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• Solving Einstein’s equations in the weak field, slow motion approximation.

• How to project the solution in the TT -gauge.

• A simple example: radiation emitted by a harmonic oscillator.

• Gravitational radiation emitted by a binary system in circular orbit.

• The Binary pulsar PSR 1931+16 and the double pulsar PSR J0737-3039.

• The gravitational wave energy flux.

• Gravitational wave luminosity of a binary system.

• Orbital evolution of a binary system due to gravitational wave emission: period varia-
tion, wave amplitude, the signal phase.
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How to estimate the GW-signal emitted by an evolving system:
THE QUADRUPOLE FORMALISM

gµν = ηµν + hµν |hµν | << 1

in a suitable gauge Einstein’s equations become

2F h̄µν(t, x
i) = −K Tµν(t, x

i), h̄µν = hµν −
1

2
ηµνh.

where 2F =
[

− 1
c2

∂2

∂t2
+ ∇2

]

and K = 16πG
c4

Fourier-expand Tµν and h̄µν

Tµν(t, x
i) =

∫ +∞

−∞

Tµν(ω, xi)e−iωt dω,

h̄µν(t, x
i) =

∫ +∞

−∞

h̄µν(ω, xi)e−iωt dω, i = 1, 3

2F and
∫

operators commute and the wave equation becomes

∫ +∞

−∞

2F

[

h̄µν(ω, xi)e−iωt
]

dω = −K

∫ +∞

−∞

Tµν(ω, xi)e−iωt dω,

i.e.
∫ +∞

−∞

[

∇2 +
ω2

c2

]

h̄µν(ω, xi)e−iωt dω = −K

∫ +∞

−∞

Tµν(ω, xi)e−iωt dω,

this equation can be solved for each assigned value of the frequency:

[

∇2 +
ω2

c2

]

h̄µν(ω, xi) = −KTµν(ω, xi)

SLOW-MOTION APPROXIMATION

We shall solve the wave equation

[

∇2 +
ω2

c2

]

h̄µν(ω, xi) = −KTµν(ω, xi)

assuming that the region where the source is confined

|xi| ≤ ǫǫǫ, Tµν 6= 0,

is much smaller than the wavelenght of the emitted radiation λGW = 2πc
ω

.

2πc

ω
>> ǫǫǫ → ǫǫǫ ω << c → v << c
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The wave equation will be solved inside and outside the source, and the two solutions will
be matched on the source boundary

Let us first integrate the equations OUTSIDE the source

[

∇2 +
ω2

c2

]

h̄µν(ω, xi) = 0

In polar coordinates, the Laplacian operator is

∇2 =
1

r2

∂

∂r

[

r2 ∂

∂r

]

+
1

r2 sen θ

∂

∂θ

[

sen θ
∂

∂θ

]

+
1

r2 sen 2θ

∂2

∂φ2

The simplest solution does not depend on φ and θ

h̄µν(ω, r) =
Aµν(ω)

r
ei ω

c
r +

Zµν(ω)

r
e−i ω

c
r,

This solution represents a spherical wave, with an ingoing part (∼ e−i ω
c

r), and an outgoing (
∼ ei ω

c
r) part.

Since we are interested only in the wave emitted from the source, we set Zµν = 0, and
the solution becomes

h̄µν(ω, r) =
Aµν(ω)

r
ei ω

c
r

This is the solution outside the source, and on its boundary x = ǫ

How do we find Aµν(ω)?

To answer this question we need to integrate the equations inside the source

INSIDE THE SOURCE
[

∇2 +
ω2

c2

]

h̄µν(ω, xi) = −KTµν(ω, xi) (1)

This equation can be solved for each assigned value of the indices µ, ν.

Let us integrate each term over the source volume V

A)

∫

V

[

∇2 +
ω2

c2

]

h̄µν(ω, xi)d3x = −K

∫

V

Tµν(ω, xi)d3x
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1)

∫

V

∇2 h̄µν d3x =

∫

V

div[~∇ h̄µν ] d3x

=

∫

S

[

~∇ h̄µν

]k

dSk ≃ 4π ǫǫǫ2

(

d

dr
h̄µν

)

r=ǫǫǫ

= 4π ǫǫǫ2

(

d

dr

Aµν(ω)

r
ei ω

c
r

)

r=ǫǫǫ

= 4π ǫǫǫ2

[

−
Aµν

r2
ei ω

c
r +

Aµν

r

(

iω

c

)

ei ω
c

r

]

r=ǫǫǫ
∼ −4π Aµν(ω)

neglecting all terms of order ≥ ǫǫǫ
∫

V

∇2 h̄µν(ω, xi) d3x ≃ − 4π Aµν(ω)

Eq. A) now becomes

−4π Aµν(ω) +

∫

V

ω2

c2
h̄µν(ω, xi) d3x = −K

∫

V

Tµν(ω, xi) d3x

∫

V

ω2

c2
h̄µν(ω, xi) d3x .

ω2

c2
|h̄µν |max

4

3
πǫǫǫ3 negligible

The final solution inside the source gives

−4πAµν(ω) = −K

∫

V

Tµν(ω, xi) d3x K =
16πG

c4

Aµν(ω) =
K

4π

∫

V

Tµν(ω, xi) d3x =
4G

c4

∫

V

Tµν(ω, xi) d3x

SUMMARIZING:
By integrating the wave equation outside the source we find

h̄µν(ω, r) =
Aµν(ω)

r
ei ω

c
r

by integrating over the source volume we find

Aµν(ω) =
4G

c4

∫

V

Tµν(ω, xi) d3x,

therefore

h̄µν(ω, r) =
4G

c4
·
eiω r

c

r

∫

V

Tµν(ω, xi) d3x,

or, in terms of the outgoing coordinate (t− r

c
,xi)

h̄µν(t, r) =
4G

c4r
·

∫

V

Tµν(t −
r

c
, xi) d3x, . (2)
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This integral can be further simplified
NOTE THAT:
1) We still have to project onto the TT-gauge
2) By this approach we obtain an order of magnitude estimate of the emitted ra-
diation

We shall now simplify the integral over Tµν in eq. (2).

We are in flat spacetime, therefore

∂

∂xν
T µν = 0, →

1

c

∂

∂t
T µ0 = −

∂

∂xk
T µk, k = 1, 3

Integrate over the source volume:

∫

V

1

c

∂

∂t
T µ0 d3x = −

∫

V

∂

∂xk
T µk d3x;

Apply Gauss’s theorem to the R.H.S.

∫

V

∂

∂xk
T µk d3x =

∫

S

T µk dSk

where S is the surface which encloses V .

On S, T µν = 0, therefore

∫

S

T µk dSk = 0, and

1

c

∂

∂t

∫

V

T µ0 d3x = 0,

i.e.
∫

V

T µ0 d3x = const, → h̄µ0 = const.

Since we are interested in the time-dependent part of the field, we put

h̄µ0(t, r) = h̄µ0(t, r) = 0;

(this condition is automatically satisfied when transforming to the TT-gauge) To simplify the
space components of h̄µν :

h̄ik(t, r) =
4G

c4r

∫

V

Tik(t −
r

c
, xi) d3x, i, k = 1, 3

we shall use the Tensor-Virial Theorem
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Tensor-Virial Theorem
Let us consider the space components of the conservation low

∂T µν

∂xν
= 0 → 1)

1

c

∂T n0

∂t
+

∂T ni

∂xi
= 0, n, i = 1, 3

multiply 1) by xk and integrate over the volume

1

c

∂

∂t

∫

V

T n0 xk dx3 = −

∫

V

∂T ni

∂xi
xk dx3

= −

[

∫

V

∂
(

T ni xk
)

∂xi
dx3 −

∫

V

T ni ∂xk

∂xi
dx3

]

(

∂xk

∂xi
= δk

i

)

= −

∫

S

(

T ni xk
)

dSi +

∫

V

T nk dx3

as before,

∫

S

(

T ni xk
)

dSi = 0, therefore

1

c

∂

∂t

∫

V

T n0 xk dx3 =

∫

V

T nk dx3

Since T nk is symmetric in n and k,

1

c

∂

∂t

∫

V

T k0 xn dx3 =

∫

V

T kn dx3

and adding the two we get

1

2c

∂

∂t

∫

V

(

T n0 xk + T k0 xn
)

dx3 =

∫

V

T nk dx3.

We shall now use the 0- component of the conservation low:

∂T 0ν

∂xν
= 0 → 2)

1

c

∂T 00

∂t
+

∂T 0i

∂xi
= 0

multiply 2) by xkxn and integrate

1

c

∂

∂t

∫

V

T 00 xk xn dx3 = −

∫

V

∂T 0i

∂xi
xk xn dx3

= −

[

∫

V

∂
(

T 0i xk xn
)

∂xi
dx3 −

∫

V

(

T 0i ∂xk

∂xi
xn + T 0i xk ∂xn

∂xi

)

dx3

]

= −

∫

S

(

T 0i xk xn
)

dSi +

∫

V

(

T 0k xn + T 0n xk
)

dx3

as before, the first integral vanishes, and

1

c

∂

∂t

∫

V

T 00 xk xn dx3 =

∫

V

(

T 0k xn + T 0n xk
)

dx3.



8

Let us differenciate with respect to x0 = ct:

1

c2

∂2

∂t2

∫

V

T 00 xk xn dx3 =
1

c

∂

∂t

∫

V

(

T 0k xn + T 0n xk
)

dx3

and since we just found

1

2c

∂

∂t

∫

V

(

T n0 xk + T k0 xn
)

dx3 =

∫

V

T nk dx3,

finally
******************************************************************

2

∫

V

T kn dx3 =
1

c2

∂2

∂t2

∫

V

T 00 xk xn dx3

******************************************************************

The quantity
1

c2

∫

V

T 00xkxndx3 is the Quadrupole Moment Tensor of the system

qkn(t) =
1

c2

∫

V

T 00(t, xi) xk xndx3 , (3)

and it is a function of time only. In conclusion

∫

V

T kn(t, xi) dx3 =
1

2

d2

dt2
qkn(t)

and since

h̄kn(t, r) =
4G

c4r
·

∫

V

T kn(t −
r

c
, xi) d3x,

we finally find



















h̄µ0 = 0, µ = 0, 3

h̄kn(t, r) =
2G

c4r
·

[

d2

dt2
qkn(t −

r

c
)

]

, k, n = 1, 3

(4)

This is the gravitational wave emitted by a mass-energy system evolving in time
NOTE THAT
1) G

c4 ∼ 8 · 10−50 s/g cm GW are extremely weak!

2) We are not yet in the TT-gauge

3) these equations are derived on very strong assumptions: one is that Tµν
,ν = 0,

i.e. the motion of the bodies is dominated by non-gravitational forces. However, and remark-
ably, the result depends only on the sources motion and not on the forces acting on them.
Gravitational radiation has a quadrupolar nature.
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A system of accelerated charged particles has a time-varying dipole moment

~dEM =
∑

i

qi~ri

and it will emit dipole radiation, the flux of which depends on the second time derivative of
~dEM .
For an isolated system of masses we can define a gravitational dipole moment

~dG =
∑

i

mi~ri,

which satisfies the conservation law of the total momentum of an isolated system

d

dt
~dG = 0.

For this reason, gravitational waves do not have a dipole contribution.

It should be stressed that for a spherical or axisymmetric distribution of matter (or en-
ergy) the quadrupole moment is a constant, even if the body is rotating: thus, a spherical or
axisymmetric star does not emit gravitational waves;
similarly, a star which collapses in a perfectly spherically symmetric way has a vanishing qik

and does not emit gravitational waves.
To produce waves we need a certain degree of asymmetry, as it occurs for instance
in the non-radial pulsations of stars, in a non spherical gravitational collapse, in
the coalescence of massive bodies etc.
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HOW TO SWITCH TO THE TT-GAUGE



















h̄µ0 = 0, µ = 0, 3

h̄ik(t, r) =
2G

c4r
·

[

d2

dt2
qik(t −

r

c
)

]

qik((t −
r

c
)) =

1

c2

∫

V

T 00((t −
r

c
), xn) xi xkdx3

we shall make an infinithesimal coordinate transformation
x

′µ = xµ + ǫǫǫµ

which does not spoil the harmonic gauge condition gµν Γλ
µν = 0, i.e. choosing ǫǫǫµ such that

2F ǫǫǫµ = 0, and imposing that

δik hTT
ik = 0, i, k = 1, 3 vanishing trace

ni hTT
ik = 0 trasverse wave condition

where

~n =
~x

r

is the unit vector normal to the wavefront.

How to do it:
As a first thing we define the operator which projects a vector onto the plane orthogonal to the
direction of ~n:

Pjk ≡ δjk − njnk . (5)

Pjk is symmetric, it is a projector, because

PjkPkl = Pjl ,

and it is transverse:
njPjk = 0.

Next, we define the transverse-traceless projector

Pjkmn ≡ PjmPkn − 1
2
PjkPmn , (6)

which “extracts” the transverse-traceless part of a

(

0
2

)

tensor. We want to compute

hTT
jk = (Ph)jk = Pjklmhlm . (7)

It is easy to check that Pjkmn satisfies the following properties
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- it is a projector, i.e.
PjkmnPmnrs = Pjkrs ;

- it is transverse, i.e.

njPjkmn = nkPjkmn = nmPjkmn = nnPjkmn = 0 ;

- it is traceless, i.e.
δjkPjkmn = δmnPjkmn = 0 . (8)

It is worth mentioning that

hTT
jk = Pjkmnhmn = Pjkmnh̄mn ,

indeed, since h̄µν = hµν −
1
2
ηµνh

hjk and h̄jk differ only by the trace, which is projected out by P because of (8). By applying
the projector to h̄jk given in eq. (4) we find



















h̄TT µ0 = 0, µ = 0, 3

h̄TT ik(t, r) =
2G

c4r
·

[

d2

dt2
qTT ik(t −

r

c
)

]

where qTT ij is the quadrupole moment of the source projected in the TT-gauge, i.e. it is the
Transverse-Traceless quadrupole moment

qTT
ij = Pijlmqlm

Sometimes is useful to define the reduced quadrupole moment

Qij = qij −
1

3
δij qk

k

the trace of which is zero by definition, and consequently

QTT
ij = PijlmQlm = Pijlmqlm
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Waves emitted by a harmonic oscillator

We shall now compute the GW-radiation emitted by a harmonic oscillator composed of two
masses m, oscillating at a frequency ω with amplitude A.

z

x

y
{

x1 = −1
2
l0 − A cos ωt

x2 = +1
2
l0 + A cos ωt

Let us compute the quadrupole moment
qik(t) = 1

c2

∫

V
T 00(t, xn) xi xkdx3

T 00 =

2
∑

n=1

cp0 δ(x − xn) δ(y) δ(z)

since v << c, → γ ∼ 1 → p0 = mc, therefore

qxx = qxx =
1

c2

∫

V

m1c
2 δ(x − x1) x2 dx δ(y) dy δ(z) dz

+
1

c2

∫

V

m2c
2 δ(x − x2) x2 dx δ(y) dy δ(z) dz

= m
[

x2
1 + x2

2

]

= m

[

1

2
l20 + 2A2cos2 ωt + 2Al0 cos ωt

]

= m
[

cost + A2 cos 2ωt + 2Al0 cos ωt
]

(cos2α = 2 cos2 α − 1)

qyy =
1

c2

∫

V

m1c
2 δ(x − x1) dx y2 δ(y) dy δ(z) dz

+
1

c2

∫

V

m2c
2 δ(x − x2) dx y2 δ(y) dy δ(z) dz

since

∫

V

y2 δ(y) dy = 0, qyy = 0;

in a similar way, since the motion is confined on the x-axis, the remaining compo-
nents of qij vanish.

We now want to compute the wave emerging in the z-direction
In this case ~n = ~x

r
→ (0, 0, 1) and

Pjk = δjk − njnk =





1 0 0
0 1 0
0 0 0























h̄TT
µ0 = 0, µ = 0, 3

h̄TT
jk(t, z) =

2G

c4z
·

[

d2

dt2
qTT
jk (t −

z

c
)

]
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where

qTT
jk (t) = Pjklmqlm(t) = (PjlPkm −

1

2
PjkPlm)qlm(t) .

Since the only non-vanishing component of qij is qxx, we find

qTT
jk =

(

PjxPkx −
1

2
PjkPxx

)

qxx =

(

PjxPkx −
1

2
Pjk

)

qxx

therefore

qTT
xx =

(

PxxPxx −
1

2
P 2

xx

)

qxx =
1

2
qxx

qTT
yy =

(

PyxPyx −
1

2
Pyy

)

qxx = −
1

2
qxx ;

qTT
xy =

(

PxyPyx −
1

2
Pxy

)

qxx = 0

similarly, the remaining components qTT
zz, q

TT
zx, q

TT
zy can be shown to vanish The wave which

travels along z therefore is



























hTT
µ0 = 0, hTT

xy = 0, hTT
zi = 0,

hTT
xx = −hTT

yy =
G

c4z

d2

dt2
qxx(t −

z

c
),

Since
qxx(t) = m

[

cost + A2cos 2ωt + 2Al0 cos ωt
]

the only non vanishing components of the wave traveling along z are

hTT
xx = −hTT

yy =

Gm

c4 z
·

d2

dt2

[

cost + A2 cos 2ω(t−
z

c
) + 2Al0 cos ω(t −

z

c
)
]

= −
Gm

c4z
ω2
[

4A2 cos 2ω(t−
z

c
) + 2Al0 cos ω(t −

z

c
)
]

If, for instance, we consider two masses m = 103 kg, with l0 = 1 m, A = 10−4 m, and ω = 104 Hz:

hTT ∼ −2
Gm

c4 z
ω2 Al0 cos ω(t −

z

c
) ∼

10−35

r
!!!

in conclusion
1) the radiation emitted along z is linearly polarized

2) because of symmetry, the wave emitted along y will be the same

3) to find the wave emitted along x, change
z → x, y → z, x → y

you will find no radiation
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GW-emission by a binary system in circular orbit (far from coalescence)

orbital separation l0

����
����
����

����
����
����

y

r1

r2

m1

m2

x

total mass M ≡ m1 + m2

reduced mass µ ≡ m1m2

M
.

Let us consider a coordinate frame with origin coinci-
dent with the center of mass

l0 = r1 + r2, r1m1 + r2m2 = 0

r1 =
m2l0
M

, r2 =
m1l0
M

.

The orbital frequency ωK can be found from Kepler’s law: for each mass

G
m1m2

l20
= m1 ωK

2 m2l0
M

, G
m1m2

l20
= m2 ωK

2 m1l0
M

i.e.

ωK =

√

GM

l30

The equations of motion are











x1 = m2

M
l0 cos ωKt

y1 = m2

M
l0 sin ωKt











x2 = −m1

M
l0 cos ωKt

y2 = −m1

M
l0 sin ωKt

Let us compute

qik(t) = 1
c2

∫

V
T 00(t, xn) xi xkdx3

where

T 00 =
2
∑

n=1

mnc
2 δ(x − xn) δ(y − yn) δ(z)

qzz = m1

∫

V

δ(x − x1) dx δ(y − y1) dy z2 δ(z) dz

+ m2

∫

V

δ(x − x2) dx δ(y − y2) dy z2 δ(z) dz = 0,

since

∫

V

z2 δ(z) dz = 0.
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qxx = m1

∫

V

x2δ(x − x1) dx δ(y − y1) dy δ(z) dz

+ m2

∫

V

x2δ(x − x2) dx δ(y − y2) dy δ(z) dz

= m1x
2
1 + m2x

2
2

= µ l20 cos2 ωKt =
µ

2
l20 cos 2ωKt + cost

(cos 2α = 2 cos2 α − 1). Computing the remaining components in a similar way, we find

qxx =
µ

2
l20 cos 2ωKt + cost

qyy = −
µ

2
l20 cos 2ωKt + cost1

qxy =
µ

2
l20 sin 2ωKt .

therefore, the time-varying part of qij is:

qxx = −qyy =
µ

2
l20 cos 2ωKt qxy =

µ

2
l20 sin 2ωKt

waves are emitted at twice the orbital frequency.

Let us compute the wave emerging in the z-direction: ~n = ~x
r
→ (0, 0, 1) and

Pjk = δjk − njnk =





1 0 0
0 1 0
0 0 0























hTT µ0 = 0, µ = 0, 3

hTT ik(t, z) =
2G

c4z
·

[

d2

dt2
qTT ik(t −

z

c
)

]

where

qTT
jk = Pjkmnqmn =

(

PjmPkn −
1

2
PjkPmn

)

qmn

The non-vanishing components are qxx, qyy and qxy,

qTT
xx =

(

PxmPxn −
1

2
PxxPmn

)

qmn

=

(

PxxPxx −
1

2
P 2

xx

)

qxx −
1

2
PxxPyyqyy =

1

2
(qxx − qyy)

qTT
yy =

(

PymPyn −
1

2
PyyPmn

)

qmn = −
1

2
(qxx − qyy)

qTT
xy =

(

PxmPyn −
1

2
PxyPmn

)

qmn = PxxPyyqxy = qxy
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and the remaining components vanish.
The final result for the radiation emerging in the z-direction is



















hTT
µ0 = 0, hTT

zi = 0,

hTT
xx = −hTT

yy =
G

c4z

d2

dt2
(qxx − qyy),

hTT
xy =

2G

c4z

d2

dt2
qxy

and since

qxx = −qyy =
µ

2
l20 cos 2ωKt

qxy =
µ

2
l20 sin 2ωKt

hTT
xx = −hTT

yy = −
G

c4 z
µ l20 (2ωK)2 cos 2ωK(t −

z

c
)

hTT
xy = −

G

c4 z
µ l20 (2ωK)2 sin 2ωK(t −

z

c
) .

In conclusion

1) radiation is emitted at twice the orbital frequency

2) the wave along z has both polarizations

3) since hTT
xx = ihTT

xy the wave is circularly polarized
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A more general expression for the TT -wave.
Since

{

qxx = −qyy = µ
2

l20 cos 2ωKt

qxy = µ
2

l20 sin 2ωKt
, qij =

µ

2
l20





cos 2ωKt sin 2ωKt 0
sin 2ωKt − cos 2ωKt 0

0 0 0





If we define

Aij =





cos 2ωKt sin 2ωKt 0
sin 2ωKt − cos 2ωKt 0

0 0 0



 −→ qij =
µ

2
l20 Aij .

In the TT -gauge the wave is

hTT
ij =

2G

rc4
q̈TT
ij ≡

2G

rc4
Pijkl qkl

hTT
ij =

2G

rc4

µ

2
l20 (2ωK)2 [Pijkl Akl] ≡

4µMG2

rl0c4
ATT

kl

where we have used ωK =
√

GM/l30. Thus, the wave amplitude is (order of magnitude)

h0 =
4µMG2

rl0c4
, µ =

m1m2

m1 + m2

, M = m1 + m2 . (9)

and the general form for the TT -wave is

hTT
ij = h0 [Pijkl Akl] . (10)

if n̂ = ẑ → Pij = diag(1, 1, 0)

ATT
ij =





cos 2ωKt sin 2ωKt 0
sin 2ωKt −cos 2ωKt 0

0 0 0



 ;

if n̂ = x̂ → Pij = diag(0, 1, 1) the wave is linearly polarized:

ATT
ij =





0 0 0
0 −1

2
cos 2ωKt 0

0 0 1
2
cos 2ωKt



 ;

if n̂ = ŷ → Pij = diag(1, 0, 1) the wave is linearly polarized:

ATT
ij =





1
2
cos 2ωKt 0 0

0 0 0
0 0 −1

2
cos 2ωKt



 .
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Binary Pulsar PSR 1931+16 (Taylor - Weisberg 1982)

FROM OBSERVATIONS:y

l0
x

M1 ∼ M2 ∼ 1.4M⊙,

T = 7h 45m 7s,

νK ∼ 3.58 · 10−5 Hz

l0 = 0.19 · 1012 cm≃ 2R⊙

if we assume that the orbit is circular, (however, the
orbit is eccentric, ǫ ≃ 0.62), from the observed data we
find

νGW = 2νK ∼ 7.16 · 10−5 Hz .

The distance of the system from Earth is

r = 5 kpc, 1 pc = 3.08 · 1018 cm,→ r = 1.5 · 1022 cm ,

the wave amplitude is

h0 =
4µMG2

rl0c4
∼ 6 · 10−23 .

Ground-based and space-based interferometers are sensitive in the frequency regions:

LIGO[40 Hz− 1 − 2 kHz] LISA[10−4 − 10−1] Hz

VIRGO[10 Hz− 1 − 2 kHz]
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LISA 1-yr observation
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Waves from PSR cannot be detected directly by current detectors.

Let us check whether we are in the condition to apply the quadrupole formalism:

λGW =
c

νGW
∼ 1014 cm λGW >> l0

Yes we are!

Circular orbit → GWs are emitted at twice the orbital frequency

If the orbit is elliptic, waves are emitted at frequencies multiple of the orbital frequency,
and the number of equally spaced spectral lines increases with ellipticity.

0
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1

1.1
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n

h
c
10

23

PSR 1913+16

ν
k
=3.6 10

-5
 Hz

For a detailed description:
Michele Maggiore, Gravitational waves, Vol. I: Theory and experiments. Oxfor University
Press.
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New Binary Pulsar PSR J0737-3039 discovered in 2003.

����
����
����

����
����
����

y

r1

r2

m1

m2

x

m1 = 1.337M⊙, m2 ∼ 1.250M⊙,

T = 2.4h, e = 0.08

r = 500 pc l0 ∼ 1.2R⊙

the orbit is nearly circular.

µ =
m1m2

m1 + m2
= 0.646M⊙

h0 =
4µMG2

rl0c4
∼ 1.1 · 10−21

and waves are emitted at the frequency

νGW = 2 νK = 2.3 · 10−4 Hz
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There are many other binaries LISA could detect:

Cataclismic variables:

semi-detached systems with small orbital period
primary star: white dwarf
secondary star: star filling the Roche lobe and accreting matter on the companion

emission frequency: few digits ·10−4 Hz,
h ∼ [10−22 − 10−21]

Double-degenerate binary systems (WD-WD, WD-NS)

Ultra-short period : < 10 minutes, νGW > 10−3 s
Strong X-ray emitter

RXJ1914.4+2457
M1=0.5 M⊙ M2=0.1 M⊙

P=9.5 min
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THE ENERGY-MOMENTUM PSEUDOTENSOR
T µν of matter satisfies the (covariant) divergenceless equation

T µν
;ν = 0 (11)

We know it is not a conservation law, because it cannot be written as an ordinary divergence.

In a locally inertial frame (LIF): eq. (11) becomes

∂T µν

∂xν
= 0, (12)

this means that T µν can be written as:

T µν =
∂

∂xα
ηµνα, (13)

where ηµνα is antisymmetric in ν and α; INDEED

∂2ηµνα

∂xν∂xα
= 0,

because the derivative operator is symmetric in ν and α
We want to find the expression of ηµνα: write Einstein eqs.

Gµν =
8πG

c4
T µν −→ T µν =

c4

8πG

(

Rµν −
1

2
gµνR

)

. (14)

In a LIF Rµν is:

Rµν =
1

2
gµαgνβgγδ

(

∂2gγβ

∂xα∂xδ
+

∂2gαδ

∂xγ∂xβ
−

∂2gγδ

∂xα∂xβ
−

∂2gαβ

∂xγ∂xδ

)

.

By replacing in eq. (14), T µν becomes

T µν =
∂

∂xα

{

c4

16πG

1

(−g)

∂

∂xβ

[

(−g)
(

gµνgαβ − gµαgνβ
)]

}

(15)

The part within { } is antisymmetric in ν and α, symmetric in µ and ν, and it is
the quantity ηµνα we were looking for.

T µν =
∂

∂xα
ηµνα, ηµνα =

{

c4

16πG

1

(−g)

∂

∂xβ

[

(−g)
(

gµνgαβ − gµαgνβ
)]

}

Since in a LIF gµν,α = 0 we can extract 1
(−g)

and write this equation as

(−g)T µν =
∂ζµνα

∂xα
, (16)

where

ζµνα = (−g)ηµνα =
c4

16πG

∂

∂xβ

[

(−g)
(

gµνgαβ − gµαgνβ
)]

. (17)

EQ. (16) has been derived in a locally inertial frame. In any other frame (−g)T µν will not
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equate ∂ζµνα

∂xα , therefore, in a generic frame

∂ζµνα

∂xα
− (−g)T µν 6= 0.

We shall call this difference (−g)tµν , i.e.

(−g)tµν =
∂ζµνα

∂xα
− (−g)T µν .

The quantities tµν are symmetric, because T µν and ∂ζµνα

∂xα are symmetric in µ and ν.
It follows that

(−g) (T µν + tµν) =
∂ζµνα

∂xα,
−→

∂

∂xν
[(−g) (T µν + tµν)] = 0,

this is
THE CONSERVATION LAW OF THE TOTAL ENERGY AND MOMENTUM OF MATTER
+ GRAVITATIONAL FIELD VALID IN ANY REFERENCE FRAME.

(−g)tµν =
∂ζµνα

∂xα
− (−g)T µν .

If we express T µν in terms of gµν and by using Einstein’s eqs.

Gµν =
8πG

c4
T µν −→ T µν =

c4

8πG

(

Rµν −
1

2
gµνR

)

.

and eq. (17) it is possible to show that tµν can be written as follows

tµν =
c4

16πG

{(

2Γδ
αβΓσ

δσ − Γδ
ασΓσ

βδ − Γδ
αδΓ

σ
βσ

) (

gµαgνβ − gµνgαβ
)

+ gµαgβδ (Γν
ασΓσ

βδ + Γν
βδΓ

σ
ασ − Γν

δσΓσ
αβ − Γν

αβΓσ
δσ)

+ gναgβδ (Γµ
ασΓσ

βδ + Γµ
βδΓ

σ
ασ − Γµ

δσΓσ
αβ − Γµ

αβΓσ
δσ)

+ gαβgδσ (Γµ
αδΓ

ν
βσ − Γµ

αβΓν
δσ)
}

This is the stress-energy pseudotensor of the gravitational field.

tµν it is not a tensor because :

1) it is the ordinary derivative, (not the covariant one) of a tensor

2) it is a combination of the Γ’s that are not tensors.

However, as the Γ’s, it behaves as a tensor under a linear coordinate transformation.
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Let us consider an emitting source and the associated 3-dimensional coordinate frame O (x, y, z).
Be an observer located at P = (x1, y1, z1) at a distance r =

√

x2
1 + y2

1 + z2
1 from the origin.

The observer wants to detect the wave traveling along the direction identified by the versor
n = r

|r|
.

���
���
���

���
���
���

��
��
��

��
��
��

yy’
x’

x
z

z’

n

P

O

Consider a second frame O′ (x′, y′, z′), with origin coincident with O, and having the x′-axis
aligned with n. Assuming that the wave traveling along x′ is linearly polarized and has only
one polarization, the corresponding metric tensor will be

gµ′ν′ =













(t) (x) (y) (z)
−1 0 0 0
0 1 0 0
0 0 [1 + hTT

+ (t, x′)] 0
0 0 0 [1 − hTT

+ (t, x′)]













,

The observer wants to measure the energy which flows per unit time across the unit sur-
face orthogonal to x′, i.e. t0x′

; therefore he needs to compute the Christoffel symbols i.e. the
derivatives of hTT

µ′ν′. The metric perturbation has the form hTT (t, x′) = const
x′

· f(t− x′

c
), the only

derivatives which come into play are those with respect to time and x′

∂hTT

∂t
≡ ḣTT =

const

x′
ḟ ,

∂hTT

∂x′
≡ hTT ′ = −

const

x′2
f +

const

x′
f ′ ∼ −

1

c

const

x′
ḟ = −

1

c
ḣTT ,

where we have retained only the dominant 1/x′ term. Thus, the non-vanishing Christoffel
symbols are:

Γ0
y′y′ = −Γ0

z′z′ = 1
2

ḣTT
+ Γy′

0y′ = −Γz′
0z′ =

1

2
ḣTT

+

Γx′

y′y′ = −Γx′

z′z′ = 1
2c

ḣTT
+ Γy′

y′x′ = −Γz′
z′x′ = −

1

2c
ḣTT

+ .
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from which we find

t0x ≡
dEGW

dx0dS
=

c2

16πG

[

(

d hTT(t,x′)

dt

)2
]

.

Thus the energy flux is

dEGW

dtdS
=

c3

16πG

[

(

d hTT(t,x′)

dt

)2
]

.

In general, if both polarization are present

gµ′ν′ =













(t) (x) (y) (z)
−1 0 0 0
0 1 0 0
0 0 [1 + hTT

+ (t, x′)] hTT
× (t, x′)

0 0 hTT
× (t, x′) [1 − hTT

+ (t, x′)]













,

t0x′

=
c2

16πG

[

(

dhTT
+

dt

)2

+

(

dhTT
×

dt

)2
]

=
c2

32πG





∑

jk

(

dhTT
jk

dt

)2


 .

c t0x′

is the energy flowing across a unit surface orthogonal to the direction x′ per unit time.

However, the direction x′ is arbitrary; if the observer il located in a different position and
computes the energy flux he receives, he will find formally the same but with hTT

jk referreed to
the TT-gauge associated with the new direction. Therefore, if we consider a generic direction
~r = r~n

t0r =
c2

32πG





∑

jk

(

dhTT
jk (t, r)

dt

)2


 .

Since in GR the energy of the gravitational field cannot be defined locally, to find the GW-flux
we need to average over several wavelenghts, i.e.

dEGW

dtdS
=
〈

ct0r
〉

=
c3

32πG

〈

∑

jk

(

dhTT
jk

dt

)2〉

.

We shall now express the energy flux directly in terms of the source quadrupole moment. Since



















h̄TT
µ0 = 0, µ = 0, 3

h̄TT
ik (t, r) =

2G

c4r
·

[

d2

dt2
qTT
ik (t −

r

c
)

]
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by direct substitution we find

dEGW

dtdS
=

c3

32πG

〈

∑

jk

(

dhTT
jk

dt

)2〉

=
G

8πc5 r2

〈

∑

jk

[

...
q

TT

jk

(

t −
r

c

)]2
〉

=
G

8πc5 r2

〈

∑

jk

[

Pjkmn

...
qmn

(

t −
r

c

)]2
〉

.

From this formula we can compute the gravitational luminosity LGW = dEGW

dt
:

LGW =

∫

dEGW

dtdS
dS =

∫

dEGW

dtdS
r2dΩ

=
G

2c5

1

4π

∫

dΩ

〈

∑

jk

(

Pjkmn

...
qmn

(

t −
r

c

))2
〉

.

To evaluate the integral over the solid angle it is convenient to replace the quadrupole moment
qmn with the reduced quadrupole moment

Qij = qij −
1

3
δij qk

k ;

we remind that, since its trace is zero by definition, we have

PijlmQlm = Pijlmqlm .

The GW luminosity becomes

LGW =
G

2c5

1

4π

∫

dΩ

〈

∑

jk

(

Pjkmn

...

Qmn

(

t −
r

c

))2
〉

.

Let us compute the integral over the solid angle. By using the definitions (5) and (6) and the
properties of Pmnjk we find

∑

jk

(

Pjkmn

...

Qmn

)2

=
∑

jk

Pjkmn

...

QmnPjkrs

...

Qrs =

∑

jk

PmnjkPjkrs

...

Qmn

...

Qrs = Pmnrs

...

Qmn

...

Qrs =

[

(δmr − nmnr) (δns − nnns) −
1

2
(δmn − nmnn) (δrs − nrns)

]

...

Qmn

...

Qrs.

If we expand this expression, and remember that

• δmn

...

Qmn = δrs

...

Qrs = 0
because the trace of Qij vanishes by definition, and

• nmnrδns

...

Qmn

...

Qrs = nnnsδmr

...

Qmn

...

Qrs

because Qij is symmetric, we find

∑

jk

(

Pjkmn

...

Qmn

)2

=
...

Qrn

...

Qrn − 2nmnr

...

Qms

...

Qsr +
1

2
nmnnnrns

...

Qmn

...

Qrs .
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and by replacing in the equation for LGW

LGW =
G

2c5

1

4π

∫

dΩ

[

...

Qrn

...

Qrn − 2nmnr

...

Qms

...

Qsr +
1

2
nmnnnrns

...

Qmn

...

Qrs

]

.

The integrals to be calculated over the solid angle are:

1

4π

∫

dΩninj , and
1

4π

∫

dΩninjnrns.

In polar coordinates, the versor n is

ni = (sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ). (18)

Thus, for parity reasons

1

4π

∫

dΩninj =
1

4π

∫ π

0

dϑ sin ϑ

∫ 2π

0

dϕ ninj = 0 when i 6= j.

Furthermore, it is easy to show that

1

4π

∫

dΩ n2
1 =

∫

dΩ n2
2 =

∫

dΩ n2
3 =

1

3
→

1

4π

∫

dΩninj =
1

3
· δij .

The second integral can be computed in a similar way and gives

1

4π

∫

dΩninjnrns =
1

15
(δijδrs + δirδjs + δisδjr) .

Consequently

1
4π

∫

dΩ
( ...

Qrn

...

Qrn − 2nm

...

Qms

...

Qsrnr + 1
2
nmnnnrns

...

Qmn

...

Qrs

)

= 2
5

...

Qrn

...

Qrn (19)

and, finally, the emitted power is

LGW =
dEGW

dt
=

G

5c5

〈

∑

jk=1,3

...

Qjk

(

t −
r

c

) ...

Qjk

(

t −
r

c

)

〉

. (20)

Equation (20) was first derived by Einstein. We shall now compute the GW-luminosity
of a binary system
We need to compute the reduced quadrupole moment

Qij = qij −
1

3
δij qk

k .
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For a circular orbit the time-varying part of qij is:

qij(t) =
µ

2
l20 Aij(t) where Aij(t) =





cos 2ωKt sin 2ωKt 0
sin 2ωKt − cos 2ωKt 0

0 0 0



 .

The trace of qij is
qk

k = ηkl qkl = qxx + qyy = 0 ,

therefore, the time-varying part of Qij(t − r/c) is

Qij =
µ

2
l20





cos 2ωKtret sin 2ωKtret 0
sin 2ωKtret − cos 2ωKtret 0

0 0 0



 ,

its third time-derivative is

...

Qij =
µ

2
l20 8 ω3

K





sin 2ωKtret − cos 2ωKtret 0
− cos 2ωKtret − sin 2ωKtret 0

0 0 0



 ωK =

√

GM

l30

and

∑

jk

...

Qjk

...

Qjk = 32 µ2 l40 ω6
K = 32 µ2 G3 M3

l50
.

By substituting this expression in eq. (20) we find

LGW ≡
dEGW

dt
=

32

5

G4

c5

µ2M3

l50
. (21)

For the binary pulsar PSR 1913+16 LGW = 0.7 · 1031 erg/s .
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Power radiated in gravitational waves by a binary system in circular orbit:

LGW ≡
dEGW

dt
=

32

5

G4

c5

µ2M3

l50
.

This expression has to be considered as an average over several wavelenghts (or equivalently,
over a sufficiently large number of periods), as stated in eq. (20); therefore, in order LGW to be
defined, we must be in a regime where the orbital parameters do not change significantly over
the time interval taken to perform the average. This assumption is called adiabatic approx-
imation, and it is certainly applicable to systems like PSR 1913+16 or PSR J0737-3039 that
are very far from coalescence.

In the adiabatic regime, the system has the time to adjust the orbit to compensate the en-
ergy lost in gravitational waves with a change in the orbital energy, in such a way that

dEorb

dt
+ LGW = 0. (22)

Let us see what are the consequences of this equation.

The orbital energy of the binary is

Eorb = EK + U ,

where the kinetic and the gravitational energy are, respectively,

EK =
1

2
m1ω

2
K r2

1 +
1

2
m2ω

2
K r2

2 =
1

2
ω2

K

[

m1m
2
2l

2
0

M2
+

m2m
2
1l

2
0

M2

]

=
1

2
ω2

Kµl20 =
1

2

GµM

l0

and

U = −
Gm1m2

l0
= −

GµM

l0
.

Therefore

Eorb = −
1

2

GµM

l0

and its time derivative is

dEorb

dt
=

1

2

GµM

l0

(

1

l0

dl0
dt

)

= −Eorb

(

1

l0

dl0
dt

)

. (23)

The term dl0
dt

can be expressed in terms of the time derivative of ωK as follows

ω2
K = GMl−3

0 → 2 lnωK = ln GM − 3 ln l0 →
1

ωK

dωK

dt
= −

3

2

1

l0

dl0
dt

,

and eq. (23) becomes
dEorb

dt
=

2

3

Eorb

ωK

dωK

dt
. (24)

Since ωK = 2πP−1

1

ωK

dωK

dt
= −

1

P

dP

dt
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and eq. (24) gives

dEorb

dt
= −

2

3

Eorb

P

dP

dt
→

dP

dt
= −

3

2

P

Eorb

dEorb

dt
. (25)

Since by eq. (22) dEorb

dt
= −LGW we finally find how the orbital period changes due to the

emission of gravitational waves

dP

dt
=

3

2

P

Eorb
LGW . (26)

For example if we consider PSR 1913+16, assuming the orbit is circular we find

P = 27907 s, Eorb ∼ −1.4 · 1048 erg, LGW ∼ 0.7 · 1031 erg/s

and
dP

dt
∼ −2.2 · 10−13.

The orbit of the real system has a quite strong eccentricity ǫ ≃ 0.617. If we would do the
calculations using the equations of motion appropriate for an eccentric orbit we would find

dP

dt
= −2.4 · 10−12.

PSR 1913+16 has now been monitored for more than three decades and the rate of variation
of the period, measured with very high accuracy, is

dP

dt
= − (2.4184 ± 0.0009) · 10−12.

(J. M. Wisberg, J.H. Taylor Relativistic Binary Pulsar B1913+16: Thirty Years of Observa-

tions and Analysis, in Binary Radio Pulsars, ASP Conference series, 2004, eds. F.AA.Rasio,
I.H.Stairs).

Residual differences due to Doppler corrections, due to the relative velocity between us and the
pulsar induced by the differential rotation of the Galaxy.

Ṗcorrected

ṖGR

= 1.0013(21)

For the recently discovered double pulsar PSR J0737-3039

P = 8640 s, Eorb ∼ −2.55 · 1048 erg, LGW ∼ 2.24 · 1032 erg/s

and
dP

dt
∼ −1.2 · 10−12,

which is also in agreement with observations. Thus, this prediction of General Relativity
is confirmed by observations. This result provided the first indirect evidence of the
existence of gravitational waves and for this discovery R.A. Hulse and J.H. Taylor
have been awarded of the Nobel prize in 1993.
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ORBITAL EVOLUTION

Knowing the energy lost by the system, we can also evaluate how the orbital separation l0
changes in time. From eq. (23)

1

l0

dl0
dt

= −
1

Eorb

dEorb

dt
;

rememebering that LGW = 32
5

G4

c5
µ2M3

l5
0

, and Eorb = −1
2

GµM
l0

, and that in the adiabatic

approximation dEorb

dt
= −LGW , we find

1

l0

dl0
dt

=
LGW

Eorb

→
1

l0

dl0
dt

= −

[

64

5

G3

c5
µ M2

]

·
1

l40

Assuming that at some initial time t = 0 the orbital separation is l0(t = 0) = lin0 by integrating
this equation we easily find

l40(t) = (lin0 )4 −
256

5

G3

c5
µ M2 t = (lin0 )4

[

1 −
256

5

G3

c5(lin0 )4
µ M2 t

]

If we define

tcoal =
5

256

c5

G3

(lin0 )
4

µM2
,

the previous equation becomes

l0(t) = lin0

[

1 − t
tcoal

]1/4

.

which shows that the orbital separation decreases in time.

When t = tcoal the orbital separation becomes zero, and this is possible because we have
assumed that the bodies composing the binary system are pointlike. Of course, stars and black
holes have finite sizes, therefore they start merging and coalesce before t = tcoal. In addition,
when the two stars are close enough, both the slow motion approximation and the weak field
assumption on which the quadrupole formalism relies fails to hold and strong field effects have
to be considered; however, tcoal gives an order of magnitude of the time the system needs to
merge starting from a given initial distance lin0 .



33

WAVEFORM: AMPLITUDE AND PHASE

Since the orbital separation between the two bodies decrases with time as

l0(t) = lin0

[

1 −
t

tcoal

]1/4

,

the Keplerian angular velocity ωK =
√

GM/l30 changes in time as

ωK(t) =

√

GM

l30
=

ωin
K

[

1 − t
tcoal

]3/8
, ωin

K =

√

GM

(l0 in)3
.

Since in the adiabatic regime the orbit evolves through a sequence of stationary circular
orbits, the frequency of the emitted wave at some time t is twice the orbital frequency at that
time, i.e.

νGW (t) =
ωK

π
=

νin
GW

[

1 −
t

tcoal

]3/8
, νin

GW =
1

π

√

GM

(l0 in)3 ,

Similarly, the instantaneous amplitude of the emitted signal can be found from eq. (9)

h0(t) =
4µMG2

rl0(t)c4
;

since ω2
K = GM/l30,

h0(t) =
4µMG2

rc4
·

ω
2/3
K (t)

G1/3M1/3
=

4G5/3µM2/3

rc4
· ω

2/3
K (t) ;

if we now define the quantity M, called chirp mass,

M5/3 = µ M2/3 → M = µ3/5 M2/5

and use the relation among ωK and the wave frequency νGW we find

h0(t) =
4π2/3 G5/3 M5/3

c4r
ν

2/3
GW (t) .

The amplitude and the frequency of the gravitational signal emitted by a coalescing system
increases with time. For this reason this peculiar waveform is called chirp, like the chirp of a
singing bird
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THE PHASE

According to eq. (10) the wave in the TT -gauge is

hTT
ij (t, r) = h0

[

PijklAkl(t −
r

c
)
]

(27)

where Akl is

Aij =





cos 2ωKt sin 2ωKt 0
sin 2ωKt − cos 2ωKt 0

0 0 0



 .

Since ωK is a function of time, the phase appearing in Akl has to be substituted by an integrated
phase

Φ(t) =

∫ t

2ωK(t)dt =

∫ t

2πνGW (t) dt + Φin, where Φin = Φ(t = 0)

Since

νGW (t) =
ωK

π
=

νin
GW

[

1 −
t

tcoal

]3/8
, νin

GW =
1

π

√

GM

(l0 in)3
,

and

tcoal =
5

256

c5

G3

(lin0 )
4

µM2
,

νin
GW t

3/8
coal =

(

53/8
) 1

8π

(

c3

GM

)5/8
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and νGW (t) can be written as

νGW (t) =
1

8π

(

c3

GM

)5/8 [

5

tcoal − t

]3/8

;

consequently, the integrated phase becomes

Φ(t) = −2

[

c3 (tcoal − t)

5GM

]5/8

+ Φin

which shows that if we know the signal phase we can measure the chirp mass.
In conclusion, the signal emitted during the inspiralling will be

hTT
ij = −

4π2/3 G5/3 M5/3

c4r
ν

2/3
GW (t)

[

PijklAkl(t −
r

c
)
]

where

Aij(t) =





cos Φ(t) sin Φ(t) 0
sin Φ(t) − cos Φ(t) 0

0 0 0




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LIGO[40 Hz− 1 − 2 kHz] LISA[10−4 − 10−1] Hz

VIRGO[10 Hz− 1 − 2 kHz]

Let us consider 3 binary system
a) m1 = m2 = 1.4 M⊙ c) m1 = m2 = 106 M⊙

b) m1 = m2 = 10 M⊙

Let us first calculate what is the orbital distance between the two bodies on the innermost
stable circular orbit (ISCO) and the corresponding emission frequency

lISCO
0 ∼

6GM

c2
, ωK =

√

GM

l30
= π νGW → νISCO

GW =
1

π

√

GM

(lISCO
0 )3

(M is the total mass)

a) l0
ISCO = 24, 8 km νGW = 1570.4 Hz

b) l0
ISCO = 177, 2 km νGW = 219.8 Hz

c) l0
ISCO = 17.720.415, 3 km νGW = 2.2 · 10−3 Hz

a) and b) are interesting for LIGO and VIRGO,
c) will be detected by LISA
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Let us consider LIGO and VIRGO; we want to compute the time a given signal spends in
the detector bandwidth before coalescence.

From

νGW (t) =
νin

GW t
3/8
coal

[tcoal − t]3/8

we get

t = tcoal

[

1 −

(

νin
GW

νGW (t)

)8/3
]

.

Putting :
νin

GW = lowest frequency detectable by the antenna, and

νmax
GW = νISCO

GW we find

LIGO VIRGO

a) (m1 = m2 = 1.4 M⊙) [40 − 1570.4 Hz] [10 − 1570.4 kHz]

∆t = 24.86 s ∆t = 16.7 m

b) (m1 = m2 = 10 M⊙) [40 − 219.8 Hz] [10 − 219.8 kHz]

∆t = 0.93 s ∆t = 37.82 s

VIRGO catches the signal for a longer time.
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Planned sensitivity curve for VIRGO+ and ADVANCED VIRGO

The plotted signal is the

strain amplitude = ν1/2h(ν) ,

evaluated for the chirp.

Source located at a distance of 100 Mpc.

The chirp is only a part of the signal emitted during the binary coalescence.
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Black hole-black hole coalescence
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This hybrid waveform is obtained by matching three signals:

1) chirp waveform for ν < νISCO

2) waveform emitted during the merger phase of two black holes, obtained by numerical inte-
gration of Einstein’s equations.

3) waveform emitted after the final black hole is formed, due to ringdown oscillations.

P. Ajith et al., Phys. Rev. D 77, 104017 2008
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WHAT ABOUT LISA?

LISA [10−4 − 10−1] Hz
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LISA 1-yr observation

Let us consider 2 BH-BH binary systems

a) m1 = m2 = 102 M⊙

b) m1 = m2 = 106 M⊙

Orbital distance between the two bodies on the innermost stable circular orbit (ISCO) and
the corresponding emission frequency

lISCO
0 ∼

6GM

c2
, ωK =

√

GM

l30
= π νGW → νISCO

GW =
1

π

√

GM

(lISCO
0 )3

a) lISCO
0 = 1772 km νGW = 21.98 Hz

b) lISCO
0 = 17.720.415, 3 km νGW = 2.2 10−3 Hz

Time a given signal spends in the detector bandwidth before coalescence.

a) m1 = m2 = 102 M⊙

b) m1 = m2 = 106 M⊙

t = tcoal

[

1 −

(

νin

νGW (t)

)8/3
]



41

LISA

a) [10−4 − 10−1 Hz]

∆t = 556.885 years

b) [10−4 − 2.2 · 10−3 Hz]

∆t = 0, 12 years = 43 d 18 h 43 m 24 s


