = 1m, A = 10~* m, and w = 10* Hz:

1 —35
RTT ~ —2G—m w? Aly cos w(t — E) 10

"
ct z c r

in conclusion
1) the radiation emitted along z is linearly polarized

2) because of symmetry, the wave emitted along y will be the same
3) to find the wave emitted along x, change

z—X, y—z XYy
you will find no radiation
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GW-emission by a binary system in circular orbit (far from coalescence)
orbital separation
total mass M = my +mo

ST reduced mass = mumz
\ m1 K M

) J ! *Let us consider a coordinate frame with origin coinci-
r2 ’ X .
‘ dent with the center of mass

m2
l0:T1+T2, rlml—i—'r’ng:O

The orbital frequency wy can be found from Kepler’s law: for each mass

Gm1m2 . 2 m2l0 Gm1m2 . 2 m1l0
5 =m; Wg , 3 = Mg Wk
i.e.
GM
WK — —l3
0
The equations of motion are
m m
11 = §2lo coswit Ty = =Sty coswil
_m : _ m .
y1 = G7lo sinwgt Yo = —rlo sinwgt
Let us compute
k() — 1 00(f ,nY i k.3
q¢*(t) == [, T, z") 2" 2"dx
where

T = Z mnc §(x — x,) §(y — yn) 6(2)

Qz: = Ty / §(z — x1) dz §(y — 1) dy 2° 6(2) d=
v

+ mo / §(z — x2) dx §(y — y2) dy 2° 6(2) dz =0,
v

since / 22 8(2) dz = 0.
v
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Qea = M1 225(x — 1) dx 6(y — 1) dy 8(2) dz

—

+ mo / 226(x — x9) dx §(y — ya) dy 6(2) dz
v

2 2
= mix] + Moy

= pul? cos® wit = g I3 cos2wit + cost

(cos2ac = 2 cos? a — 1). Computing the remaining components in a similar way, we find

ez = g I3 cos2wit + cost
Qyy = —g Z(Q) cos 2wkt + costl
QIy - g l(z) sin 2wKt .

therefore, the time-varying part of ¢;; is:

K 14 .
Qez = —Qyy = 5 lg cos 2wt Gy = 5 13 Sin 2wgt

waves are emitted at twice the orbital frequency.

z

Let us compute the wave emerging in the z-direction: 7 = = — (0,0,1) and

e}

ij = 5jk — n]-nk =

OO =
o = O
o O

RITHO — uw=20,3

4 2G [ d? : 2
TTik _ /= |12 ITik/y _ =
R ]

where .
qTTjk - ij’anmn - <ijpk’n - Epjkpmn> Amn

The non-vanishing components are ¢,,, q,, and ¢,,,

J 1

1 1 1
— (an:Pa:a: - §P§x) Qea — 5 xxPyyqyy = E (QII - ny)

1

1
qTTyy - (Pympyn - EPnymn) Qmn = _5 (qgca: - ny)

1
qTTa;y - (mePyn - §szpmn) qmn = PzzPyquy = Qxy



and the remaining components vanish.
The final result for the radiation emerging in the z-direction is

hTT#O — O, hTTzi — 0,
G &
T T
W= 0w = g e ),
2G d?
T _
e = G g e
and since
Oy = g I3 sin 2wit
G
AT = —hTTyy =-73 w12 (2wi)? cos 2wy (t — %)
G . z
hTTxy = w2 (2wi)? sin 2w (t — E) )

In conclusion
1) radiation is emitted at twice the orbital frequency
2) the wave along z has both polarizations

3) since A'T,, =ih™T,, the wave is circularly polarized
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A more general expression for the TT-wave.

Since
2wt sin 2wit 0
g —up ot oS 2w K
q ﬂqu ~2% COS 2w Qi = H 12 sin 2wrt —cos 2wrt 0
Goy = 5 lg sin2wit 2 0 0 0
If we define
cos 2wit  sin 2wit 0O
A = sin 2wgt —cos 2wkt 0 — qij = glﬁ Ay
0 0 0

In the T'T-gauge the wave is

2G 2G
T TT _ B
hij T A q;; = ot Pijrr Gr

4pMG? 7

2G p —
T 2 2 (P A =
hz’j = @ 5 lO (2&)}() [ ijkl kl] TZOCA‘

where we have used wy = \/GM/I3. Thus, the wave amplitude is (order of magnitude)

_ 4uMG? - m1mes

h() M:m1+m2.

)
rlyct my + me

and the general form for the TT-wave is

hiTjT = ho [Pijkl Akl]

ifA=% — Py=diag(1,1,0)

cos 2wit  sin 2wigt 0
AgT = sin 2wit —cos 2wit 0 ;
0 0 0

ifn=2 — P, =diag(0,1,1) the wave is linearly polarized:

0 0 0
AiTjT = 0 —%cos 2wt 0 :
0 0 %cos 2wt

ifn=9y — Pj=diag(1,0,1) the wave is linearly polarized:

%cos 2wt 0 0
Ag;-T = 0 0 0

0 0 —%COS 2wt
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Binary Pulsar PSR 1931416 (Taylor - Weisberg 1982)

Ly FROM OBSERVATIONS:
M1 ~ M2 ~ 1.4M®,
e T =Th 45m Ts,
) \\, Vi ~3.58-107° Hz
Fe lo = 0.19-10'2 e~ 2R,
|‘\ / I/ Il ;
s 0 ,I
O\R\___,/’ if we assume that the orbit is circular, (however, the
orbit is eccentric, € ~ 0.62), from the observed data we
find

vaw = 2Vi ~ 7.16 - 107° Hz |.

The distance of the system from Earth is
r=>5kpe, 1pc=3.08-10" em,— r=15-10" cm ,

the wave amplitude is

Ground-based and space-based interferometers are sensitive in the frequency regions:

LIGO[40 Hz —1 -2 kHz] LISA[10™*-10"'] Hz
VIRGO[10 Hz — 1 — 2 kHZ]

16-20 T L | T T T T T T T "'””E
LISA 1-yr observation
le-21 ¢
L=} C
(@)
<
(7]
o
<
- le-22 :
el '
S [
g - PSR1913+16
le-23 " 1
1e-24
0.0001 0.001 0.01 0.1 1

v[Hz]



Waves from PSR cannot be detected directly by current detectors.
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Let us check whether we are in the condition to apply the quadrupole formalism:

Circular orbit

—

C
Agw = —— ~ 10 em Aaw >>
vew

Yes we are!

GWs are emitted at twice the orbital frequency

If the orbit is elliptic, waves are emitted at frequencies multiple of the orbital frequency,
and the number of equally spaced spectral lines increases with ellipticity.

h 102

11

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

I PSR 1913+16 |
v, =3.6 10" Hz
N
0 2 4 6 8 10 12 14 16 18
n

For a detailed description:
Michele Maggiore, Gravitational waves, Vol. 1. Theory and experiments.

Press.
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New Binary Pulsar PSR J0737-3039 discovered in 2003.

Ay
my = 1337M®, mo ~ 1250M®,
e T = 2.4h, e =0.08

0 r = 500 pc lo ~1.2R;

> the orbit is nearly circular.

r2 X

me R p= "1 646 M,

my + Mo

4uMG?
hy = 2 ~1.1-1072
rlyct

and waves are emitted at the frequency

vew =2 vk =23-107* Hz

le-20 . . .
LISA 1-yr observation
PSRJ0737-3039
le-21 |
i)
o
<
n
o
£
- le-22
§e)
5
g PSR1913+16
le-23 =
le-24 el T —
0.0001 0.001 0.01 0.1 1

v[Hz]
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There are many other binaries LISA could detect:
Cataclismic variables:

semi-detached systems with small orbital period
primary star: white dwarf

secondary star: star filling the Roche lobe and accreting matter on the companion
emission frequency: few digits -10™* Hz,

h o~ [10722 — 1072

Double-degenerate binary systems (WD-WD, WD-NS)

Ultra-short period : < 10 minutes, vgw > 1073 s
Strong X-ray emitter

RXJ1914.44-2457

M1=0.5 Mg M2=0.1 M,

P=9.5 min
1e-20 p————rr L

Cat. Var. LISA 1-yr observation |
»

L, le21 RXJ1914.4+2457 E

2 RXJ0806.3+1527

5

o

£

= le22¢ E

IS ; "

‘g [

g + PSR1913+16 ]
le-23 E_‘ ;
le-24 : ' '

1e-04 0.001 0.01 0.1 1

v[Hz]

21
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THE ENERGY-MOMENTUM PSEUDOTENSOR

T™ of matter satisfies the (covariant) divergenceless equation
™., =0 (11)
We know it is not a conservation law, because it cannot be written as an ordinary divergence.

In a locally inertial frame (LIF): eq. (11) becomes

oTw
=0 12
oz ' (12)
this means that 7" can be written as:
0
T = ——ptve 13
axan ) ( )
where n#** is antisymmetricin » and «; INDEED
82 pro
n —0,
ox? 0x™

because the derivative operator is symmetric in v and «
We want to find the expression of n***: write Einstein egs.

., &G, , ct P
G" = " ™  — T =3C (R” —Eg“ R). (14)

In a LIF R* is:

RMV:lgMOéguﬁg’YS aQQ’Yﬁ 82ga5 . 82975 _ 82ga5
2 0x®0xd ~ 0x70x8  Ox20xB  Ox70xd )~

By replacing in eq. (14), T* becomes

9, ct 9,
T = e {167@ (—19) 5u7 L(-9) (99" - g“agyﬁ)]} (15)

The part within { } is antisymmetric in » and «, symmetricin g and v, and it is
the quantity n** we were looking for.

THY — inuua 77#1/0{ _ C4 1 6 [(_g) (g,uuga,ﬁ o g,uagz/ﬂ)}
oz ’ 167G (—g) 0z
Since in a LIF g, =0 we can extract (Tlg) and write this equation as
aé‘uua
—a\TH = 16
()T =% (16)
where
(= (=g = c 9 [(=9) (99" — g"*g"")] . (17)
167G 0x”

EQ. (16) has been derived in a locally inertial frame. In any other frame (—¢)7" will not
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equate 2 a — therefore, in a generic frame

ag,uz/a
— (—g)T™ # 0.
opa (9T #
We shall call this difference (—g)t"”, i.e.
8Cp1/(y
oV = 2 (T
(—9) o~ (79)
The quantities t*” are symmetric, because T"" and a(g;:l are symmetric in g and .

It follows that

g 0

_ T2 .
() (T 4 =T — o

[(=9) (T" + )] = 0,

this is
THE CONSERVATION LAW OF THE TOTAL ENERGY AND MOMENTUM OF MATTER
4+ GRAVITATIONAL FIELD VALID IN ANY REFERENCE FRAME.

ac;woz

—a) " — _
(—gpt = —

—g)T"".

If we express T" in terms of g,, and by using Einstein’s egs.

4
g =G e (R“” ;g‘“’R) .
C s

and eq. (17) it is possible to show that t** can be written as follows

4
= 16C7TG {20515 — D201 55 — D061 55) (g"*g"% — g g)
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This is the stress-energy pseudotensor of the gravitational field.
t* it is not a tensor because :

1) it is the ordinary derivative, (not the covariant one) of a tensor
2) it is a combination of the I'’s that are not tensors.

However, as the I's, it behaves as a tensor under a linear coordinate transformation.
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Let us consider an emitting source and the associated 3-dimensional coordinate frame O (z,y, 2).
Be an observer located at P = (x1,y1, 21) at a distance r = \/2} + y? + 22 from the origin.
The observer wants to detect the wave traveling along the direction identified by the versor

n= .
|7

Consider a second frame O’ (z/,y/, 2’), with origin coincident with O, and having the z’-axis
aligned with n. Assuming that the wave traveling along z’ is linearly polarized and has only
one polarization, the corresponding metric tensor will be

(t) (z) () (2)

-1 0 0 0

Guv = 0 1 0 0 )
0 0 [L+rl7(ta)] 0
0 0 0 [1— RET(t, 2)]

The observer wants to measure the energy which flows per unit time across the unit sur-
face orthogonal to z’, i.e. t%*'; therefore he needs to compute the Christoffel symbols i.e. the
derivatives of KT, The metric perturbation has the form A77 (t,2") = <2, f(t—Z) the only

xr
derivatives which come into play are those with respect to time and

On't BT _ const F

ot o
OnTT _ ,rr, __const i const N  lconst o _l}'LTT
or' B x’? ! c a B ’

where we have retained only the dominant 1/2" term. Thus, the non-vanishing Christoffel
symbols are:

0 — 0 _ 1 47TT Lo 2 Lrr
Fy/y/——F z’z’—§h+ Fyoy/——r OZ/—§h+
Iy = =17, =L BT7 DYy = 17y = — L BT
vy 2z = ge My y'z! 2! +
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from which we find

0z _ dEGW _ 02
~ dz%S 167G

(d hT;Et,x’))Ql |

Thus the energy flux is

dEqw ¢ d h™T(t,x')\?
dtdS 167G dt

In general, if both polarization are present

() (z) () (2)
-1 0 0 0
9uv = 0 1 0 0 s
0 0 [L+Arl"(t,2)] LT (t, 2")
0 0 RIT(t, ") [1—RrET(t, 2")]

2 2 7T\ 2
(00 _ c? dn’™” N dh’” _ c? Z dh
167G dt dt 321G m dt
¢ t° is the energy flowing across a unit surface orthogonal to the direction 2’ per unit time.
However, the direction 2’ is arbitrary; if the observer il located in a different position and

computes the energy flux he receives, he will find formally the same but with hJTkT referreed to
the TT-gauge associated with the new direction. Therefore, if we consider a generic direction

r=1rn ,
or_ & 3 dhiy (t,7)
327G m dt

Since in GR the energy of the gravitational field cannot be defined locally, to find the GW-flux
we need to average over several wavelenghts, i.e.

dEqw ¢ dntr\
_ or\ __ 7
Gag — >_32WG<%;< dt ) >

We shall now express the energy flux directly in terms of the source quadrupole moment. Since

hlg =0,  p=03

- 2G [ d? r
TT _ =/ 12 TT o
hik (ta T) - C4T |:dt2 4k (t C):|
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by direct substitution we find

dEqw c3 dntr ’ G TT 7\ 12
(2 () ) - (X [ 0-0)))

Jk J

et (3 [P (- 5)])-

J

From this formula we can compute the gravitational luminosity Leyy = 4Zeu.

dt
dEqw dEcw
L — d =
aw / dids ® / dids "

S dg@ (P (t_g>)2>.

To evaluate the integral over the solid angle it is convenient to replace the quadrupole moment
Gmn With the reduced quadrupole moment

1

Qij = {ij — g

we remind that, since its trace is zero by definition, we have

57‘,3' C]kk: ;

Pijllem = Fijimqim -
The GW luminosity becomes
G 1 r 2
Lew = —— [ d© (Pitnn@un (=) ) -
W90 4 / <§; PitannConn c

Let us compute the integral over the solid angle. By using the definitions (5) and (6) and the
properties of P, r we find

Z (ijanmn)Q = Z ijmn@mnpjkrs@rs =
jk jk

Z Pmnjkpjkrs anQrs = 7Dmnrs anQrs =

jk

|:<5m7“ a nmnr) <5ns - nnns) o % (5mn - nmnn> (57"5 - nrns> anQrs

If we expand this expression, and remember that

L (SanTn,n - 67‘8627‘5 - O

because the trace of ();; vanishes by definition, and

L TL?TLTLI‘énsQnLnQrs - TL?LTLS(S"LI‘QHULQ]*S
because ;; is symmetric, we find

Z (P]k‘anmn> - anan - 2nm7l7‘Qmstr + _nm7lﬂ,n7’nSanQrs M

jk 2
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and by replacing in the equation for Lgy,

a1
Law [

- ﬁﬂ dQ anan - 27lﬂl/n7’Qmstr + §7lﬂl,nn7lT7lstnQrs

The integrals to be calculated over the solid angle are:

e dQn;n;, and - dQninn,ns.
In polar coordinates, the versor n is
n; = (sin g cos ¢, sin ¥ sin ¢, cos 9). (18)

Thus, for parity reasons

1 1 T 2m
— /dQnmj = —/ dv sinﬁ/ dp nn; =0 when ¢ # j.
47T 47T 0 0

Furthermore, it is easy to show that
1 1 1 1
in dQn%:/dQTé:/dQngzg — E/d@nmj:§-5ij.

The second integral can be computed in a similar way and gives

1

1
E dQninjnrns - B (5ij57"s + 5i7"5js + 5’i85jT‘) .

Consequently

ﬁ f s (anan B Qnmémsésrnr + %nmnnnrnsémnérs>
g

50 (19)
5 ¥rnern

and, finally, the emitted power is

Law = dEd(t’W =5—Cj5< > Qp (t—g) Qs (t—£)> . (20)

jk=1,3

Equation (20) was first derived by Einstein. We shall now compute the GW-luminosity
of a binary system
We need to compute the reduced quadrupole moment

1

Qij = qij — 3 8ij q"k -
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For a circular orbit the time-varying part of ¢;; is:

cos 2wit sin 2wgt 0
g (t) = gl% Aii(t)| where A (t) = sin 2wgt —cos 2wkt 0
0 0 0

The trace of g;; is
¢k =" = Qe + 0y =0,
therefore, the time-varying part of @Q;;(t —r/c) is

COS 2Wictret sin 2wty 0

Qij = g lg Sin 2wgrtrer — COS 2wWitrer 0 ,
0 0 0
its third time-derivative is
Sin 2wWgtyer —cos 2wWitrer O a
Qi = # lg 8 w?( — oS 2Wrtrer —SIN 2wWrtrer O W = 3
b2 0 0 0 o

and

M3
Z Qi@ = 32 1” Iy wh = 32 p* G° =
ik 0

By substituting this expression in eq. (20) we find

Lo dEew 32 GNP’
W= a5 S

(21)

For the binary pulsar PSR 1913416 Lew = 0.7-10*" erg/s |
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Power radiated in gravitational waves by a binary system in circular orbit:

I o dEGW - 32 G4 IILQZW'S
W= 5 O I

This expression has to be considered as an average over several wavelenghts (or equivalently,
over a sufficiently large number of periods), as stated in eq. (20); therefore, in order Ly to be
defined, we must be in a regime where the orbital parameters do not change significantly over
the time interval taken to perform the average. This assumption is called adiabatic approx-
imation, and it is certainly applicable to systems like PSR 1913+16 or PSR J0737-3039 that
are very far from coalescence.

In the adiabatic regime, the system has the time to adjust the orbit to compensate the en-

ergy lost in gravitational waves with a change in the orbital energy, in such a way that

dEorb
dt

+ Lew = 0. (22)
Let us see what are the consequences of this equation.
The orbital energy of the binary is

Eory = Ex +U |

where the kinetic and the gravitational energy are, respectively,

1 1 1 mym2l2 mom?l?
Eir = amlwi T% + émgw% r% = éwf( M22 0 le 0
15, 5 1GuM
= — l = —
QWKN 0T,
and
Gm1m2 G/LM
U=-— = — .
lo lo
Therefore L Culd
Eorb = 3 a
2
and its time derivative is
dE, 1 M [/1dl 1dl
orb _ _G,LL - “to _ _Eorb - “to ) (23)
dt 2 lo dt lo dt

The term % can be expressed in terms of the time derivative of wg as follows

1 d 31dl
Wi = GMIg? — 2wy =InGM —31nly — —% =7
WK 0
and eq. (23) becomes
dEorb o 2 Eorb dwK

dt 3 wy dt

(24)

Since wyx = 27 P!
1 dwg 1dP

wg dt P dt
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and eq. (24) gives

dEymp 2 By dP dP 3 P dE.
dt 3 P dt dt 2 FE,p dt
Since by eq. (22) % = —Lgw we finally find how the orbital period changes due to the
emission of gravitational waves
P 3 P
— == L : 2
t 2 By W (26)

For example if we consider PSR 1913+16, assuming the orbit is circular we find
P = 27907 s, Eop ~ —1.4-10% erg, Lew ~ 0.7-10* erg/s

and

dP
— ~—22.1078,
dt

The orbit of the real system has a quite strong eccentricity ¢ ~ 0.617. If we would do the
calculations using the equations of motion appropriate for an eccentric orbit we would find

dP

— =-24-107%2

dt
PSR 1913416 has now been monitored for more than three decades and the rate of variation
of the period, measured with very high accuracy, is

dp
— = — (24184 £0.0009) - 107"

(J. M. Wisberg, J.H. Taylor Relativistic Binary Pulsar B1913+16: Thirty Years of Observa-
tions and Analysis, in Binary Radio Pulsars, ASP Conference series, 2004, eds. F.AA.Rasio,
[.H.Stairs).

Residual differences due to Doppler corrections, due to the relative velocity between us and the
pulsar induced by the differential rotation of the Galaxy.

Pcorrected

= 1.0013(21)

FPer

For the recently discovered double pulsar PSR J0737-3039
P = 8640 s, Eop ~ —2.55-10% erg, Lew ~ 2.24-10% erg/s

and P
— ~—12-10712
dt ’

which is also in agreement with observations. Thus, this prediction of General Relativity
is confirmed by observations. This result provided the first indirect evidence of the
existence of gravitational waves and for this discovery R.A. Hulse and J.H. Taylor
have been awarded of the Nobel prize in 1993.
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ORBITAL EVOLUTION

Knowing the energy lost by the system, we can also evaluate how the orbital separation [
changes in time. From eq. (23)

1 dly 1 dEgs
lo dt  E,p dt
rememebering that Lgw = 35—2 (j—; “2;5‘43, and E,p, = —%GZ)M , and that in the adiabatic
0
approximation % = —Law, we find
1 dly Low 1 di 64 G3 172 1
_— — = — —_— = — | — — . —
lo dt Eorb lo dt 5) P lé

Assuming that at some initial time ¢ = 0 the orbital separation is ly(t = 0) = [J* by integrating
this equation we easily find

256 &° . 256 GP
o = ) =20 S =)t 1 2 i e

If we define .

5o
coal — 256 G3 ,MMQ ;

the previous equation becomes

lo(t) = i [1— t ]1/4

teoal

which shows that the orbital separation decreases in time.

When t = t.,u the orbital separation becomes zero, and this is possible because we have
assumed that the bodies composing the binary system are pointlike. Of course, stars and black
holes have finite sizes, therefore they start merging and coalesce before t = t.,,;. In addition,
when the two stars are close enough, both the slow motion approximation and the weak field
assumption on which the quadrupole formalism relies fails to hold and strong field effects have
to be considered; however, t.,, gives an order of magnitude of the time the system needs to
merge starting from a given initial distance [J".
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WAVEFORM: AMPLITUDE AND PHASE

Since the orbital separation between the two bodies decrases with time as

‘ ;A
zo<t>=zs"{1— } |

tcoal

the Keplerian angular velocity wx = y/GM /I3 changes in time as

GM win . GM
B A L

t

teoal

Since in the adiabatic regime the orbit evolves through a sequence of stationary circular
orbits, the frequency of the emitted wave at some time ¢ is twice the orbital frequency at that
time, i.e.

e KL \/ﬁ ,
1 —
" tcoal“

Similarly, the instantaneous amplitude of the emitted signal can be found from eq. (9)

ApMG?
holt) = rlo(t)ct

since w? = GM/I3,

() — 4IU/MG2 LU?(/B,(t) . 4G5/3,U/M2/3 2/3t )
0()_ rct 'G1/3M1/3_ rct TWi ()7

if we now define the quantity M, called chirp mass,
M = M3 o M= 5 M2

and use the relation among wg and the wave frequency gy we find

B 42/3 GB/3 AMB/3 2/

ho(t) = Ay Ve (1)

The amplitude and the frequency of the gravitational signal emitted by a coalescing system
increases with time. For this reason this peculiar waveform is called chirp, like the chirp of a
singing bird



34

20

15

10

chirp
o

-10

-15

-20 -
retarded time

THE PHASE

According to eq. (10) the wave in the TT-gauge is

r

hi (t,r) = ho [PijklAkl<t -) 27)

where Ay is
cos 2wit sin 2wgt O

Ajj = sin 2wgt —cos 2wit 0
0 0 0

Since wy is a function of time, the phase appearing in Ay; has to be substituted by an integrated
phase

t t
O(t) = / 2wk (t)dt = / 2nvgw (t) dt + yy, where ®;, = ®(t = 0)

Since
U, t = — = —  —aia> % = — T 5
GW( ) T 1 ’ 3/8 GW T (lo m)3
|: a tcoal:|
and

P B8 )
coal — 256 G3 ,UMZ )

38 sjgy 1 A3 \8
iy 5 = (59%) —
Vaw Ceoal ( ) 8 (GM)




and vgw (t) can be written as

o 1 B3\ /8 5 3/8 |
vewll) = o \ Gm teoat —t]

consequently, the integrated phase becomes

C3 (tcoal - t) 5/8
B(t) = —2 | T \leeal 78 o,
®) { 5GM } + D

which shows that if we know the signal phase we can measure the chirp mass.

In conclusion, the signal emitted during the inspiralling will be

Am2/3 G5I3 AB/3 .
- v (t) | PojiAa(t — z)

TT __
hij” = 1
cr

where

cos d(t) sin P(t) 0
Aii(t) = sin ®(t) —cos ®(t) 0
0 0 0

35
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LIGO[40 Hz —1 -2 kHz] LISA[10™* - 10"'] Hz
VIRGO[10 Hz — 1 — 2 kHZ]

Let us consider 3 binary system
a) my =my = 1.4 My c) my =my = 10% M
b) m1:m2:10M®

Let us first calculate what is the orbital distance between the two bodies on the innermost
stable circular orbit (ISCO) and the corresponding emission frequency

6G M GM 1 GM
o ] B 1SCO _
A NC—Z’ WK = F =T Vow — Vgw T (%ST)S

(M is the total mass)

a) 1,150 = 24,8 km vew = 15704 Hz
b) [,9¢0 = 177,2 km vew = 219.8 Hz
c) [p19¢0 = 17.720.415,3 km vow =2.2-1073 Hz

a) and b) are interesting for LIGO and VIRGO,
c) will be detected by LISA
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Let us consider LIGO and VIRGO; we want to compute the time a given signal spends in

the detector bandwidth before coalescence.

From A 3/8

VGW(t> — VgLW tc0al

[tcoal - t]3/8
we get
in 8/3
t = teoal 1_<VGW) .
ng(t)

Putting :

vt = lowest frequency detectable by the antenna, and

e we find
LIGO VIRGO
a) (my =mp =14 Mg) [40 —1570.4 Hz] [10 —1570.4 kH Z]
At =24.86 s At =16.7m
b) (my =ms =10 M) [40 — 219.8 H2] (10 — 219.8 kH?|
At =093 s At =37.82 s

VIRGO catches the signal for a longer time.



Chirp at 100 Mpc

1620 —————— .
~__100-100 Mgy, BHs

o ' :
< 1e-21} . .
N s . ]
T
— 10-10 Mgy, BHs
=
S 1e-22} ,
g : \
—
> |
S 1e-23¢ :

c [
U) 1

" Visco ' Visco
1e-24 N oS S
© 100 1000
v[Hz]

Planned sensitivity curve for VIRGO+ and ADVANCED VIRGO

The plotted signal is the

strain amplitude = v*/*h(v) |

evaluated for the chirp.

Source located at a distance of 100 Mpc.

The chirp is only a part of the signal emitted during the binary coalescence.
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Black hole-black hole coalescence

Hybrid waveform at 100 Mpc

1620 — .
: 100-100 Mg, BHs

QI_|
< 1e-21} ]
N L
T
— 10-10 Mg, BHs
=
T'1e-22 ,
g : \
—
> |
S 1e-23¢ :

c [
U) 1

" Visco ' Visco
1e-24 SR £
© 100 1000
v[Hz]

This hybrid waveform is obtained by matching three signals:
1) chirp waveform for v < vrsco

2) waveform emitted during the merger phase of two black holes, obtained by numerical inte-
gration of Einstein’s equations.

3) waveform emitted after the final black hole is formed, due to ringdown oscillations.

P. Ajith et al., Phys. Rev. D 77, 104017 2008
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WHAT ABOUT LISA?

LISA [107* 107 Hz

18-205 T T T T T T T T T TTTTT
; LISA 1-yr observation
le-21 ¢
o :
o
<
0
o
=
c le-22 ¢
9 [
O
Q
g
le-23 e
le-24 e e
0.0001 0.001 0.01 0.1 1
v[Hz]

Let us consider 2 BH-BH binary systems

a) my = my = 102 My
b) myp = Mo = 106 M@

Orbital distance between the two bodies on the innermost stable circular orbit (ISCO) and
the corresponding emission frequency

6G M GM 1 GM
o B B ISCO _
W e wemy [T T vaw  vews = [ ooy

a) 115¢0 = 1772 km vaw = 21.98 Hz
b) 115C0 = 17.720.415,3 km vow = 221073 Hz

Time a given signal spends in the detector bandwidth before coalescence.

a) my = my = 10 M,
b) myp = Mo = ]_06 M@

t = tooal [1 - <VGI;;H(U> 8/3]



LISA

[107* — 107! HZ]
At = 556.885 years
107 —2.2-1073 HZ]

At =0,12 years =43 d 18 h 43m 24 s
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