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Preface

Particle physics, condensed matter physics and astrophysics are arguably the
three major research frontiers of physics at the present time. It is generally
thought that a physics student’s training is not complete without an elementary
knowledge of particle physics and condensed matter physics. Most physics
departments around the world offer one-semester comprehensive courses on
particle physics and condensed matter physics (sometimes known by its more
traditional name ‘solid state physics’). All graduate students of physics and very
often advanced undergraduate students also are required to take these courses.
Very surprisingly, one-semester comprehensive courses on astrophysics at a
similar level are not so frequently offered by many physics departments. If a
physics department has general relativists on its faculty, often a one-semester
course General Relativity and Cosmology would be offered, though this would
normally not be a compulsory course for all students. It has thus happened
that many students get trained for a professional career in physics without a
proper knowledge of astrophysics, one of the most active research areas of
modern physics.

Of late, many physics departments are waking up to the fact that this is
a very undesirable situation. More and more physics departments around the
world are now introducing one-semester comprehensive courses on astrophysics
at the advanced undergraduate or beginning graduate level, similar to such
courses covering particle physics and solid state physics. The physics depart-
ment of the Indian Institute of Science, where I have worked for more than two
decades by now, has been offering a one-semester course on basic astrophysics
for a long time. It is a core course for our Integrated PhD Programme in Physical
Sciences as well as our Joint Astronomy and Astrophysics Programme. I must
have taught this course to more than half a dozen batches.

Over the years, several excellent textbooks suitable for use in one-semester
courses on particle physics and solid state physics have been written. The
situation with respect to astrophysics is somewhat peculiar. There are several
outstanding elementary textbooks on astrophysics meant for students who do

xiii
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not have much background of physics or mathematics beyond what is taught at
the high school level. Then there are well-known specialized textbooks dealing
with important sub-areas of astrophysics (such as stars, galaxies, interstellar
matter or cosmology). However, there have been few attempts at bridging
the gap between these two kinds of textbooks by writing books covering the
whole of astrophysics at the level of Kittel’s Solid State Physics or Perkins’s
High Energy Physics – suitable for a one-semester course meant for students
who have already studied mechanics, electromagnetic theory, thermal physics,
quantum mechanics and mathematical methods at an advanced level. Whenever
I had to teach the course Fundamentals of Astrophysics in our department, I
found that there was no textbook which was suitable for use in the whole course.
The present book has grown out of the material I have taught in this course.

While writing this book, I have kept in mind that most of the students using
this book will not aspire to a professional career in astrophysics. So I have tried
to stress those aspects of astrophysics which are likely to be of interest to a
physicist who is not specializing in astrophysics. Astrophysics is an observa-
tional science and an acquaintance with the basic phenomenology is absolutely
essential for an appreciation of modern astrophysics. While I have introduced
the basic phenomenology throughout the book, I believe that a physics student
can appreciate astrophysics without knowing what a T Tauri star or what a BL
Lac object is. A student who wishes to be a professional astrophysicist and
has to master the terminology of the subject (which is sometimes of the nature
of historical baggage) can learn it from other books. Rather than covering the
details of too many topics, I have tried to develop the central themes of modern
astrophysics fully. The trouble with this approach is that no two astrophysicists
will completely agree as to what are central themes and what are details! I
have used my judgment to develop what I would consider a balanced account
of modern astrophysics. There is no doubt that experts in different areas of
astrophysics would feel that I have committed the cardinal sin of not covering
something in their area of specialization which they regard vitally important.
If I succeed in making experts in all different areas of astrophysics equally
unhappy, then I would conclude that I have written a balanced book! One other
principle I have followed is to give more stress on classical well-established
topics rather than topics which are still ill-understood or on which our present
views are likely to change drastically in future. To give readers a historical
perspective, I have sometimes deliberately chosen figures from original classic
papers rather than their more contemporary versions, unless the modern figures
supersede the original figures in essential and important ways. I have also inten-
tionally kept away from topics which are too speculative or which do not have
close links with observational data at the present time, perhaps reflecting my
personal taste.

Virtually all branches of basic physics find applications in some topic of
astrophysics or other. I have assumed that the readers of this book would have
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sufficient knowledge of classical mechanics, electromagnetic theory, optics,
special relativity, thermodynamics, statistical mechanics, quantum mechanics,
atomic physics and nuclear physics – something that is expected of an advanced
student of physics in any good university anywhere. It is a firm belief of the
present author that all physics students at this level ought to know some fluid
mechanics and plasma physics. However, keeping in mind that this is not the
case for physics students in the majority of universities around the world, a
background in fluid mechanics or plasma physics has not been assumed and
these subjects have been developed from first principles. General relativity is
also developed from first principles without assuming any previous knowledge
of the subject, though a previous acquaintance with the elementary properties
of tensors will help. Some of the other basic physics topics which have been
developed in this book without assuming any previous background are the
theory of radiative transfer and the kinetic theory of gravitating particles (using
the collisionless Boltzmann equation).

I have followed the usual traditional order of first concentrating on stars and
then taking up galaxies to end with extragalactic astronomy and cosmology.
One issue about which I had to give some thought is the placement of the
basic physics topics which I develop in the book. A possible approach would
have been to develop all the necessary basic physics topics at the beginning of
the book before delving into the world of astrophysics. I personally felt that
a more satisfactory approach is to teach these physics topics ‘on the way’ as
we proceed with astrophysics. Since radiative transfer is used so extensively
in astrophysics, it comes fairly early in Chapter 2. Two other chapters dealing
primarily with basic physics topics are Chapters 7 and 8 devoted respectively to
stellar dynamics and plasma astrophysics. These chapters could conceivably be
placed somewhere else in the book. I felt that, after learning about our Galaxy
and interstellar matter in Chapter 6, students will be in a position to appreciate
stellar dynamics and plasma astrophysics particularly well, before they get into
extragalactic astronomy where there will be more applications of what they
learn in Chapters 7 and 8. However, putting Chapters 7 and 8 where they are
has been ultimately my personal choice without very compelling logical reasons
behind it.

Now let me comment on the place of general relativity in my book. The
course Fundamentals of Astrophysics which I have taught in our department on
several occasions does not cover general relativity (we have a separate course
General Relativity and Cosmology in our department). In the Fundamentals of
Astrophysics course, I basically cover the material of Chapters 1–11, which is
more than sufficient for a one-semester course. In Chapters 10–11, I present
as much cosmology as can be done without a detailed technical knowledge
of general relativity. Initially my plan was to write up only Chapters 1–11.
During the course of writing this book, I decided to add the last three chapters –
primarily because general relativity is playing an increasingly more important
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role in many branches of astrophysics. One of the areas of astrophysics which
underwent the most explosive growth in the last decade is the study of the
Universe at redshifts z ≥ 1. Issues involved in the study of the high-redshift
Universe cannot be appreciated without some technical knowledge of relativis-
tic astrophysics. Another important development in the last decade has been the
construction of several large detectors of gravitational radiation – a consequence
of general relativity. Because of the increased applications of general relativity
to astrophysics and also for the sake of completeness, I finally decided to write
Chapters 12–14. After developing general relativity from the first principles
in Chapters 12–13, I discuss relativistic cosmology in Chapter 14. So the
presentation of cosmology has been somewhat fractured. Topics which can be
developed without a technical knowledge of general relativity are presented
in Chapters 10–11, while topics requiring general relativity are presented in
Chapter 14. Although this arrangement may be intellectually unsatisfactory, I
believe that the advantages outweigh the disadvantages. Readers desirous of
learning the basics of cosmology without first learning general relativity can go
through Chapters 10–11. Instructors wishing to teach a one-semester course
of astrophysics to students who do not know general relativity can use the
material of Chapters 1–11. On the other hand, a course on general relativity
and cosmology can be based on Chapters 10–14 – with some rearrangement of
topics and with the inclusion of additional topics like structure formation, which
is barely touched upon in this book. Finally, it should be possible to use this as
a basic textbook for a two-semester course on astrophysics and relativity – with
some additional material thrown in, depending on the choice of the instructor.

This book has been and will probably remain the most ambitious project I
have ever undertaken in my life. While writing my previous book The Physics
of Fluids and Plasmas, I mostly had to deal with topics on which I had some
expertise. Now the canvas is much vaster. It is probably not possible today for an
individual to have in-depth knowledge of all branches of modern astrophysics.
At least, I cannot claim such knowledge. A writer aspiring to cover the whole
of astrophysics is, therefore, compelled to write on many subjects on which
his/her own knowledge is shaky. Apart from the risk of making actual technical
mistakes, one runs the risk of not realizing where the emphasis should be put.
I shall be grateful to any reader who brings any mistake to my attention, by
sending an e-mail to my address arnab@physics.iisc.ernet.in. I do hope that
readers will find that the merits of this book outnumber its flaws.
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A note on symbols

In discussing astrophysical topics, one often has to combine results from
different branches of physics. Historically these branches may have evolved
independently and sometimes the same symbol is used for different things in
these different branches. In the case of a few symbols, I have added a subscript
to make them unambiguous. For example, I use σT for the Thomson cross-
section (since σ denotes the Stefan–Boltzmann constant), κB for the Boltzmann
constant (since k denotes the wavenumber in several derivations) and aB for the
blackbody radiation constant (since a denotes the scale factor of the Universe).
A look at equation (3.48) of Kolb and Turner (1990) will show the kinds of
problems you run into if you use the same symbol to denote different things in
a derivation. While I have avoided using the same symbol for different things
within one derivation, I sometimes had to use the same symbol for different
things in different portions of the book. For example, it has been the custom for
many years to use M to denote both mass (of stars or galaxies) and absolute
magnitude. Rather than inventing unorthodox symbolism, I have trusted the
common sense of readers who should be able to figure out the meaning of the
symbol from the context and hopefully will not get confused. I now mention a
potential source of confusion. I have used f (E) in §4.2 to denote the probability
that particles have energy E and have used f (p) in §5.2 to denote the number
density of particles with momentum p (throughout Chapter 7, I use f to
denote number density and not probability). While these notations may not be
consistent with each other, they happen to be the most convenient notations for
the derivations presented in §4.2 and §5.2 (and also the notations used by many
previous authors).
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Introduction

1.1 Mass, length and time scales in astrophysics

Astrophysics is the science dealing with stars, galaxies and the entire Universe.
The aim of this book is to present astrophysics as a serious science based on
quantitative measurements and rigorous theoretical reasoning.

The standard units of mass, length and time that we use (cgs or SI units)
are appropriate for our everyday life. For expressing results of astrophysical
measurements, however, they are not the most convenient units. Let us begin
with a discussion of the basic units we use in astrophysics and the scales of
various astrophysical objects we encounter.

Unit of mass

The mass of the Sun is denoted by the symbol M� and is often used as the unit
of mass in astrophysics. Its value is

M� = 1.99 × 1030 kg. (1.1)

Although intrinsic brightnesses and sizes of stars vary over several orders of
magnitude, the masses of most stars lie within a relatively narrow range from
0.1M� to 20M�. The reason behind this will be discussed in §3.6.1. Hence
the solar mass happens to be a very convenient unit in stellar astrophysics.
Sometimes, however, we have to deal with objects much more massive than
stars. The mass of a typical galaxy can be 1011 M�. Globular clusters, which
are dense clusters of stars having nearly spherical shapes, typically have masses
around 105 M�.

Unit of length

The average distance of the Earth from the Sun is called the Astronomical Unit
(abbrev. AU). Its value is

AU = 1.50 × 1011 m. (1.2)

1



2 Introduction

Fig. 1.1 Definition of parsec.

It is a very useful unit for measuring distances within the solar system. But it is
too small a unit to express the distances to stars and galaxies.

As the Earth goes around the Sun, the nearby stars seem to change their
positions very slightly with respect to the faraway stars. This phenomenon is
known as parallax. Let us consider a star on the polar axis of the Earth’s orbit
at a distance d away, as shown in Figure 1.1. The angle θ is half of the angle
by which this star appears to shift with the annual motion of the Earth and is
defined to be the parallax. It is obviously given by

θ = 1 AU

d
. (1.3)

The parsec (abbrev. pc) is the distance where the star has to be so that its parallax
turns out to be 1′′. Keeping in mind that 1′′ is equal to π/(180 × 60 × 60)

radians, it is easily found from (1.3) that

pc = 3.09 × 1016 m. (1.4)

It may be noted that 1 pc is equal to 3.26 light years – a unit very popular
with popular science writers, but rarely used in serious technical literature. For
even larger distances, the standard units are kiloparsec (103 pc, abbrev. kpc),
megaparsec (106 pc, abbrev. Mpc) and gigaparsec (109 pc, abbrev. Gpc).

The star nearest to us, Proxima Centauri, is at about a distance of 1.31 pc.
Our Galaxy and many other galaxies like ours are shaped like disks with thick-
ness of order 100 pc and radius of order 10 kpc. The geometric mean between
these two distances, which is 1 kpc, may be taken as a measure of the galactic
size. The Andromeda Galaxy, one of the nearby bright galaxies, is at a distance
of about 0.74 Mpc. The distances to very faraway galaxies are of order Gpc. It
should be kept in mind that light from very distant galaxies started when the
Universe was much younger and the concept of distance to such galaxies is not
a very straightforward concept, as we shall see in §14.4.1. It is useful to keep
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Table 1.1 Approximate conversion

factors to be memorized.

M� ≈ 2 × 1030 kg
pc ≈ 3 × 1016 m
yr ≈ 3 × 107s

the following rule of thumb in mind: pc is a measure of interstellar distances,
kpc is a measure of galactic sizes, Mpc is a measure of intergalactic distances
and Gpc is a measure of the visible Universe.

Unit of time

Astrophysicists have to deal with very different time scales. On the one hand,
the age of the Universe is of the order of a few billion years. On the other hand,
there are pulsars which emit pulses periodically after intervals of fractions of a
second. There is no special unit of time. Astrophysicists use years for large time
scales and seconds for small time scales, the conversion factor being

yr = 3.16 × 107 s. (1.5)

The stars typically live for millions to billions of years. Occasionally, one uses
the unit gigayear (109 yr, abbrev. Gyr). The age of the Sun is believed to be
about 4.5 Gyr.

The importance of order of magnitude estimates

We can often have good guesses of the values of various quantities around us
even without making accurate measurements. By looking at a table, I may make
a rough estimate that its side is about 1 m long. By lifting a sack of potatoes,
I may make a rough estimate that it weighs about 5 kg. Careful measurements
usually show that such guesses are not very much off the mark. We never have
the suspicion that a measurement of the length of a table would yield values
like either 10−2 cm or 100 km. For astrophysical quantities, we usually do not
have any such direct feeling. If somebody tells us that the mass of the Sun is
either 1020 kg or 1040 kg, there would be nothing in our everyday experiences
on the basis of which we could say that these values are unreasonable. Hence, in
astrophysics, it is often very useful first to make order of magnitude estimates of
various quantities before embarking on a more detailed calculation. Throughout
this book, we shall be making various order of magnitude estimates. For such
purposes, it is useful to remember the conversion factors given in Table 1.1. The
accurate values of these conversion factors are given in (1.1), (1.4) and (1.5).
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Although the emphasis in this book will be on understanding things and not
memorizing things, we would urge the readers to commit the conversion factors
of Table 1.1 to memory. They are used too often in making various order of
magnitude estimates!

1.2 The emergence of modern astrophysics

From the dawn of civilization, human beings have wondered about the starry
sky. Astronomy is one of the most ancient sciences. Perhaps mathematics and
medicine are the only other sciences which can claim as ancient a tradition
as astronomy. But modern astrophysics, which arose out of a union between
astronomy and physics, is a fairly recent science; it can be said to have been
born in the middle of the nineteenth century.

Let us say a few words about ancient astronomy. Early humans noticed that
most stars did not seem to change their positions with respect to each other.
The seven stars of the Great Bear occupy the same relative positions night after
night. But a handful of starlike objects – the planets – kept on changing their
positions with respect to the background stars. It was noticed that there was
a certain regularity in the movements of the planets. Building a model of the
planetary motions was the outstanding problem of ancient astronomy, which
reached its culmination in the geocentric theory of Hipparchus (second century
BC) and Ptolemy (second century AD). Ptolemy’s Almagest, which luckily
survived the ravages of time, has come down to us as one of the greatest classics
of science and provides the definitive account of the geocentric model. The
scientific Renaissance of Europe began with Copernicus (1543) showing that
a heliocentric model provided a simpler explanation of the planetary motions
than the geocentric model. The new physics developed by Galileo and Newton
finally provided a dynamical theory which could be used to calculate the orbits
of planets around the Sun.

Only very rarely a branch of science reaches a phase when the practitioners
of that science feel that all the problems which that branch of science had set
out to solve had been adequately solved. With the development of Newtonian
mechanics, planetary astronomy reached a kind of finality. Even the compli-
cated techniques of calculating perturbations to planetary orbits due to the larger
planets got perfected by the nineteenth century. Astronomers then turned their
attention beyond the solar system. Telescopes also became sufficiently large by
the middle of the nineteenth century to reveal some of the secrets of the stellar
world to us. It may be mentioned that, with the heralding of the Space Age in
the middle of the twentieth century, research in planetary science has blossomed
again. However, modern planetary science has become a scientific discipline
quite distinct from astrophysics and we shall not discuss about planets in
this book.
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If stars are distributed in a three-dimensional space and the Earth is going
round the Sun, then nearby stars should appear to change their positions with
the movement of the Earth, i.e. they should display parallax. Now we know that
even the nearest stars have too little parallax to be detected by the naked eye.
Certainly no parallax observations were available at the time of Copernicus.
While proposing that the Earth moves around the Sun, Copernicus (1543) him-
self was bothered by the question why stars showed no parallax and correctly
guessed that the stars may just be too far away. Ever since the invention of the
telescope, astronomers have been on the lookout for parallax. Finally, in the
fateful year 1838, three astronomers working in three different countries almost
simultaneously reported the first parallax measurements (Bessel in Germany,
Struve in Russia and Henderson in South Africa). This forever demolished the
Aristotelian belief that stars are studded on the two-dimensional inner surface
of a crystal sphere. Suddenly the sky ceased to be a two-dimensional globe and
opened into an apparently limitless three-dimensional space! The stars are not
static objects in space. The component of velocity perpendicular to the line of
sight would lead to the change of position of a star in the sky. Such motions
in the globe of the sky are called proper motions. Even Barnard’s star, which
has the largest proper motion of about 10′′ per yr, would take 360 yr to move
through 1◦ in the sky. Most stars have much smaller proper motions and it is no
wonder the appearance of the sky has not changed that much in the last 2000 yr.
Some of the first measurements of proper motions were also made in the middle
of the nineteenth century and it became clear that stars are luminous objects
wandering around in the vast, dark three-dimensional space.

Another momentous event took place in the middle of the nineteenth cen-
tury. Bunsen and Kirchhoff (1861) provided the first correct explanation of the
dark lines observed by Fraunhofer (1817) in the solar spectrum and realized
that the presence of various chemical elements in the Sun can be inferred from
those dark lines. As soon as astronomers started looking carefully at the stellar
spectra, it became clear that the Sun and the stars are made up of the same
chemical elements which are found on the Earth. This discovery provided a
death blow to the other Aristotelian doctrine that heavenly bodies are made up
of the element ether which is different from terrestrial elements and obeyed
different laws of physics. Newton had shown that planets obeyed the same laws
of physics as falling objects at the Earth’s surface. It now became clear that stars
are made up of the same stuff as the Earth and the laws of physics discovered in
the terrestrial laboratories should hold for them.

With the realization that the laws of physics can be applied to understand
the behaviour of stars, the modern science of astrophysics was born. Nowadays
the words ‘astronomy’ and ‘astrophysics’ are used almost interchangeably.
Although modern astrophysicists study problems completely different from the
problems studied by ancient astronomers, two very useful concepts introduced
by ancient astronomers are still universally used. One is the concept of celestial
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coordinates, and the other is the magnitude scale for describing the brightness
of a celestial object. We now turn to these two topics.

1.3 Celestial coordinates

The sky appears as a spherical surface above our heads. We call it the celestial
sphere. Just as the position of a place on the Earth’s surface can be spec-
ified with the latitude and longitude, the position of an astronomical object
on the celestial sphere can be specified with two similar coordinates. These
coordinates are defined in such a way that faraway stars which appear immov-
able with respect to each other have fixed coordinates. Objects like planets
which move with respect to them will have their coordinates changing with
time.

The coordinate corresponding to latitude is called the declination. The
points where the Earth’s rotation axis would pierce the celestial sphere are
called celestial poles. The north celestial pole is at present close to the pole
star. The great circle on the celestial sphere vertically above the Earth’s equator
is called the celestial equator. The declination is essentially the latitude on
the celestial sphere defined with respect to the celestial poles and equator.
Something lying on the celestial equator has declination zero, whereas the north
pole has declination +π/2.

The coordinate corresponding to longitude is called the right ascension
(R.A. in brief). Just as the zero of longitude is fixed by taking the longitude
of Greenwich as zero, we need to fix the zero of R.A. for defining it. This is
done with the help of a great circle called the ecliptic. Since the Earth goes
around the Sun in a year, the Sun’s position with respect to the distant stars, as
seen by us, keeps changing and traces out a great circle in the sky. The ecliptic
is this great circle. Twelve famous constellations (known as the signs of the
zodiac) appear on the ecliptic. It was noted from almost prehistoric times that
the Sun happens to be in different constellations in different times of the year.
We cannot, of course, directly see a constellation when the Sun lies in it. But, by
looking at the stars just after sunset and just before sunrise, ancient astronomers
could infer the position of the Sun in the celestial sphere. The celestial equator
and the ecliptic are inclined at an angle of about 231

2
◦

and intersect at two points,
as shown in Figure 1.2. One of these points, lying in the constellation Aries, is
taken as the zero of R.A. When the Sun is at this point, we have the vernal
equinox. It is a standard convention to express the R.A. in hours rather than in
degrees. The celestial sphere rotates around the polar axis by 15◦ in one hour.
Hence one hour of R.A. corresponds to 15◦.

The declination and R.A. are basically defined with respect to the rotation
axis of the Earth, which fixes the celestial poles and equator. One problematic
aspect of introducing coordinates in this way is that the Earth’s rotation axis
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Fig. 1.2 The celestial sphere with the equator and the ecliptic indicated on it. The

celestial pole is denoted by P , whereas K is the pole of the ecliptic.

is not fixed, but precesses around an axis perpendicular to the plane of the
Earth’s orbit around the Sun. This means that the point P in Figure 1.2 traces
out an approximate circle in the celestial sphere slowly in about 25,800 years,
around the pole K of the ecliptic. This phenomenon is called precession and was
discovered by Hipparchus (second century BC) by comparing his observations
with the observations made by earlier astronomers about 150 years previously.
The precession is caused by the gravitational torque due to the Sun acting
on the Earth and can be explained from the dynamics of rigid bodies (see,
for example, Goldstein, 1980, §5–8). Due to precession, the positions of the
celestial poles and the celestial equator keep changing slowly with respect to
fixed stars. Hence, if the declination and the R.A. of an astronomical object
at a time are defined with respect to the poles and the equator at that time,
then certainly the values of these coordinates will keep changing with time. The
current convention is to use the coordinates defined with respect to the positions
of the poles and the equator in the year 2000.

Many ground-based optical telescopes have been traditionally designed to
have equatorial mounting, which means that the main axis of the telescope is
parallel to the rotation axis of the Earth. The telescope is designed such that it
can have two kinds of motion. Firstly, it can be rotated towards or away from the
axis of mounting (which is the Earth’s rotation axis). Secondly, the telescope can
be moved to generate a conical surface with this axis as the central axis. Suppose
we want to turn the telescope towards an object of which the declination and
R.A. are known. The first kind of motion enables us to set the telescope at the
correct declination. The second kind of motion allows us to turn it to various
values of R.A. at that declination.

The main advantage of using the declination and R.A. is that an equatorially
mounted telescope can easily be turned to an object of which we know the dec-
lination and R.A. However, there is another coordinate system, called galactic
coordinates, widely used in galactic studies. In this system, the plane of our
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Galaxy is taken as the equator and the direction of the galactic centre as seen by
us (in the constellation Sagittarius) is used to define the zero of longitude.

1.4 Magnitude scale

Suppose we have two series of lamps – the first series with lamps having
intensities I0, 2I0, 3I0, 4I0 . . . , whereas the lamps in the second series have
intensities I0, 2I0, 4I0, 8I0 . . . . When we look at the two series of lamps, it is the
second series which will appear to have lamps of steadily increasing intensity.
In other words, the human eye is more sensitive to a geometric progression
of intensity rather than an arithmetic progression. The magnitude scale for
describing apparent brightnesses of celestial objects is based on this fact.

On the basis of naked eye observations, the Greek astronomer Hipparchus
(second century BC) classified all the stars into six classes according to their
apparent brightnesses. We can now of course easily measure the apparent
brightness quantitatively. It appears that stars in any two successive classes,
on the average, differ in apparent brightness by the same common factor. A
quantitative basis of the magnitude scale was given by Pogson (1856) by noting
that the faintest stars visible to the naked eye are about 100 times fainter
compared to the brightest stars. Since the brightest and faintest stars differ by
five magnitude classes, stars in two successive classes should differ in apparent
brightness by a factor (100)1/5. Suppose two stars have apparent brightnesses
l1 and l2, whereas their magnitude classes are m1 and m2. It is clear that

l2
l1

= (100)
1
5 (m1−m2). (1.6)

Note that the magnitude scale is defined in such a fashion that a fainter object
has a higher value of magnitude. On taking the logarithm of (1.6), we find

m1 − m2 = 2.5 log10
l2
l1

. (1.7)

This can be taken as the definition of apparent magnitude denoted by m, which
is a measure of the apparent brightness of an object in the sky.

Since a star emits electromagnetic radiation in different wavelengths, one
important question is: what is the wavelength range over which we consider
the electromagnetic radiation emitted by a star to measure its apparent bright-
ness quantitatively? If we use apparent brightnesses based on the radiation
in all wavelengths, then the magnitude defined from it is called the bolo-
metric magnitude. Since any device for measuring intensity of light does not
respond to all wavelengths in the same way, finding the bolometric magnitude
from measurements with a particular device is not straightforward. A much
more convenient system, called the Ultraviolet–Blue–Visual system or the UBV
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system, was introduced by Johnson and Morgan (1953) and is now universally
used by astronomers. In this system, the light from a star is made to pass
through filters which allow only light in narrow wavelength bands around the
three wavelengths: 3650 Å, 4400 Å and 5500 Å. From the measurements of the
intensity of light that has passed through these filters, we get magnitudes in
ultraviolet, blue and visual, usually denoted by U , B and V . Typical examples of
V magnitudes are: the Sun, V = −26.74; Sirius, the brightest star, V = −1.45;
faintest stars measured, V ≈ 27.

Suppose we consider a reddish star. It will have less brightness in B band
compared to V band. Hence its B magnitude should have a larger numerical
value than its V magnitude. So we can use (B − V ) as an indication of a star’s
colour. The more reddish a star, the larger will be the value of (B − V ).

The absolute magnitude of a celestial object is defined as the magnitude it
would have if it were placed at a distance of 10 pc. The relation between relative
magnitude m and absolute magnitude M can easily be found from (1.7). If the
object is at a distance d pc, then (10/d)2 is the ratio of its apparent brightness
and the brightness it would have if it were at a distance of 10 pc. Hence

m − M = 2.5 log10
d2

102
,

from which

m − M = 5 log10
d

10
. (1.8)

The absolute magnitude in the V band, denoted by MV , is often used as a
convenient quantity to indicate the intrinsic brightness of an object.

1.5 Application of physics to astrophysics.
Relevance of general relativity

Astrophysics is a supreme example of applied physics. To be a competent
astrophysicist, first and foremost one has to be a competent physicist. Virtu-
ally all branches of physics are needed in the study of astrophysics. Classical
mechanics, electromagnetic theory, optics, thermodynamics, statistical mechan-
ics, fluid dynamics, plasma physics, quantum mechanics, atomic physics,
nuclear physics, particle physics, special and general relativity – there is no
branch of physics which does not find application in some astrophysical prob-
lem or other. We shall use results from all these branches of physics in this
book. In the astrophysical setting, however, the laws of physics are often applied
to extremes of various physical conditions like density, pressure, temperature,
velocity, angular velocity, gravitational field, magnetic field, etc. – well beyond
the limits for which the laws have been tested in the laboratory. For example,
the vacuousness of the intergalactic space is much more than the best vacuums



10 Introduction

we can create at the present time, whereas the interiors of neutron stars may
have the almost inconceivable density of 1017 kg m−3. Only in one case, human
beings may have been able to surpass Nature. There are good reasons to suspect
that temperatures lower than 2.73 K never existed anywhere in the Universe
until scientists succeeded in creating such temperatures about a century ago.

At the first sight, it may seem that the astrophysicists are concerned with the
macro-world of very large systems like stars and galaxies, which is far removed
from the micro-world of atoms, nuclei and elementary particles. However, it
turns out very often that we need the physics of the micro-world to make sense
of the macro-world of astrophysics. One example is the famous Chandrasekhar
mass limit of white dwarf stars, which will be derived in §5.3. It was found by
Chandrasekhar (1931) that the maximum mass which white dwarfs (which are
compact dead stars in which no more energy generation takes place) can have
is given by

MCh = 2.018

√
6

8π

(
hc

G

)3/2 1

m2
Hμ2

e

, (1.9)

where h is Planck’s constant, mH is the mass of hydrogen atom and μe is some-
thing called the mean molecular weight of electrons (to be introduced in §5.2)
having a value close to 2. On putting numerical values of various quantities,
MCh turns out to be about 1.4M�. Thus the constants of the atomic world like
h and mH determine the mass limit of a vast object like a white dwarf star.
It is this interplay between the physics of the micro-world and the physics of
the macro-world which makes modern astrophysics such a fascinating scientific
discipline. Very often major breakthroughs in micro-physics have a big impact
in astrophysics, and occasionally discoveries in astrophysics have provided
new insights in micro-physics.

We shall assume the readers of this book to have a working knowledge
of mechanics, electromagnetic theory, thermal physics and quantum physics
at an advanced undergraduate or beginning graduate level. General relativity
happens to be a branch of physics which is often not included in a regular
physics curriculum, but which is applied in some areas of astrophysics. Till
Chapter 11, we proceed without assuming any background of general relativity.
Then, only in the last three chapters of this book, we give an introduction
to general relativity and consider its applications to astrophysical problems.
Readers unwilling to learn general relativity can still get a reasonably rounded
background of modern astrophysics from this book by studying till Chapter 11.
We now make a few comments on the circumstances in which general relativity
is expected to be important and what a reader misses if he or she is ignorant of
general relativity.

Even readers without any technical knowledge of general relativity would
have heard of black holes, which are objects with gravitational fields so strong
that even light cannot escape. Let us try to find out when this happens.
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Newtonian theory does not tell us how to calculate the effect of gravity of
light. So let us figure out when a particle moving with speed c will get trapped,
according to Newtonian theory. Suppose we have a spherical mass M of radius
r and a particle of mass m is ejected from its surface with speed c. The
gravitational potential energy of the particle is

− GMm

r
.

If we use the non-relativistic expression for kinetic energy for a crude estimate
(we should actually use special relativity for a particle moving with c!), then the
total energy of the particle is

E = 1

2
mc2 − GMm

r
.

Newtonian theory tells us that the particle will escape from the gravitational
field if E > 0 and will get trapped if E < 0. In other words, the condition of
trapping is

2GM

c2r
> 1. (1.10)

It turns out that more accurate calculations using general relativity gives exactly
the same condition (1.10) for light trapping, which was first obtained by Laplace
(1795) by the arguments which we have given. General relativity is needed
when this factor

f = 2GM

c2r
(1.11)

is of order unity. On the other hand, Newtonian theory is quite adequate if this
factor is much smaller than 1. For the Sun with mass 1.99 × 1030 kg and radius
6.96 × 108 m, this factor f turns out to be only 4.24 × 10−6. Hence Newtonian
theory is almost adequate for all phenomena in the solar system. Only if we want
to calculate very accurate orbits of planets close to the Sun (such as Mercury),
we have to bother about general relativity.

Are there situations in astrophysics where general relativity is essential?
We can use (1.11) to calculate the radius to which the solar mass has to be
shrunk such that light emitted at its surface gets trapped. This radius turns out
to be 2.95 km. As we shall discuss in more detail in Chapters 4–5, when the
energy source of a star is exhausted, the star can collapse to very compact
configurations like neutron stars or black holes. General relativity is needed
to study such objects. If matter is distributed uniformly with density ρ inside
radius r , then we can write

M = 4

3
πr3ρ

and (1.11) becomes
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f = 8π

3

Gr2ρ

c2
. (1.12)

We note that f is large when either ρ is large or r is large (for given ρ). The
density ρ is very high inside objects like neutron stars. Can there be situations
where general relativity is important due to large r? We know of one object
with very large size – our Universe itself. The distance to the farthest galaxies
is of order 1 Gpc. It is difficult to estimate the average density of the universe
accurately. Probably it is of order 10−26 kg m−3, as we shall discuss in §10.5.
Substituting these values in (1.12), we get

f ≈ 0.06.

This tells us that we should use general relativity to study the dynamics of
the whole Universe, which comes under cosmology. Thus, in astrophysics, we
have two clear situations in which general relativity is important – the study of
collapsed stars and the study of the whole Universe (or cosmology). In most
other circumstances, we can get good results by applying Newtonian theory
of gravity.

Even though general relativity is needed to study the structure of a col-
lapsed star, we do not require general relativity to study some of the physical
phenomena in the surrounding space or to figure out the conditions under which
the collapse takes place. Again, we shall see in Chapter 10 that Newtonian
mechanics allows us a formulation of the dynamics of the Universe, which is
conceptually incomplete, but the crucial equation surprisingly turns out to be
identical with the equation derived from general relativity (see §10.4). We are
thus able to do quite a bit of astrophysics without general relativity. However,
general relativity becomes essential when we want to make a conceptually
satisfactory investigation of the properties of the Universe as revealed by very
faraway galaxies. This subject will be taken up in Chapter 14 for those readers
who are willing to learn general relativity in Chapters 12–13.

1.6 Sources of astronomical information

In most branches of science, controlled experiments play a very important
role. Astrophysics is a peculiar science in which astronomical observations
take the place of controlled experiments. An astronomer can only observe an
astronomical object with the help of the signals reaching us from the object. We
list below four kinds of possible sources of astronomical information.

1. Electromagnetic radiation
To this day, the electromagnetic radiation reaching us from celestial objects
gives us the most extensive information about these objects. Until the time of
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World War II, all astronomical observations were primarily based on visible
light. However, in the last few decades, virtually all the bands of electromagnetic
radiation have become available for the astronomer. Instruments and methods
for detection of electromagnetic radiation (or photons) are discussed in §1.7.

2. Neutrinos
Nuclear reactions inside stars produce neutrinos, as we shall discuss in detail in
Chapter 4. Since neutrinos take part in weak interactions alone (and not in strong
or electromagnetic interactions), the cross-section of any neutrino process is
very small. Hence most of the neutrinos created at the centre of a star can come
out without interacting with the stellar matter. Unlike photons which come from
the outer layers of a star and cannot tell us anything directly about the stellar
core, neutrinos come out of the core unmodified. However, the very small cross-
section of interaction between matter and neutrinos also makes it difficult to
detect neutrinos. Only when a neutrino has interacted with the detector, can we
be sure of its presence. Because of this difficulty of detecting neutrinos, we
expect to detect neutrinos only either from very nearby sources or from sources
which emit exceptionally large fluxes of neutrinos (like a supernova explosion)
if the source is not too nearby.

For detecting neutrinos, we need a huge amount of some substance with
atoms having nuclei with which neutrinos interact. In the 1960s Davis started
a famous experiment to detect neutrinos from the Sun by using a huge under-
ground tank of cleaning liquid C2Cl4 as the detector. Initially Davis detected
fewer neutrinos than what is expected theoretically. The puzzling solar neutrino
problem and its subsequent resolution is described in §4.4.2. In the late 1980s
and the early 1990s, other neutrino detection experiments started, one of the
most important being Kamiokande in Japan. Apart from the Sun, the only other
astronomical source from which it has so far been possible to detect neutrinos
is the Supernova 1987A, as discussed in §4.7. Only about 20 neutrinos detected
in two terrestrial experiments could be ascribed to this supernova! Neutrino
astronomy is, therefore, very much in its infancy.

3. Gravitational radiation
According to general relativity, a disturbance in a gravitational field can propa-
gate in the form of a wave with speed c (to be shown in §13.4). Indirect evidence
for the existence of gravitational radiation has come from the binary pulsar
discovered by Hulse and Taylor (1975), as discussed in §5.5.1. The binary
pulsar is a system in which two neutron stars are orbiting around each other with
an orbital period of about 8 hours. This system continuously emits gravitation
radiation and keeps on losing energy, thereby causing the two neutron stars to
come closer together. This results in a decrease in the orbital period, which
has been measured and is found to be in good agreement with the theoretical
prediction from general relativity. This is, however, an indirect confirmation of
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the theory of gravitational radiation. One would like to directly measure the
gravitational radiation reaching the Earth from astronomical sources.

As we shall see in §13.5, gravitational radiation impinging on an object
causes a deformation of the object. Even a supernova explosion in our Galaxy
is expected to produce a size deformation which may be at most of order only
10−18 part of the size of the object. Even if the detector has a size of the order
of a km, the deformation will be of the order of 10−15 m only. One needs
very sensitive interferometric techniques to measure such tiny deformations.
As discussed in §13.5, several gravitational radiation detectors are now being
constructed around the world, but there is yet no unambiguous detection of
gravitational radiation from any astronomical source. In contrast to neutrino
astronomy which is in its infancy, gravitational wave astronomy is still waiting
to be born.

4. Cosmic rays
These are highly energetic charged particles (electrons, protons and heavier
nuclei) continuously bombarding the Earth from all directions. As we shall dis-
cuss in §8.10, we believe that these charged particles are accelerated primarily in
the shock waves produced in supernova explosions. Afterwards, however, they
spiral around the magnetic field of the Galaxy and, by the time they reach us,
they appear to be coming from directions totally different from the direction of
their original source. In the case of electromagnetic radiation reaching us from
outer space, usually the astronomical source can be identified without too much
ambiguity. In contrast, we cannot identify the astronomical source from which a
cosmic ray particle has come. Cosmic rays, therefore, have limited applications
as a source of astronomical information.

1.7 Astronomy in different bands of electromagnetic radiation

We now consider astronomy with electromagnetic radiation, which is so far
our main source of astronomical information. The Earth’s atmosphere is an
annoying inconvenience for the astronomer. The atmosphere is transparent to
only small bands of electromagnetic radiation. Even though visible light passes
through the atmosphere, the light rays are affected by the disturbances in the
atmosphere, leading to a degradation of the astronomical image. Figure 1.3
indicates the heights above the sea level which we have to climb before we
can receive radiation of a particular wavelength from the outer space. Apart
from visible light, radio waves in a certain wavelength band can reach the
Earth’s surface. However, radio waves with wavelengths larger than about 10 m
cannot reach us from astronomical sources, since this wavelength corresponds
to the plasma frequency of the ionosphere such that the ionosphere reflects radio
waves with wavelengths larger than about 10 m (see §8.13.2). In fact, this is
the reason why faraway regions on the Earth’s surface can communicate with
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Fig. 1.3 The penetrating ability of electromagnetic wave through the Earth’s atmo-

sphere. The altitudes against different wavelengths indicate the heights above the sea

level we have to climb to receive radiation of that wavelength from astronomical

sources. Adapted from Shu (1982, p. 17).

long-wavelength radio waves in spite of the curvature of the surface. We,
therefore, need to use shorter wavelengths for doing radio astronomy and longer
wavelengths for communicating with distant regions on the Earth’s surface.
Near infrared radiation is absorbed mainly by water vapour, which remains
confined in the lower layers of the atmosphere. Hence it is possible to do
astronomy in the near infrared by going to the top of a mountain in a dry region.
However, we need to go above the Earth’s atmosphere to do ultraviolet or X-
ray astronomy, since radiation in these wavelengths is absorbed by the upper
atmosphere. We now say a few words about the instruments for doing astronomy
in different wavelength bands.

1.7.1 Optical astronomy

This is astronomy in visible light. Although human beings have been observing
the starry sky from prehistoric times, modern optical astronomy can be said
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to have been born when Galileo turned his telescope to the night sky in 1609.
While Galileo’s telescope was of the refracting type, Newton developed the
reflecting telescope around 1668. The crucial optical component in a refracting
telescope is a lens and in a reflecting telescope is a parabolic mirror. Most of the
large telescopes constructed in the last one century are of the reflecting type. It
is not difficult to understand the reasons. Firstly, a mirror is free from chromatic
aberration, which affects a lens. Secondly, making a large lens of high quality
is much more difficult than making a large mirror, since a mirror requires only
a defect-free surface, whereas a lens involves a volume of glass that has to be
perfectly uniform and defect-free. Finally, a mirror can be supported from the
whole of its back-side, unlike a lens which is principally supported only along
its outer circumference. For a large optical component which can bend under its
own weight, a proper mechanical support is crucial.

The size of a telescope is indicated by the diameter of its main optical
component (the lens or the mirror). The great refractor of Yerkes Observatory
near Chicago, which was built in 1897 and has a diameter of 1 m, still remains
the world’s largest refracting telescope. From the beginning of the twentieth
century, reflecting telescopes started becoming large enough for accurate extra-
galactic studies. The 2.5 m reflector at Mount Wilson Observatory in California,
commissioned in 1917, was probably one of the most important telescopes in the
history of astronomy. It was used by astronomers like Hubble to make several
path-breaking discoveries. The 5 m reflector of the nearby Mount Palomar
Observatory, completed in 1948, remained the world’s largest telescope for
several years. Only in the last few years, it has been possible to build much
larger telescopes by using new technology. The largest telescope at present is
the Keck Telescope in Hawaii, which started operating from 1993. Instead of a
single mirror, it has 36 hexagonal adjustable segments which together make up
a large parabolic mirror of 10 m diameter.

Why do we try to build bigger and bigger telescopes? There are basically
two reasons – to achieve higher resolution and to collect more light. Let us look
at these two issues.

The resolving power of a mirror or a lens of diameter D is given by

θ = 1.22
λ

D
, (1.13)

where λ is the wavelength of the light used (see, for example, Born and Wolf,
1980, §8.6.2). For a 1 m telescope, the resolving power at a wavelength of
5000 Å should be of order 0.12′′. Telescopes which are of this size and larger,
however, produce images much less sharp than what is theoretically expected.
This is because the air through which the light rays pass before reaching the
telescope is always in turbulent motion. As a result, the paths of light rays
become slightly deflected, giving rise to blurred images. Astronomers use
the term seeing to indicate the quality of image under a given atmospheric
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Fig. 1.4 A view of the Keck Telescope in Hawaii showing its mirror made up of 36

segments. Courtesy: W. M. Keck Observatory.

condition. Seeing is rarely good enough to allow images which are sharp enough
to resolve more than 0.5′′. Only if we can place a telescope above the Earth’s
atmosphere, is it possible to achieve the theoretical resolution given by (1.13).
That is why the Hubble Space Telescope (HST), which was placed into orbit in
1990 and had an initial problem of image formation rectified in 1993, produced
much sharper and crisper images than any ground-based telescope, even though
its mirror has a diameter of only 2.4 m.

It may be mentioned that during the last couple of decades astronomers have
come up with ingenious techniques for producing images even with ground-
based telescopes that are sharper than what they would be if we were limited
by seeing. In speckle imaging, which is possible only for fairly bright sources,
very short exposure images are first produced. Since air above the telescope
would not move much during the short exposure, the image would be sharp but
dim. Combining many such images, a proper sharp image is constructed. The
other technique is adaptive optics, which involves putting a deformable mirror
in the light path within the telescope. A computer which gets information from
a sensor about the deflection of light paths caused by turbulence keeps adjusting
the mirror to correct for the effect of seeing.

It is clear that a bigger ground-based telescope cannot achieve higher
resolutions beyond a certain limit. However, the light-gathering ability of a
telescope – which obviously increases with the area of the mirror and therefore
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goes as D2 – turns out to be crucial when we want to produce images of
very faint objects like faraway galaxies. Anybody who has been fascinated by
beautiful photographs of galaxies in books usually becomes very disappointed
when he or she looks at a galaxy through a telescope for the first time in life.
Beautiful galaxy pictures are usually produced only after long exposures. One
needs a large telescope to produce photographs or spectra of very faint galaxies.

1.7.2 Radio astronomy

Radio astronomy – the first of the new astronomies – began when Jansky
(1933) discovered radio signals coming from the direction of the constellation
Sagittarius, where the galactic centre is located. Reber (1940) later built a
primitive radio telescope in his backyard and found that radio signals were
coming from the Sun and also from some other directions in the sky. The
development of radar technology during World War II provided a major boost
for the blossoming of radio astronomy after the war.

The main component of a radio telescope is an antenna in the form of a
dish, which focuses the radio waves at a focal point, where receiving instru-
ments can be kept. The early radio telescopes consisted of single dishes. The
famous radio telescope of Jodrell Bank near Manchester, constructed in 1957,
has a fully steerable single dish of 76 m diameter. Since radio waves are not
affected by the atmospheric turbulence (though radio waves at wavelengths
longer than 20 cm are affected by the plasma irregularities in the ionosphere
and the solar wind), the resolving power of a radio telescope is not limited by
atmospheric seeing and can achieve the theoretical value given by (1.13). With
the development of interferometric techniques by Ryle and others, it became
possible to combine signals received by different dishes and to produce images
of which the resolution was determined by the maximum separation amongst
the dishes. At a wavelength of 10 cm, antennas spread over an area of 1 km give
a resolution of order 2.4′′. Perhaps the world’s most important radio telescope in
the last few years has been the Very Large Array (VLA) in New Mexico, which
became operational around 1980 and consists of 27 radio antennas in a Y-shaped
configuration spread over a few km. To achieve even higher resolution, one
can combine signals from different radio telescopes around the Earth operating
together in a mode called the Very Long Baseline Interferometry (VLBI). Then
essentially the diameter of the Earth becomes the D that you put in (1.13).
VLBI can achieve much higher resolution than what is possible in optical
astronomy.

Let us say a few words about the kinds of astronomical sources from
which one expects radio waves. Surfaces of stars have temperatures of order
a few thousand degrees and emit primarily in visible wavelengths. The visible
radiation received by optical telescopes from hot bodies (like stars) is emitted by
them because of their temperature – the type of radiation usually called thermal
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Fig. 1.5 The Very Large Array (VLA) radio telescope in New Mexico, made up of

several dish antennas. Courtesy: NRAO/AUI/NSF.

radiation in astronomy. There are, however, many non-thermal processes due
to which an object may emit radiation. Some of the most intriguing objects
discovered by radio telescopes – pulsars (§5.5) and quasars (§9.4) – emit not
because they have temperatures appropriate for the emission of radio waves, but
because of non-thermal processes. One very important example of non-thermal
radiation in astronomy is synchrotron radiation, which is emitted by relativistic
electrons spiralling around magnetic field lines (§8.11). All signals received
by radio telescopes, however, are not non-thermal. One of the most famous
discoveries in the history of radio astronomy is that of the thermal radiation
with 2.73 K temperature filling the whole Universe (§10.5).

1.7.3 X-ray astronomy

Since X-rays are absorbed by the Earth’s ionosphere, it is necessary to send an
X-ray telescope completely above the Earth’s atmosphere in order to receive
X-rays from astronomical objects. The first extraterrestrial X-ray signals were
received by Geiger counters flown in a rocket (Giacconi et al., 1962). X-ray
astronomy really came of age when the satellite Uhuru, completely devoted
to X-ray astronomy, was launched in 1970. The Chandra X-ray Observatory
(named after S. Chandrasekhar), which was lifted into orbit in 1999, is cap-
able of producing much sharper X-ray images than any of the previous X-ray
telescopes.

X-rays are reflected from metal surfaces only when they are incident at
grazing angles (otherwise, they pass through metals). Hence X-ray telescopes
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Incident
ray
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Fig. 1.6 A schematic representation of the optics of an X-ray telescope, in which

X-rays are focused by two successive reflections at grazing incidence.

are designed very differently from optical telescopes. Figure 1.6 shows a
sketch of an X-ray telescope in which X-rays are brought to a focus after two
reflections at grazing angles. Also, mirrors in X-ray telescopes have to be much
smoother than mirrors in optical telescopes because of the small wavelength
of X-rays. Hence building powerful X-ray telescopes has been a formidable
technological challenge.

X-rays are mainly emitted by very hot gases in astronomical systems. As
we shall see in §5.6, one of the most important sources of astronomical X-rays
is the type of binary star system in which one is a compact star gravitationally
pulling off gas from its inflated binary companion.

1.7.4 Other new astronomies

After this brief discussion of the three bands of electromagnetic radiation
which have yielded the maximum amount of astronomical information (optical,
radio and X-ray), let us make a few remarks about the other bands. By now,
virtually all wavelengths of electromagnetic radiation have been explored by
astronomers.

Since star-forming regions are much less hot than the surfaces of stars, they
are expected to emit infrared radiation. Therefore infrared astronomy is very
important in understanding the star formation process, amongst other things.
As we already mentioned, near infrared astronomy can be done from telescopes
located at sufficiently high altitudes. One difficulty with infrared astronomy is
that all objects around in the observatory emit infrared radiation and one has
to pick up the signals from astronomical sources out of all these. It is like
doing optical astronomy with lights around. There is no doubt that space is a
better place for infrared astronomy. The Infrared Astronomy Satellite (IRAS)
was launched in 1983. It has been followed by the Space Infrared Telescope
Facility (SIRTF) launched in 2003.

Other important satellite missions devoted to studying other bands of elec-
tromagnetic radiation are the International Ultraviolet Explorer (IUE), launched
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in 1978 to explore the Universe in the ultraviolet, and the Compton Gamma Ray
Observatory, launched in 1991 to detect gamma rays from outer space.

1.8 Astronomical nomenclature

Somebody embarking on a first study of astronomy may get confused by the
names of various astronomical objects. Only a few of the brightest stars were
given names in various ancient civilizations. Some of these names are still in
use. For stars which do not have names and for all other astronomical objects,
astronomers had to invent schemes by which an astronomical object can be
identified unambiguously. There are several famous catalogues of astronomical
objects. Very often an astronomical object is identified by the entry number in a
well-known catalogue.

Stars down to about ninth magnitude were listed in the famous Henry
Draper Catalogue, published during 1918–1924. It gives the celestial coor-
dinates and spectroscopic classification (to be discussed in §3.5.1) of about
225,000 stars. A star listed in this catalogue is indicated by ‘HD’ followed by
its listing number. For example, Sirius, the brightest star in the sky, can also be
referred to as HD 48915, since it is listed as the object number 48915 in the
Henry Draper Catalogue.

As will be clear from this book, modern astrophysicists are very much
interested in objects other than stars visible in the sky. During 1774–1781 the
French astronomer Charles Messier compiled a famous list of more than 100
non-stellar objects visible through a small telescope. This list includes some of
the most widely studied galaxies, star clusters, supernova remnants and nebulae
of various types. These objects are indicated by ‘M’ followed by the number
in the Messier catalogue. The Andromeda Galaxy is M31, whereas the Crab
Nebula, the remnant of a supernova seen from the Earth in 1054, is M1. A
much bigger catalogue for non-stellar objects with nearly 8000 entries was
compiled by Dreyer (1888) based primarily on observations of Hershel. This
is known as the New General Catalogue, abbreviated as NGC. Galaxies not
listed by Messier but listed in NGC are usually indicated by ‘NGC’ followed by
the number in this catalogue.

After the development of radio and X-ray astronomies, astronomers had
to devise schemes for identifying objects discovered in the radio and X-ray
wavelengths. Initially when only a few objects emitting radio or X-rays were
known, they were often named after the constellation in which they were found.
The strongest radio source and the strongest X-ray source in the constellation
Cygnus, for example, are known respectively as Cygnus A and Cygnus X-1.
A very useful catalogue of radio sources is the Third Cambridge Catalogue of
Radio Sources, known as 3C (Edge et al., 1959). Radio sources listed in this
catalogue are often indicated by ‘3C’ followed by the number in the catalogue.
The object 3C 273 is the brightest quasar (to be discussed in §9.4).
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Lastly, some astronomical objects are named by their celestial coordinates.
For example, PSR 1913 + 16 is the name of the pulsar (to be discussed in §5.5)
having the right ascension (R.A.) 19 hours 13 minutes and the declination +16◦.

Exercises

1.1 The Sun is at a distance of about 8 kpc from the galactic centre and

moves around the galactic centre in a circular path with a velocity of about

220 km s−1. Make a rough estimate of the mass of the Galaxy.

1.2 A star at a distance of 4 pc has an apparent magnitude 2. What is its

absolute magnitude? Given the fact that the Sun has a luminosity 3.9 × 1026 W

and has an absolute magnitude of about 5, find the luminosity of the star.

1.3 The Giant Metrewave Radio Telescope (GMRT) near Pune has several

antennas spread over a region of size about 10 km. Make an estimate of the

resolution (in arcseconds) which this telescope is expected to have. How large

will an optical telescope have to be to achieve similar resolution in visible

light?



2

Interaction of radiation
with matter

2.1 Introduction

As we pointed out in §1.6, most of our knowledge about the astrophysical
Universe is based on the electromagnetic radiation that reaches us from the sky.
By analysing this radiation, we infer various characteristics of the astrophysical
systems from which the radiation was emitted or through which the radiation
passed. Hence an understanding of how radiation interacts with matter is very
vital in the study of astrophysics. Such an interaction between matter and
radiation can be studied at two levels: macroscopic and microscopic. At the
macroscopic level, we introduce suitably defined emission and absorption coef-
ficients, and then try to solve our basic equations assuming these coefficients to
be given. This subject is known as radiative transfer. At the microscopic level,
on the other hand, we try to calculate the emission and absorption coefficients
from the fundamental physics of the atom. Much of this chapter is devoted
to the macroscopic theory of radiative transfer. Only in §2.6, do we discuss how
the absorption coefficient of matter can be calculated from microscopic physics.
The emission coefficient directly follows from the absorption coefficient if the
matter is in thermodynamic equilibrium, as we shall see in §2.2.4.

2.2 Theory of radiative transfer

2.2.1 Radiation field

Let us first consider how we can provide the mathematical description of
radiation at a given point in space. It is particularly easy to give a mathematical
description of blackbody radiation, which is homogeneous and isotropic inside
a container. We shall assume the reader to be familiar with the basic physics of

23
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Fig. 2.1 Illustration of specific intensity.

blackbody radiation, which is discussed in many excellent textbooks on thermal
physics (see, for example, Saha and Srivastava, 1965, Ch. XV; Reif, 1965,
pp. 373–388). One of the most famous results in the theory of blackbody
radiation is Planck’s law (Planck, 1900), which specifies the energy density Uν

in the frequency range ν, ν + dν:

Uνdν = 8πh

c3

ν3dν

exp
(

hν
κBT

)
− 1

. (2.1)

This law more or less provides us with complete information about blackbody
radiation at a given temperature T . Since blackbody radiation is isotropic,
we do not have to provide any directional information. In general, however,
the radiation in an arbitrary situation is not isotropic. When we have sunlight
streaming into a room, we obviously have a non-isotropic situation involving
the flow of radiation from a preferred direction. We require a more complicated
prescription to describe such radiation mathematically.

We consider a small area dA at a point in space as shown in Figure 2.1.
Let us consider the amount of radiation dEνdν passing through this area in time
dt from the solid angle d
 and lying in the frequency range ν, ν + dν. It is
obvious that dEνdν should be proportional to the projected area dA cos θ , as
well as proportional to dt , d
 and dν. Hence we can write

dEνdν = Iν(r, t, n̂) cos θ dA dt d
 dν, (2.2)

where n̂ is the unit vector indicating the direction from which the radiation is
coming. The quantity Iν(r, t, n̂), which can be a function of position r, time t
and direction n̂, is called the specific intensity. If Iν(r, t, n̂) is specified for all
directions at every point of a region at a time, then we have a complete prescrip-
tion of the radiation field in that region at that time. In this elementary treatment,
we shall restrict ourselves only to radiation fields which are independent of time.

It is possible to calculate various quantities like flux, energy density and
pressure of radiation if we know the radiation field at a point in space. For
example, radiation flux is simply the total energy of radiation coming from
all directions at a point per unit area per unit time. Hence we simply have to
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divide (2.2) by dA dt and integrate over all solid angles. It is easy to see that the
radiation flux associated with frequency ν is

Fν =
∫

Iν cos θ d
, (2.3)

whereas the total radiation flux is

F =
∫

Fν dν. (2.4)

Energy density of radiation

Let us consider energy dEν of radiation associated with frequency ν as given by
(2.2). This energy passes through area dA in time dt in the direction n̂. Since the
radiation traverses a distance c dt in time dt , we expect this radiation dEν to fill
up a cylinder with base dA and axis of length c dt in the direction n̂. The volume
of such a cylinder being cos θ dA c dt , the energy density of this radiation

dEν

cos θ dA c dt
= Iν

c
d


follows from (2.2). To get the total energy density of radiation at a point
associated with frequency ν, we have to integrate over radiation coming from
different directions so that

Uν =
∫

Iν
c

d
. (2.5)

We now apply (2.5) to blackbody radiation to find its specific intensity.
Since blackbody radiation is isotropic, the specific intensity of blackbody radi-
ation, usually denoted by Bν(T ), should be independent of direction. Hence, on
applying (2.5) to blackbody radiation, we get

Uν = 4π

c
Bν(T ),

where 4π comes from the integration over 
. Making use of the expression
(2.1), we now conclude that the specific intensity of blackbody radiation is
given by

Bν(T ) = 2hν3

c2

1

exp
(

hν
κBT

)
− 1

. (2.6)

Pressure due to radiation

The pressure of the radiation field over a surface is given by the flux of momen-
tum perpendicular to that surface. The momentum associated with energy dEν
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is dEν/c and its component normal to the surface dA is dEν cos θ/c. By dividing
this by dA dt , we get the momentum flux associated with dEν , which is

dEν cos θ

c

1

dA dt
= Iν

c
cos2 θ d


on making use of (2.2). The pressure Pν is obtained by integrating this over all
directions, i.e.

Pν = 1

c

∫
Iν cos2 θ d
. (2.7)

If the radiation field is isotropic, then we get

Pν = Iν
c

∫
cos2 θ d
 = 4π

3

Iν
c

. (2.8)

It follows from (2.5) that

Uν = 4π
Iν
c

for isotropic radiation. Combining this with (2.8), we have

Pν = 1

3
Uν (2.9)

for isotropic radiation.

2.2.2 Radiative transfer equation

If matter is present, then in general the specific intensity keeps changing as we
move along a ray path. Before we consider the effect of matter, first let us find
out what happens to the specific intensity in empty space as we move along a
ray path.

Let dA1 and dA2 be two area elements separated by a distance R and placed
perpendicularly to a ray path, as shown in Figure 2.2. Let Iν1 and Iν2 be the
specific intensity of radiation in the direction of the ray path at dA1 and dA2.
We want to find out the amount of radiation passing through both dA1 and dA2

in time dt in the frequency range ν, ν + dν. If d
2 is the solid angle subtended

Fig. 2.2 Two area elements

perpendicular to a ray path.
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by dA1 at dA2, then according to (2.2) the radiation falling on dA2 in time dt
after passing through dA1 is

Iν2 dA2 dt d
2 dν.

From considerations of symmetry, this should also be equal to

Iν1 dA1 dt d
1 dν,

where d
1 is the solid angle subtended by dA2 at dA1. Equating these two
expressions and noting that

d
1 = dA2

R2
, d
2 = dA1

R2
,

we get

Iν1 = Iν2. (2.10)

In other words, in empty space the specific intensity along a ray path does not
change as we move along the ray path. If s is the distance measured along the
ray path, then we can write

dIν
ds

= 0 (2.11)

in empty space.
At first sight, this may appear like a surprising result. We know that the

intensity falls off as we move further and further away from a source of radi-
ation. Can the specific intensity remain constant? The mystery is cleared up
when we keep in mind that the specific intensity due to a source is essentially
its intensity divided by the solid angle it subtends, which means that specific
intensity is a measure of the surface brightness. As we move further away from a
source of radiation, both its intensity and angular size fall as (distance)2. Hence
the surface brightness, which is the ratio of these two, does not change. Suppose
you are standing on a street in a dark night and are looking at the street lights.
The lights further away would appear smaller in size, but their surfaces would
appear as bright as the surfaces of nearby lights. This result has an important
astronomical implication. If we neglect intergalactic extinction, then the surface
brightness of a galaxy which is resolved by a telescope is independent of
distance. Whether the galaxy is nearby or far away, its surface would appear
equally bright to us. We may expect a similar consideration to hold for stars also.
Then why do distant stars look dimmer? Since the theory of radiative transfer
is based on the concept of ray path, we are tacitly assuming geometrical optics
in all our derivations. So our results hold as long as geometrical optics is valid.
If the star is very far away, then its disk is not resolved and geometrical optics
no longer holds. The angular size of the star may be caused by the diffraction
of light or the seeing (§1.7.1). As the star is moved further away, its intensity
diminishes, but the angular size due to diffraction does not change much. Hence
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a decreasing amount of radiation gets spread over an image of the same angular
size, making the star appear dimmer. It may be noted that very faraway galaxies
also look dimmer due to general relativistic effects to be discussed in §14.4.1.

Let us now consider what happens if matter is present along the ray path.
If the matter emits, we expect that it will add to the specific intensity. This can
be taken care of by adding an emission coefficient jν on the right-hand side of
(2.11). On the other hand, absorption by matter would lead to a diminution of
specific intensity and the diminution rate must be proportional to the specific
intensity itself. In other words, the stronger the beam, the more energy there
is for absorption. Hence the absorption term on the right-hand side of (2.11)
should be negative and proportional to Iν . Thus, in the presence of matter, (2.11)
gets modified to the following form

dIν
ds

= jν − αν Iν, (2.12)

where αν is the absorption coefficient. This is the celebrated radiative transfer
equation and provides the basis for our understanding of interaction between
radiation and matter.

In the early years of spectral research, many astronomers held the view that
the Sun was surrounded by a cool layer of gas which only absorbed radiation
at certain frequencies to produce the dark lines. Schuster (1905) recognized the
importance of treating emission and absorption simultaneously by the same layer
of gas. A primitive version of radiative transfer theory was formulated by Schuster
(1905) by considering only two beams of radiation – one moving upward and
one moving downward. Schwarzschild (1914) was the first to formulate a proper
radiative transfer theory by considering the specific intensity of radiation.

It is fairly trivial to solve the radiative transfer equation (2.12) if either the
emission coefficient or the absorption coefficient is zero. Let us consider the
case of jν = 0, i.e. matter is assumed to absorb only but not to emit. Then (2.12)
becomes

dIν
ds

= −αν Iν. (2.13)

On integrating this equation over the ray path from s0 to s, we get

Iν(s) = Iν(s0) exp

[
−
∫ s

s0

αν(s
′) ds′
]

. (2.14)

More general solutions of the radiative transfer equation will be discussed now.

2.2.3 Optical depth. Solution of radiative transfer equation

We define optical depth τν through the relation

dτν = αν ds (2.15)
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such that the optical depth along the ray path between s0 and s becomes

τν =
∫ s

s0

αν(s
′) ds′. (2.16)

From (2.14) and (2.16), it follows that the specific intensity along the ray path
falls as

Iν(τν) = Iν(0)e−τν (2.17)

if matter does not emit.
If the optical depth τν � 1 along a ray path through an object, then the

object is known as optically thick. On the other hand, an object is known as
optically thin if τν � 1 for a ray path through it. It follows from (2.17) that
an optically thick object extinguishes the light of a source behind it, whereas an
optically thin object does not decrease the light much. Hence the terms optically
thick and optically thin roughly mean opaque and transparent at the frequency
of electromagnetic radiation we are considering.

We now define the source function

Sν = jν
αν

. (2.18)

Dividing the radiative transfer equation (2.12) by αν , we get

dIν
dτν

= −Iν + Sν (2.19)

on making use of (2.15) and (2.18). Multiplying this equation by eτν , we obtain

d

dτν

(Iνeτν ) = Sνeτν .

Integrating this equation from optical path 0 to τν (i.e. from s0 to s along the
ray path), we get

Iν(τν) = Iν(0) e−τν +
∫ τν

0
e−(τν−τ ′

ν)Sν(τ
′
ν) dτ ′

ν. (2.20)

This is the general solution of the radiative transfer equation.
If matter through which the radiation is passing has constant properties,

then we can take Sν constant and work out the integral in (2.20). This gives

Iν(τν) = Iν(0) e−τν + Sν (1 − e−τν ).

We are now interested in studying the emission and absorption properties of an
object itself without a source behind it. Then we take Iν(0) = 0 and write

Iν(τν) = Sν (1 − e−τν ). (2.21)
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Let us consider the cases of optically thin and thick objects. If the object is
optically thin (i.e. τν � 1), then we write 1 − τν for e−τν such that

Iν(τν) = Sντν.

For matter with constant properties, we take τν = αν L , where L is the total
length of the ray path. Making use of (2.18), we get

Optically thin: Iν = jν L . (2.22)

On the other hand, if the object is optically thick, then we neglect e−τν compared
to 1 in (2.21). Then

Optically thick: Iν = Sν. (2.23)

We have derived two tremendously important results (2.22) and (2.23). To
understand their physical significance, we have to look at some thermodynamic
considerations.

2.2.4 Kirchhoff’s law

Suppose we have a box kept in thermodynamic equilibrium. If we make a small
hole on its side, we know that the radiation coming out of the hole will be
blackbody radiation. Hence the specific intensity of radiation coming out of the
hole is simply

Iν = Bν(T ), (2.24)

where Bν(T ) is given by (2.6). We now keep an optically thick object behind
the hole as shown in Figure 2.3. If this object is in thermodynamic equilibrium
with the surroundings, then it will not disturb the environment and the radiation
coming out of the hole will still be blackbody radiation, with specific intensity
given by (2.24). On the other hand, we have seen in (2.23) that the radiation
coming out of an optically thick object has the specific intensity equal to the
source function. From (2.23) and (2.24), we conclude

Sν = Bν(T ) (2.25)

Fig. 2.3 Blackbody radiation coming out of a hole in a box with an optically thick

obstacle placed behind the hole.
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when matter is in thermodynamic equilibrium. On using (2.18), we finally have

jν = αν Bν(T ). (2.26)

This famous result is known as Kirchhoff’s law Kirchhoff (1860). The relevance
of this law in the radiative transfer theory was recognized by the pioneers
Schuster (1905) and Schwarzschild (1914).

Let us now stop and try to understand what we have derived. Very often
matter tends to emit and absorb more at specific frequencies corresponding to
spectral lines. Hence both jν and αν are expected to have peaks at spectral
lines. But, according to (2.26), the ratio of these coefficients should be the
smooth blackbody function Bν(T ). We now look at the results (2.22) and (2.23).
The radiation coming out of an optically thin source is essentially determined
by its emission coefficient. Since the emission coefficient is expected to have
peaks at spectral lines, we find the emission from an optically thin system
like a hot transparent gas to be mainly in spectral lines. On the other hand,
the specific intensity of radiation coming out of an optically thick source is its
source function, which has been shown to be equal to the blackbody function
Bν(T ). Hence we expect an optically thick object like a hot piece of iron to
emit roughly like a blackbody. The theory of radiative transfer is important not
only in astrophysics. If we want to understand rigorously and quantitatively
many everyday phenomena such as why hot transparent gases emit in spectral
lines whereas hot pieces of iron emit like blackbodies, then we need to invoke
the theory of radiative transfer. The nature of radiation from an astrophysical
source crucially depends on whether the source is optically thin or optically
thick. Emission from a tenuous nebula is usually in spectral lines. On the other
hand, a star emits very much like a blackbody. Why is the radiation from a
star not exactly blackbody radiation? Why do we see absorption lines? We
derived (2.23) by assuming the source to have constant properties. This is
certainly not true for a star. As we go down from the star’s surface, temperature
keeps increasing. Hence (2.23) should be only approximately true. It is the
temperature gradient near the star’s surface which gives rise to the absorption
lines. This will be shown in §2.4.3.

2.3 Thermodynamic equilibrium revisited

By assuming thermodynamic equilibrium, we have derived the tremendously
important result (2.25) that the source function should be equal to the
blackbody function Bν(T ). In a realistic situation, we rarely have strict
thermodynamic equilibrium. The temperature inside a star is not constant, but
varies with its radius. In such a situation, will (2.25) hold? Before answer-
ing this question, let us look at some basic characteristics of thermodynamic
equilibrium.
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2.3.1 Basic characteristics of thermodynamic equilibrium

If a system is in thermodynamic equilibrium, then certain important principles
of physics can be applied to that system. Let us recapitulate some of these
important principles. We assume the reader to be familiar with them and do
not present derivations or detailed discussion.

Maxwellian velocity distribution

Different particles in a gas move around with different velocities. If the gas is in
thermodynamic equilibrium with temperature T , then the number of particles
having speeds between v and v + dv is given by

dnv = 4πn

(
m

2πκBT

)3/2

v2 exp

(
− mv2

2κBT

)
dv, (2.27)

where n is the number of particles per unit volume and m is the mass of
each particle. This is the celebrated law of the Maxwellian velocity distribution
(Maxwell, 1860).

Boltzmann and Saha equations

We know that a hydrogen atom has several different energy levels. It is also
possible to break the hydrogen atom into a proton and an electron. This process
of removing an electron from the atom is called ionization. If a gas of hydrogen
atoms is kept in thermodynamic equilibrium, then we shall find that a certain
fraction of the atoms will occupy a particular energy state and also a certain
fraction will be ionized. The same considerations hold for other gases besides
hydrogen.

If n0 is the number density of atoms in the ground state, then the number
density ne of atoms in an excited state with energy E above the ground state is
given by

ne

n0
= exp

(
− E

κBT

)
. (2.28)

This is the Boltzmann distribution law.
Saha (1920) derived the equation which tells us what fraction of a gas will

be ionized at a certain temperature T and pressure P . Derivation of this equation
can be found in books such as Mihalas (1978, §5-1) or Rybicki and Lightman
(1979, §9.5). If χ is the ionization potential (i.e. the amount of energy to be
supplied to an atom to ionize it), then the fraction x of atoms which are ionized
is given by

x2

1 − x
= (2πme)

3/2

h3

(κBT )5/2

P
exp

(
− χ

κBT

)
, (2.29)

where h is Planck’s constant and me is the mass of electron.
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Planck’s law of blackbody spectrum

When radiation is in thermodynamic equilibrium with matter, it is called black-
body radiation. The spectral distribution of energy in blackbody radiation is
given by the famous law derived by Planck (1900). We have already written
down the law in (2.1).

2.3.2 Concept of local thermodynamic equilibrium

Now we come to the all-important question: when can we expect a system to
be in thermodynamic equilibrium and when can we expect the above principles
(Maxwellian velocity distribution, Boltzmann equation, Saha equation, Planck’s
law) to hold? If a box filled with gas and radiation is kept isolated from the
surroundings, then we know that thermodynamic equilibrium will get estab-
lished inside, and all the above principles will hold. However, a realistic system
is always more complicated. Inside a star, the temperature keeps decreasing
as we go from the central region to the outside. Can the above principles be
applied in such a situation? To answer that question, let us try to understand
how thermodynamic equilibrium gets established.

We again consider a box filled with gas and radiations. Even if the gas
particles initially do not obey the Maxwellian distribution, they will relax to
it after undergoing a few collisions. In other words, collisions – or rather
interactions amongst the constituents of the system – are vital in establishing
thermodynamic equilibrium. We assume the reader to be familiar with the
concept of mean free path. When collisions are frequent, the mean free path
turns out to be small. Hence, the smallness of mean free path is a measure of
how important collisions are. If the mean free path is small, then particles in a
gas will interact with each other more effectively and we expect that principles
like the Maxwellian velocity distribution, the Boltzmann equation or the Saha
equation will hold. But how small will the mean free path have to be? Suppose
the temperature is varying inside a gas and we consider a point X with the left
side hotter and right side colder. Then gas particles coming to X from the left
side will be more energetic than the gas particles coming from the right side.
This will make the velocity distribution at X different from the Maxwellian,
provided particles are able to come directly to X from regions where tempera-
tures are significantly different from the temperature at X . However, if the mean
free path is small and the temperature does not vary much over that distance,
then these considerations will be unimportant and we shall have the Maxwellian
velocity distribution. Hence the condition of validity of the Maxwellian velocity
distribution (as well as the Boltzmann equation and the Saha equation) is that
the mean free path has to be small enough such that the temperature does not
vary much over the mean free path. For Planck’s law to be established for
radiation, the radiation has to be in equilibrium with matter. This is possible only
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when radiation interacts efficiently with matter. The absorption coefficient αν

in the radiative transfer equation (2.12) is a measure of the interaction between
radiation and matter. We note from (2.12) that αν has the dimension of inverse
length. Its inverse α−1

ν gives the distance over which a significant part of a beam
of radiation would get absorbed by matter. Often this distance α−1

ν is referred
to as the mean free path of photons, since this is the typical distance a photon
is expected to traverse freely before interacting with an atom. The smaller the
value of α−1

ν , the more efficient is the interaction between matter and radiation.
If α−1

ν is sufficiently small such that the temperature can be taken as constant
over such distances, then we expect Planck’s law of blackbody radiation to hold.

Let us consider a simple example from everyday life – sunlight streaming
into a room through a window. Is this a system in thermodynamic equilibrium?
The mean free path of air molecules is only of the order of 10−7 m. Hence we
expect the Maxwellian velocity distribution and the Boltzmann equation to hold
for air molecules. The ionization level in air at room temperature is negligible,
which is completely consistent with the Saha equation. However, if the system
were in complete thermodynamic equilibrium, then radiation in the room should
obey Planck’s law at the room temperature. This is definitely not the case. Since
air is virtually transparent to visible light, the photons do not interact with air
molecules at all. The photons in the beam of sunlight have come directly from
the surface of the Sun and have not interacted with matter at all after they left the
solar surface. If we analyse the spectrum of sunlight, then we find that it is not
like a blackbody spectrum at room temperature, but the shape of the spectrum
is rather like a blackbody spectrum at a temperature of 6000 K (the surface tem-
perature of the Sun), although the energy density in sunlight is obviously much
less than the energy density in blackbody radiation at 6000 K. Although ther-
modynamic equilibrium is a very useful concept, this example would make one
realize that we usually do not have full thermodynamic equilibrium around us.

If the temperature is varying within a system, then it is not in full ther-
modynamic equilibrium. However, we can have a situation where both α−1

ν

and the mean free path of particles are small compared to the length over
which the temperature varies appreciably. In a such situation, all the important
laws of thermodynamic equilibrium are expected to hold within a local region,
provided we use the local temperature T in the expressions (2.1), (2.27), (2.28)
and (2.29). Such a situation is known as local thermodynamic equilibrium,
abbreviated as LTE. Sunlight streaming into the room is obviously not a case
of LTE because the air is almost transparent to radiation and hence α−1

ν must
be very large. Inside a star, however, we expect LTE to be a very good approx-
imation and we can assume (2.25) to hold when we solve the radiative transfer
equation inside the star. In the outermost atmosphere of a star, LTE may fail
and it often becomes necessary to consider departures from LTE when studying
the transfer of radiation there. In our elementary treatment, we shall consider
radiative transfer only in situations of LTE.
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2.4 Radiative transfer through stellar atmospheres

Several treatises have been written on radiative transfer theory, one of the most
famous being by Chandrasekhar (1950). Now, we have written down the general
solution of the radiative transfer equation in (2.20). If it is so easy to write
down the general solution, then what is the necessity of writing treatises on this
subject? Well, we get a complete solution of the problem from (2.20) only if
we know in advance the source function Sν everywhere. This is almost never
the case! Even in LTE when (2.25) holds, we need to know the temperatures
at different points to find out the source functions there. We usually have the
problem of finding out the radiation field and the temperature simultaneously.
If the radiation field is strong in a region, then we expect the temperature to be
high there. Hence the radiation field determines the temperature. On the other
hand, the temperature determines the source function and thereby the radiation
field through (2.20). It is the simultaneous solution of temperature and radiation
field which is a tremendously challenging problem. To give an idea how this
problem can be solved, we discuss the application of radiative transfer theory to
stellar atmospheres.

Traditionally, the study of stellar astronomy has been divided into two
branches: stellar interior and stellar atmosphere. One may wonder, at what
depth inside a star does the stellar atmosphere end and the stellar interior begin.
As it happens, the terms stellar interior and stellar atmosphere do not correspond
to physically distinct regions of a star, but to two different scientific subjects
which address two different sets of questions. We shall see in the next chapter
that there exist certain relationships amongst such quantities as the total mass
of a star and its luminosity (more massive stars tend to be more luminous).
Since we need to look at the physical processes in the interior of the star to
understand such global relationships, studying and understanding such global
characteristics of a star constitutes the subject of stellar interior. On the other
hand, to explain and analyse the spectrum of a star, we need to consider the
passage of radiation through the outer layers of a star. This is the subject of
stellar atmospheres. We now give a very brief introduction to this subject.

2.4.1 Plane parallel atmosphere

When we focus our attention on the local region of a stellar atmosphere, we can
neglect the curvature and assume the various thermodynamic quantities like the
temperature T to be constant over horizontal planes. Let us take the z axis in
the vertical direction, with z increasing above. Any thermodynamic variable of
the atmosphere can be a function of z alone. Let us consider an element of a
ray path ds as shown in Figure 2.4. If dz is the change in z corresponding to ds,
then we have
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Fig. 2.4 A ray path through a plane parallel atmosphere.

ds = dz

cos θ
= dz

μ
, (2.30)

where

θ = cos−1 μ

is the angle subtended by the ray path with the vertical direction.
We have seen in §2.2.1 that the specific intensity Iν(r, t, n̂) can in general

be a function of position, time and direction. We are considering a static situ-
ation. In the plane parallel stellar atmosphere, nothing varies in the horizontal
directions and all direction vectors lying on a cone around the vertical axis are
symmetrical. Hence we expect the specific intensity Iν(z, μ) to be a function
of z and μ = cos θ only. On using (2.30), the radiative transfer equation (2.12)
gives us the equation

μ
∂ Iν(z, μ)

∂z
= jν − αν Iν (2.31)

for the plane parallel atmosphere problem.
We now define the optical depth of a plane parallel atmosphere slightly

differently from the way it was defined in (2.15). We define

dτν = −αν dz. (2.32)

In other words, the optical depth is now defined as a function of the vertical
distance z rather than the distance along ray path s. The negative sign in
(2.32) implies that the optical depth increases as we go deeper down, which
corresponds to the usual notion of depth. The normal convention is to take
τν = 0 at the top of the stellar atmosphere.
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On dividing (2.31) by αν and using the definition (2.18) of the source
function, we get

μ
∂Iν(τν, μ)

∂τν

= Iν − Sν. (2.33)

Multiplying (2.33) by e−(τν/μ) and rewriting it slightly, we have

μ
d

dτν

(
Iνe− τν

μ

)
= −Sνe− τν

μ .

Integrating this equation from some reference optical depth τν,0, we obtain

Iνe− tν
μ |τν

τν,0
= −
∫ τν

τν,0

Sν

μ
e− tν

μ dtν. (2.34)

We now consider two cases separately: (I) 0 ≤ μ ≤ 1, which corresponds to
a ray path proceeding in the outward direction in the stellar atmosphere; and
(II) −1 ≤ μ ≤ 0, which corresponds to a ray path going inward in the stellar
atmosphere. In case (I) the ray path can be assumed to begin from a great
depth inside the star and we can take τν,0 = ∞. On the other hand, the ray path
in case (II) starts receiving contributions beginning with the top of the stellar
atmosphere and we can take τν,0 = 0. In these two cases, (2.34) reduces to

0 ≤ μ ≤ 1 : Iν(τν, μ) =
∫ ∞

τν

Sνe−(tν−τν)/μ
dtν
μ

, (2.35)

− 1 ≤ μ ≤ 0 : Iν(τν, μ) =
∫ τν

0
Sνe−(τν−tν)/(−μ) dtν

(−μ)
. (2.36)

It may be noted that (2.36) was obtained by using the boundary condition
Iν(0, μ) = 0 for negative μ, which implies that the specific intensity for a
downward ray path is zero at the top of the stellar atmosphere.

So far we have not used any thermodynamics. To proceed further, we have
to use some suitable expression for the source function Sν in (2.35) and (2.36).
Let us assume LTE throughout the stellar atmosphere so that the source function
everywhere is equal to the Planck function there, in accordance with Kirchhoff’s
law (2.25). Suppose we want to find out the radiation field at some optical depth
τν . The source function there is given by Bν(T (τν)), which we write as Bν(τν)

for simplification. The source function at a nearby optical depth tν can be written
in the form of a Taylor expansion around the optical depth τν , i.e.

Sν(tν) = Bν(τν) + (tν − τν)
dBν

dτν

+ . . . (2.37)

Truncating (2.37) after the linear term and substituting it in both (2.35) and
(2.36), we get for both positive and negative μ the very important equation

Iν(τν, μ) = Bν(τν) + μ
dBν

dτν

, (2.38)
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provided the point considered is sufficiently inside the atmosphere such that
τν � 1 and we can take e−τν to be zero. It is the second term on the right-hand
side of (2.38) which depends on μ and makes the radiation field anisotropic.
If there was no variation of temperature within the stellar atmosphere, then
dBν/dτν would vanish and the radiation field would become an isotropic black-
body radiation. It is the presence of a temperature gradient in the atmosphere
which makes the radiation field depart from the Planckian distribution, making
it anisotropic. An estimate of the anisotropy will be given below.

We have seen in (2.3), (2.5) and (2.7) that the radiation flux, the energy
density and the pressure of a radiation field can be calculated from the specific
intensity. In the case of a plane parallel atmosphere, the integration over the
solid angle becomes simplified due to symmetry. If A(cos θ) is any function of
angle in a plane parallel atmosphere, then∫

A(cos θ) d
 =
∫ π

θ=0

∫ 2π

φ=0
A(cos θ) sin θ dθ dφ

= 2π

∫ −1

+1
A(μ) d(−μ) = 2π

∫ +1

−1
A(μ) dμ.

On making use of this, (2.3), (2.5) and (2.7) give

Uν = 2π

c

∫ 1

−1
Iν dμ, (2.39)

Fν = 2π

∫ 1

−1
Iν μ dμ, (2.40)

Pν = 2π

c

∫ 1

−1
Iν μ2 dμ. (2.41)

If we substitute (2.38) in the above three equations, then we get

Uν = 4π

c
Bν(τν), (2.42)

Fν = 4π

3

dBν

dτν

, (2.43)

Pν = 4π

3c
Bν(τν). (2.44)

It is clear from (2.38) that the ratio of the anisotropic part in the radiation field
to the isotropic part is of order

dBν/dτν

Bν

≈ 3Fν

cUν

on making use of (2.42) and (2.43). Approximating Fν/Uν by F/U (where F
and U are respectively the total flux and the total energy density integrated over
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all wavelengths), we have

Anisotropic term

Isotropic term
≈ 3F

c U
. (2.45)

We now use the standard results from thermal physics that the total energy
density of blackbody radiation is given by

U = aBT 4, (2.46)

whereas the total flux is the flux which eventually emerges out of the surface
and is given by the Stefan–Boltzmann law (Stefan, 1879; Boltzmann, 1884):

F = σ T 4
eff, (2.47)

where Teff is the effective temperature of the surface and

σ = caB

4
(2.48)

(see, for example, Saha and Srivastava, 1965, §15.21; also Exercise 2.1). On
making use of (2.46), (2.47) and (2.48), it follows from (2.45) that

Anisotropic term

Isotropic term
≈ 3

4

(
Teff

T

)4

. (2.49)

As we go deeper in a stellar atmosphere, T becomes much larger than Teff,
making the anisotropic term negligible compared to the isotropic term. In other
words, the radiation field is nearly isotropic in sufficiently deep layers of a
stellar atmosphere where the temperature is considerably higher than the surface
temperature.

The expression (2.38) would give us the radiation field inside a stellar
atmosphere, if we knew how temperature varied with depth and could calculate
the Planck function Bν(τν) at different depths. As we already pointed out,
this is not known a priori in general and the real challenge of studying stellar
atmospheres is to solve the radiation field and the temperature structure of the
stellar atmosphere simultaneously. We now show how this can be done in a
simplified idealized model known as the grey atmosphere.

2.4.2 The grey atmosphere problem

If the absorption coefficient αν is constant for all frequencies, then the atmo-
sphere is called a grey atmosphere. There is no real stellar atmosphere which has
this property. The grey atmosphere is an idealized mathematical model which is
much simpler to treat than a more realistic stellar atmosphere and gives us some
insight into the nature of the problem, as we shall see below.

If αν is independent of frequency, then it follows from (2.32) that the value
of optical depth at some physical depth will be the same for all frequencies. In
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such a situation, denoting the optical depth by τ , (2.33) can be integrated over
ν to give

μ
∂ I (τ, μ)

∂τ
= I − S, (2.50)

where

I =
∫

Iν dν (2.51)

and

S =
∫

Sν dν (2.52)

are the total specific intensity and total source function integrated over all
frequencies. Just similar to (2.39), (2.40) and (2.41), we write down the total
energy density, total radiation flux and total radiation pressure integrated over
all frequencies:

U = 2π

c

∫ 1

−1
I dμ, (2.53)

F = 2π

∫ 1

−1
I μ dμ, (2.54)

P = 2π

c

∫ 1

−1
I μ2 dμ. (2.55)

We also define the average specific intensity J averaged over all angles

J = 1

2

∫ 1

−1
I dμ. (2.56)

It follows from (2.53) and (2.56) that

J = c

4π
U. (2.57)

We now obtain two important moment equations of (2.50). Multiplying
(2.50) by 1/2 and integrating over μ, we get

1

4π

d F

dτ
= J − S (2.58)

on making use of (2.54) and (2.56). On the other hand, multiplying (2.50) by
2πμ/c and integrating over μ, we get

dP

dτ
= F

c
. (2.59)

Although I is a function of both τ and μ, it may be noted that F and P are
functions of τ alone. Hence we have used ordinary derivatives in (2.58) and
(2.59) instead of partial derivatives as in (2.50). Very often, within a stellar
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atmosphere, we do not have a source or sink of energy. The energy generated in
the stellar interior passes out in the form of a constant energy flux through the
outer layers of the stellar atmosphere. In other words, F has to be independent
of depth. It follows from (2.58) that this is possible only if

J = S, (2.60)

i.e. the average specific intensity has to be equal to the source function. This is
called the condition of radiative equilibrium. Using (2.56) and (2.60), we write
(2.50) in the form

μ
∂ I (τ, μ)

∂τ
= I − 1

2

∫ 1

−1
I dμ (2.61)

valid under radiative equilibrium. This is an integro-differential equation for
I (τ, μ). There are techniques for solving (2.61) exactly and obtaining I for all
τ and μ. Readers are referred to Chandrasekhar (1950, Ch. III) and Mihalas
(1978, pp. 64–74) for a discussion of the exact solution of the grey atmosphere
problem. Since the method of exact solution is somewhat complicated and
beyond the scope of this elementary treatment, we now discuss an approximate
method of solving the grey atmosphere problem.

Since F is constant under the condition of radiative equilibrium, we can
easily integrate (2.59) to obtain

P = F

c
(τ + q), (2.62)

where q is the constant of integration. It follows from (2.9) that the total pressure
and total energy density of an isotropic radiation field are related by

P = 1

3
U. (2.63)

We note from (2.49) that the radiation field becomes nearly isotropic as we go
somewhat below the surface and (2.63) holds. Just underneath the surface, how-
ever, we do not expect (2.63) to hold. If we assume (2.63) to hold everywhere,
then finding a full solution to our problem becomes straightforward. This is
known as the Eddington approximation (Eddington, 1926, §226). Under this
approximation, we can combine (2.57), (2.60), (2.62) and (2.63) to obtain

S = 3F

4π
(τ + q). (2.64)

We have seen from equations like (2.35) and (2.36) that the specific intensity can
easily be written down if the source function is given. The main challenge is to
obtain the solution for the source function (which depends on the temperature)
at different depths along with the specific intensity. If we can evaluate the
constant of integration q, then (2.64) will finally provide us with the solution for
the source function for the grey atmosphere problem (albeit under the Eddington
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approximation). We now show below that q can be evaluated by calculating the
flux from (2.64) and setting it equal to F .

Just as (2.33) can be solved to obtain (2.35) for the specific intensity in the
upward direction, we can similarly write down the solution of (2.50):

I (τ, μ ≥ 0) =
∫ ∞

τ

S e−(t−τ)/μ dt

μ
. (2.65)

The specific intensity of radiation coming out of the stellar surface is obtained
by setting τ = 0 in this equation, i.e.

I (0, μ) =
∫ ∞

0
S e−t/μ dt

μ
.

Substituting from (2.64), we get

I (0, μ) = 3F

4π

∫ ∞

0
(t + q)e−t/μ dt

μ
= 3F

4π
(μ + q). (2.66)

From (2.54), the flux coming out of the upper surface of the stellar atmosphere is

F = 2π

∫ 1

0
I μ dμ.

On substituting for I from (2.66), we get

F = 3F

2

(
1

3
+ q

2

)
,

which gives the value of the constant of integration to be

q = 2

3
. (2.67)

On putting this value of q in (2.64), the source function as a function of depth
inside the stellar atmosphere is finally given by

S = 3F

4π

(
τ + 2

3

)
. (2.68)

On making use of (2.57) and (2.60), we have from (2.68)

cU = 3F

(
τ + 2

3

)
.

Using (2.46), (2.47) and (2.48), we get

T 4 = 3

4
T 4

eff

(
τ + 2

3

)
. (2.69)

This equation tells us how temperature varies inside a grey atmosphere.
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Fig. 2.5 A ray coming to an observer from the

solar disk.

Finally we derive an important result for radiation coming out from the
stellar surface. Substituting from (2.67) into (2.66), we have

I (0, μ) = 3F

4π

(
μ + 2

3

)
,

which implies

I (0, μ)

I (0, 1)
= 3

5

(
μ + 2

3

)
. (2.70)

This equation has a very important physical significance. Suppose we consider
the intensity of radiation coming from different points on the disk of the Sun as
seen by us. The ray coming from the central point of the solar disk emerges out
of the solar surface in the vertical direction and the specific intensity for this ray
will be I (0, 1). On the other hand, the ray coming from an off-centre point must
emerge from the solar surface at an angle θ = cos−1 μ with the vertical, as seen
in Figure 2.5, and the corresponding specific intensity will be I (0, μ).

Hence (2.70) gives the variation of intensity on the solar disk as we move
from the centre to the edge. In astronomical jargon, the region near the edge
of the solar disk is referred to as the limb of the Sun. Therefore, a law
giving the variation of intensity over the solar disk is called the limb-darkening
law. The theoretical limb-darkening law predicts that the intensity at the edge
of the solar disk will be about 40% of the intensity at the centre. In Figure 2.6,
we show the observationally determined limb-darkening along with the plot of
(2.70) obtained by the Eddington approximation as well as the theoretical limb-
darkening law derived by an exact solution of the grey atmosphere problem (i.e.
derived by solving the integro-differential equation (2.61) exactly). Although
theory matches the observational data reasonably well, the discrepancy between
the two is due to the fact that the solar atmosphere is not grey.

2.4.3 Formation of spectral lines

The grey atmosphere problem provides us with an example of how the radiative
transfer equation can be solved consistently to give the source function along
with the radiation field. As we have pointed out, one of the key problems of
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Fig. 2.6 The observed limb-darkening of the solar disk (indicated by dots) along with

theoretical limb-darkening laws obtained by the Eddington approximation (dashed line)

and by exact solution of the grey atmosphere problem (solid line). The observational

data (indicated by dots) are for wavelength λ = 5485 Å as given by Pierce et al. (1950).

stellar atmospheres is a quantitative understanding of spectral line formation.
The grey atmosphere problem does not throw any light directly on the problem
of line formation. It is the constancy of the total radiation flux F which allowed
us to integrate equations like (2.59), thus paving the way for a complete solution
of the grey atmosphere problem. In the case of the general non-grey stellar atmo-
sphere, we have frequency-dependent equations exactly analogous to (2.58) and
(2.59). Those equations, however, cannot be solved in the same way as the
equations of the grey atmosphere problem, since the flux Fν associated with
frequency ν is not in general a constant, even when the total flux F is a constant.
If there is no source or sink in the stellar atmosphere, then a constant energy
passes through the layers of stellar atmosphere, but the energy continuously gets
redistributed amongst different frequencies. For example, in the interior of the
Sun where the temperature is of order 107 K, the radiation field is mainly made
up of X-ray photons. By the time the energy flux reaches the solar surface, it
mainly consists of visible light. In a rigorous treatment of stellar atmospheres,
it is also necessary to split the absorption coefficient αν into two parts: scat-
tering and true absorption. In radiative equilibrium, true absorption is followed
by complete re-emission of the absorbed radiation. One important difference
between scattering and true absorption is that in scattering the frequency of
radiation does not change, whereas in true absorption followed by re-emission
the frequency changes. Also, Kirchhoff’s law is applicable only in the case of
true absorption. We refer the reader to Mihalas (1978) for a treatment of the
radiative transfer problem by treating scattering and true absorption separately.
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Although a proper treatment of the non-grey atmosphere is beyond the
scope of our elementary presentation, we give some idea about the line for-
mation problem. It follows from (2.38) that

Iν(0, 1) = Bν(τν = 0) + dBν

dτν

.

If we expand Bν(τν = 1) in a Taylor series around τν = 0 and keep only the
linear term, then it becomes equal to the right-hand side of the above equation.
Hence

Iν(0, 1) ≈ Bν(τν = 1). (2.71)

This very important equation tells us that the specific intensity of radiation at
a frequency ν coming out of a stellar atmosphere is approximately equal to the
Planck function at a depth of the atmosphere where the optical depth for that
frequency ν equals unity. We now show how (2.71) can be used to explain the
formation of spectral lines.

Let us consider an idealized situation that the absorption coefficient in the
outer layers of a stellar atmosphere is equal to αC at all frequencies except
a narrow frequency range around νL where it has a larger value αL. This is
sketched in Figure 2.7(a). We now use (2.71) to find the spectrum of the
radiation emerging out of this atmosphere. For frequencies in the continuum
outside the spectral line, the optical depth becomes unity at a depth α−1

C . If the
temperature there is TC, then the spectrum in the continuum region will be like
the blackbody spectrum Bν(TC). For frequencies within the spectral line, the
optical depth becomes unity at a shallower depth α−1

L , where the temperature
must have a lower value TL. Figure 2.7(b) shows both the functions Bν(TC) and
Bν(TL). Since the specific intensity in the continuum is given by Bν(TC) and
the specific intensity in the spectral line by Bν(TL), the full spectrum looks as
indicated by the dark line in Figure 2.7(b). We saw in §2.2.4 that the spectrum
of radiation coming out of an object with strictly uniform temperature inside
is pure blackbody radiation. Since any object radiating from the surface is
expected to have a temperature gradient in the layers underneath the surface,
we conclude that the existence of spectral lines should be a very common
occurrence.

One of the aims of stellar atmosphere studies is to estimate the abundances
of various elements in an atmosphere from a spectroscopic analysis. Suppose
an element has a spectral line at frequency νL. Then, the larger the number
of atoms of that element per unit volume, the higher will be the value of the
absorption coefficient αL at that frequency and consequently the spectral line
will be stronger. Thus, from the strengths of spectral lines, it is possible to
calculate the abundances of elements. Although it is beyond the scope of this
book to discuss the quantitative details of this subject, we shall give some basic
ideas of spectral line analysis in §2.7.
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Fig. 2.7 For an absorption coefficient indicated in (a), the emergent spectrum is indi-

cated in (b) by the dark line. The two blackbody spectra shown in (b) correspond to the

temperatures TC (upper curve) and TL (lower curve) explained in the text.

2.5 Radiative energy transport in the stellar interior

In §2.4, we have discussed radiative transfer in the outer layers of a star. Astro-
physicists studying stellar interiors have to consider radiative transfer in the
stellar interior as well. In a typical star, energy is usually produced by nuclear
reactions in the innermost core of the star. This energy in the form of radiation is
then transported outward. We shall see later in §3.2.4 that sometimes convection
can transport energy in a stellar interior. For the time being, let us consider
a stellar interior in which energy is transported outward by radiative transfer.
In the study of stellar atmospheres, one has to bother about the distribution of
energy in different wavelengths, since the ultimate goal is to understand the
spectrum of radiation coming out of the stellar atmosphere. While studying
stellar interiors, however, one is primarily interested in finding out how an
energy flux is driven outward by the gradient of the radiation field. While
discussing the grey atmosphere problem, we had derived (2.59) relating the flux
of radiation to the gradient of radiation pressure. Can this equation be applied to
stellar interiors even in situations when αν varies with ν and the grey atmosphere
assumption does not hold?
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We now want to show that (2.59) holds even for a non-grey atmosphere if
an average of αν over ν is taken in a suitable way. In a non-grey situation, we
shall have the frequency-dependent version of (2.59):

dPν

dτν

= Fν

c
, (2.72)

which can be obtained from (2.33) in exactly the same way (2.59) was obtained
from (2.50). From (2.72), it follows that

Fν = − c

αν

dPν

dz

on making use of (2.32). Integrating over all frequencies, the total radiation
flux is

F =
∫

Fνdν = −c
∫

1

αν

dPν

dz
dν. (2.73)

We now want F to satisfy an equation of the form (2.59), i.e.

F = −c
1

αR

dP

dz
, (2.74)

where αR is a suitable average of αν . To figure out how this averaging has to be
done, we need to equate (2.73) and (2.74), which gives

1

αR
=
∫ 1

αν

dPν

dz dν∫ dPν

dz dν
. (2.75)

Now Pν is proportional to the Planck function Bν as seen from (2.44). So we
can write

dPν

dz
= 4π

3c

∂Bν

∂T

dT

dz
.

We substitute this both in the numerator and denominator of (2.75), and cancel
out dT/dz. This finally gives

1

αR
=
∫ 1

αν

∂Bν

∂T dν∫
∂Bν

∂T dν
. (2.76)

The mean absorption coefficient αR defined in this way is known as the Rosse-
land mean (Rosseland, 1924). When αR is defined in this way, the flux of radiant
energy is given by (2.74). We often write

αR = ρχ, (2.77)

where χ is known as the opacity of the stellar matter. On using (2.46), (2.63)
and (2.77), we can put (2.74) in the form

F = − c

χρ

d

dz

(aB

3
T 4
)

. (2.78)
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As we shall see in the next chapter, (2.78) is one of the fundamental equations
for studying stellar interiors, which was first derived by Eddington (1916).

2.6 Calculation of opacity

To build a model of the stellar interior, it is necessary to solve a slightly modified
version of (2.78) as discussed in the §3.2.3. To solve this equation, we need
to know the value of opacity χ . The gas in the interior of a star exists under
such conditions of temperature and pressure which cannot be easily reproduced
in the laboratory. Hence we cannot experimentally find out χ for conditions
appropriate for the stellar interior. The opacity χ , therefore, has to be calculated
theoretically. This is a fairly complicated calculation. With improvements in
stellar models, more and more accurate computations of opacity are demanded.
This has become a highly specialized and technical subject, with very few
groups in the world who have the right expertise for calculating opacity accu-
rately. Other scientists who need values of opacity for their research almost
never try to calculate the opacity themselves, but use the values computed
by the groups who specialize in these computations. For several decades, the
so-called Los Alamos opacity tables (Cox and Stewart, 1970) remained the
last word on this subject. There is no point in discussing details of opacity
calculation methods here. We summarize below only some of the main ideas.
For a clear discussion of the quantum mechanical principles involved in opacity
calculations, the readers are referred to Clayton (1983, §3–3).

Suppose we have a gas of a certain composition kept at a given density and
temperature. We want to calculate its opacity theoretically. We can apply the
Boltzmann law (2.28) and the Saha equation (2.29) to find out the numbers of
atoms and electrons in various energy levels and in various stages of ionization.
When electromagnetic radiation of frequency ν impinges on the system, atoms
can absorb this radiation if electrons associated with the atoms are pushed to
levels which have energies higher by an amount hν compared to previous levels.
We know from quantum mechanics that atomic energy levels can be either
bound (discrete levels) or free (continuum). Hence the absorption of radiation by
an atom can be due to three kinds of upward electronic transitions: (i) bound-
bound, (ii) bound-free and (iii) free-free. One can apply Fermi’s golden rule
of quantum mechanics with a semiclassical treatment of radiation to calculate
the absorption cross-sections for these processes (see, for example, Mihalas,
1978, §4–2; Clayton, 1983, §3–3). Finally one adds up the cross-sections for all
atoms and electrons at different excitation and ionization levels present in a unit
volume. After including the effect of stimulated emission (which is discussed in
§6.6), one gets the absorption coefficient αν , from which the opacity is obtained
by applying (2.76) and (2.77).
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If certain approximations are made, then it can be shown that both bound-free
and free-free transitions (which are the dominant processes for the opacity) lead
to an opacity which varies with density ρ and temperature T in the following way:

χ ∝ ρ

T 3.5
. (2.79)

This is called Kramers’s law, after Kramers (1923) who arrived at this law while
studying the absorption of X-rays by matter. This approximate law certainly
could not be true for all temperatures. For example, when the temperature is
sufficiently low, most of the atoms will be in their lowest energy levels. In such
a situation, it will be possible for radiation to be absorbed only if there are
sufficiently energetic photons to knock off electrons from these lowest energy
levels. Since the radiation falling on the system is very close to blackbody
radiation and since blackbody radiation at a low temperature will not have many
energetic photons to knock off the atomic electrons from the lowest levels, we
conclude that not much radiation will be absorbed. Hence opacity is expected
to drop at low temperatures and to depart from Kramers’s law.

Figure 2.8 gives the opacity of material of solar composition, based on
detailed calculations. Each curve is for a definite density and shows how the

Fig. 2.8 Opacity of material of solar composition as a function of temperature. Dif-

ferent curves correspond to different densities, with the values of log ρ (ρ in kg m−3)

indicated next to the curves. The dashed line indicates the slope that would result if

opacity varied as T −3.5 for a fixed density. Adapted from Tayler (1994, p. 101).
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opacity varies with temperature for that density. As we expect, the opacity is
negligible at low temperatures. When the temperature is about a few thousand
degrees, the opacity is maximum. The curves for higher densities lie higher,
as expected from Kramers’s law (2.79). On the right side of the peak, we
find that the opacity falls sharply with temperature and a T −3.5 dependence
in accordance with Kramers’s law (indicated by the dashed line) is not a bad
fit for this. However, Kramers’s law would suggest that opacity should keep on
going down with temperature and should be very small at high temperatures.
But that does not seem to be happening. At high temperature, the opacity seems
to become independent of density and reaches an asymptotic value. We now
turn to an explanation for this.

2.6.1 Thomson scattering

At sufficiently high temperatures, many atoms in a gas become ionized and
there is a supply of free electrons. It is well known that a free electron can scatter
radiation by a process called Thomson scattering (Thomson, 1906), which turns
out to be extremely important in many astrophysical processes. Since many
advanced textbooks on electrodynamics present a derivation of the Thomson
scattering cross-section (see, for example, Panofsky and Phillips, 1962,
§22-2–22-4; Rybicki and Lightman, §3.4–3.6), we merely quote the result
without reproducing the derivation here.

Suppose an electromagnetic wave of frequency ω falls on an electron bound
to an atom by spring constant meω

2
0, where me is the mass of the electron. The

equation of motion of the electron subject to an electric field E is

me

(
d2x
dt2

+ γ
dx
dt

+ ω2
0x
)

= −eE,

where γ is the damping constant. The electric field of the electromagnetic
wave will force the electron to undergo an oscillatory motion. We know that
a charge in an oscillatory motion emits electromagnetic waves. The energy of
this emitted wave must come from the energy of the incident electromagnetic
wave. In other words, some energy of the incident wave gets scattered in other
directions. A completely classical treatment shows that the scattering cross-
section is given by

σ = 8π

3

(
e2

4πε0mec2

)2
ω4

(ω2 − ω2
0)

2 + γ 2ω2
. (2.80)

When the frequency of the incident electromagnetic wave is very high (ω �
ω0, γ ), the electron is forced to move like a free electron and the cross-section
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reduces to the Thomson cross-section for free electrons, which is

σT = 8π

3

(
e2

4πε0mec2

)2

. (2.81)

Before discussing the contribution of Thomson scattering to the opacity, let us
briefly consider the other limit of the electron being tightly bound to the atom
(ω0 � ω, γ ). In that limit, (2.80) reduces to

σR = σT

(
ω

ω0

)4

. (2.82)

This is the celebrated Rayleigh scattering, in which the cross-section goes as
ω4 or as λ−4, where λ is the wavelength of the incident electromagnetic wave.
Rayleigh scattering provides explanations for many natural as well as astro-
nomical phenomena. In the visible spectrum, blue light is scattered more than
red light because the wavelength of blue light is shorter. This explains why the
setting Sun looks reddish. The rays of the setting Sun have to traverse through
a larger distance of the atmosphere, where blue light is selectively scattered
away, leaving more red light in the beam compared to the blue light. On the
other hand, the daytime sky looks blue because the dust particles in the sky
scatter more blue colour from the sunlight into our eyes. When starlight passes
through interstellar dust, it also becomes redder due to the selective scattering
of blue light by the dust particles. However, as we shall discuss in §6.1.3, the
interstellar extinction of starlight seems to go as λ−1 rather than λ−4.

On substituting the values of different fundamental quantities in (2.81), the
numerical value of the Thomson cross-section is found to be

σT = 6.65 × 10−29 m2. (2.83)

If there are ne free electrons per unit volume, then the ‘absorption coefficient’
due to Thomson scattering is neσT (remember that scattering is not true absorp-
tion as we briefly point out in §2.4.3 and there is no corresponding emission
coefficient satisfying (2.26)). Hence, by (2.77), the opacity χT due to Thomson
scattering is given by

χT = ne

ρ
σT. (2.84)

At sufficiently high temperatures when a gas is fully ionized, ne is proportional
to the density and ne/ρ depends on the composition alone. For example, for
fully ionized hydrogen, ne/ρ is equal to 1/mH (where mH is the mass of
hydrogen atom) so that from (2.83) and (2.84) we conclude that the opacity
for fully ionized hydrogen is

χT = 3.98 × 10−2 m2 kg−1 (2.85)
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if the temperature is sufficiently high to make other sources of opacity
unimportant.

While computating opacity, the contribution due to Thomson scattering is
added to the contributions from bound-free and free-free transitions (keeping
in mind that there is no stimulated emission associated with Thomson scatter-
ing). However, when Thomson scattering is present in an atmosphere, some
special care has to be taken while solving the radiative transfer equation, since
Kirchhoff’s law (2.26) will not hold for Thomson scattering. It should be clear
from Figure 2.8 that at the typical temperatures of stellar surfaces Thomson
scattering should contribute very little to the opacity. Hence, while studying
radiative transfer through stellar atmospheres, one can usually neglect Thomson
scattering and take (2.26) to be fully valid.

Readers are urged to work out Exercise 2.7 to get a feeling about the role
of Thomson scattering in making a gas opaque. The air around us is transparent
only because all the electrons are locked inside atoms. If all the atomic electrons
were to come out of atoms, then air would be opaque in a few metres. Apart from
stellar interiors, Thomson scattering plays a very important role in the early
Universe. When all matter in the early Universe was ionized (due to the high
temperature), matter was sufficiently opaque to keep the matter and radiation
coupled together. Once the temperature fell with the expansion of the Universe
and atoms formed, locking up the free electrons inside them, the Universe sud-
denly became transparent. We shall discuss the consequences of this in §11.7.

2.6.2 Negative hydrogen ion

The temperature of the solar surface is about 6000 K. It appears that the solar
surface is sufficiently opaque and we cannot see anything underneath it. One
important question is what makes the solar gases so opaque at a temperature of
6000 K? At that temperature, hydrogen and helium atoms (which are the most
abundant atoms) are not ionized and mostly occupy the lowest energy levels. To
force transitions to higher energy levels, one needs photons having energy of the
order of a few eV. Blackbody radiation at 6000 K does not have enough photons
with such energy. So, at first sight, it seems that matter at 6000 K should not be
able to absorb radiation and should be transparent. It mystified astrophysicists
for some time as to what causes the opacity of the solar surface, until a clever
idea was suggested by Wildt (1939) and later confirmed by Chandrasekhar
and Breen (1946) through detailed calculations. The electron inside a hydrogen
atom is not able to screen the electrostatic force of the nucleus completely. So
it is possible for the hydrogen atom to attract an additional electron and form
a loosely bound negative ion H−. The binding energy of the negative hydrogen
ion is only about 0.75 eV – much smaller than the ionization energy of 13.6 eV.
So blackbody radiation at 6000 K has enough photons to knock off this loosely
bound electron and can get absorbed in this process. It is estimated that there are
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enough negative hydrogen ions at the solar surface and that they are providing
the opacity there.

2.7 Analysis of spectral lines

In §2.4.3 we have given a qualitative idea of how spectral lines form.
Astronomers, however, require a quantitative theory of spectral lines in order to
analyse them to determine the composition of the source. A quantitative theory
of spectral lines in a stellar atmosphere involves certain difficulties because we
need to consider both absorption and emission at spectral lines in the outer
layers of the star. A simpler problem is to consider the passage of radiation
through a medium which absorbs only at a spectral line and does not emit. We
shall now present an analysis of this simpler problem to give an idea of this
subject. Even this simpler problem is often of considerable practical relevance.
For example, we may consider the passage of visible light from a star through
the interstellar medium. Since parts of the interstellar medium are made up of
gas having fairly low temperatures like 100 K (see §6.6), there is negligible
emission of visible light from this gas which may absorb starlight at particular
frequencies. Since this gas is cold, it produces spectral lines which are much
narrower than typical spectral lines produced in the stellar atmosphere. The
extreme narrowness of a line in a stellar spectrum is indicative that it is produced
during the passage of light through the interstellar medium rather than in the
stellar atmosphere.

Let n be the number density of atoms of a certain kind in the absorbing
medium having energy levels differing by hν0. We expect these atoms to absorb
at the frequency ν0 and produce a spectral line. It is customary to write the
absorption cross-section of the atom as

σ = e2

4ε0mec
f, (2.86)

where f is called the oscillator strength. Each spectral line will be characterized
by an oscillator strength f . The larger the value of f , the stronger the spectral
line is expected to be. We also expect the absorption coefficient to have a
normalized profile φ(�ν) where �ν is the departure of the frequency from
the line centre at ν0 and

∫
φ(�ν) dν = 1. Then the absorption coefficient is

given by

αν = nσφ(�ν) = e2

4ε0mec
n f φ(�ν)

so that the optical depth through the absorbing medium, as given by (2.16), is

τν = e2

4ε0mec
N f φ(�ν), (2.87)



54 Interaction of radiation with matter

where N = ∫ n ds is the column density of the atoms along the line of sight
through the absorbing medium. As we shall see in §6.6, one has to subtract the
effect of induced emission in a full calculation of the absorption coefficient. For
visible light passing through a gas at temperature of order 100 K, the induced
emission is negligible (because of the very low population of the upper level)
and we do not consider it here. If we assume that there is no emission in the
medium, then the intensity is given by (2.17). The intensity Ic of the continuum
just outside the spectral line will be equal to Iν(0) appearing in (2.17). Hence
we can write (2.17) as

Iν = Ice−τν (2.88)

with τν given by (2.87).
It is clear that (Ic − Iν)/Ic is the fractional dip in intensity at some fre-

quency ν inside the spectral line. We can get an estimate of the strength of
the spectral line by integrating this fractional dip over the spectral line. This is
called the equivalent width of the spectral line, defined as

Wλ =
∫

Ic − Iν
Ic

dλ. (2.89)

On using (2.88) and changing the integration variable from λ to ν, we get

Wλ = λ2

c

∫
[1 − e−τν ] dν, (2.90)

where λ is the wavelength of the spectral line which is taken outside the integral
because it does not vary much over the spectral line.

Certain simplifications are possible if the spectral line is weak, when we
can take e−τν ≈ 1 − τν so that (2.90) becomes

Wλ = λ2

c

∫
τν dν.

Substituting from (2.87) and remembering that φ(�ν) is normalized, we get

Wλ

λ
= e2

4ε0mec2
N f λ. (2.91)

For a weak spectral line of which we know the oscillator strength f , we can use
(2.91) to determine the column density N of the atoms producing the spectral
line when we have a measurement of the equivalent width Wλ.

Suppose the absorbing medium has certain atoms producing several spectral
lines with different oscillator strengths f . It follows from (2.91) that Wλ/λ will
be proportional to N f λ for weak spectral lines. Even if the spectral lines are
not weak, we can plot Wλ/λ as a function of N f λ for all the spectral lines.
Such a plot is shown in Figure 2.9. The curve passing through the data points is
called the curve of growth. The left side of the curve of growth shows a linearly
increasing regime corresponding to weak spectral lines for which we have the
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Fig. 2.9 Equivalent widths of various spectral lines produced in the spectrum of the

star ζ Ophiuchi by absorption in the interstellar medium, plotted against N f λ. The

curves of growth for hydrogen atoms and hydrogen molecules are shown. From Spitzer

and Jenkins (1975). ( c©Annual Reviews Inc. Reproduced with permission from Annual

Reviews of Astronomy and Astrophysics.)

proportionality to N f λ. For stronger spectral lines, the curve of growth saturates
to a horizontal plateau. The reason behind this saturation is that the fractional
dip (Ic−Iν)/Ic appearing in (2.89) can never be more than 1, no matter how
strong the spectral line is. Eventually, for very strong spectral lines, the curve of
growth again shows a tendency of rising because very strong spectral lines have
some absorption in the wings (i.e. two sides of the core of a spectral line) which
are not saturated.

2.8 Photon diffusion inside the Sun

We close our discussion on the interaction of radiation with matter by working
out a curious example. Suppose the energy generation rate at the centre of the
Sun were to increase or decrease suddenly due to some reason. We expect
that eventually the surface of the Sun will become brighter or dimmer as a
consequence of this. How much time will it take before the effect of this sudden
change at the centre becomes visible at the surface?

The photons created at the centre of the Sun interact with the neighbour-
ing atoms. Atoms which have absorbed photons will de-excite by giving out
photons. In this process, photons diffuse from the centre of the Sun towards
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the surface. The absorption and re-emission of photons by atoms can be far
from simple. The atom may spend some time in the excited state and when
it de-excites, it may not come back to exactly the same state in which it was
originally in. As a result, the emitted photon may have a frequency different
from what was the frequency of the absorbed photon. This is necessary because
the initial photons at the centre at temperature of order 107 would typically be
X-ray photons, whereas the photons which reach the outer surface are more
likely to be photons of visible light. We now make a rough estimate of the
diffusion time by making a simplifying assumption that photons merely do a
random walk through stellar matter where an encounter with an atom simply
changes the direction of flight of the photon.

Let us first make an estimate of the mean free path of photons between
encounters with atoms. As pointed out in §2.3.2, the inverse of the absorption
coefficient gives this mean free path. So we can take α−1

R = (ρχ)−1 to be the
mean free path. While this mean free path would be a function of radius, we
simplify our life further by using an approximate average value. It is seen from
Figure 2.8 that 10−1 m2 kg−1 would be an appropriate value for χ to use in the
solar interior. Taking an average density of order 103 kg m−3, we get a mean
free path of about 1 cm.

Suppose an average photon has to take N steps to diffuse from the centre to
the surface. If l1, l2, . . . , lN are the displacements in these steps, then the total
displacement is

L = l1 + l2 + · · · + lN .

On squaring and averaging both sides, we would have

〈L2〉 = 〈l2
1〉 + 〈l2

2〉 + · · · + 〈l2
N 〉, (2.92)

since it is obvious that the cross-terms will give zero on averaging over different
photons. As we are making the simplifying assumption that all the steps are
equal, (2.92) becomes

〈L2〉 = N 〈l2〉.
Taking l = 1 cm and L to be equal to the solar radius, N turns out to be of
order 1022. With a step size of 1 cm, an average photon would travel over a
distance 1020 m in order to escape from the centre to the surface. Dividing this
by the speed of light, we get a diffusion time of order 104 years. A more careful
calculation shows that the photon diffusion time inside the Sun is actually a few
times larger than this.

If the energy generation rate at the centre of the Sun were to change
suddenly, that information will take tens of thousands years to reach the surface.
The sunlight that we receive today was created by nuclear reactions at the centre
of the Sun at a time when our ancestors were fighting woolly mammoths and
sabre-toothed tigers.
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Exercises

2.1 Assuming that the spectrum of blackbody radiation is given by Planck’s

law (2.1), prove the following.

(a) Show that the total energy density of blackbody at temperature T is

given by

U = aBT 4,

where

aB = 8πκ4
B

c3h3

∫ ∞

0

x3dx

ex − 1
.

(Note: this integral can be evaluated exactly and can be shown to be equal

to π4/15.)

(b) Show that the total energy radiated in unit time from unit area on the

surface of a blackbody is given by σ T 4, where

σ = caB

4
.

(c) Show that the frequency νmax at which the energy density Uν is maximum

is given by

νmax

T
= 5.88 × 1010 Hz K−1.

2.2 Consider a ‘pinhole camera’ having a small circular hole of diameter d in

its front and having a ‘film plane’ at a distance L behind it (see Figure 2.10).

Show that the flux Fν at the film plane is related to the incident intensity

Iν(θ, φ) in the following way

Fig. 2.10 See Exercise 2.2.
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Fν = π cos4 θ

4 f 2
Iν(θ, φ),

where f = L/d is the ‘focal ratio’.

2.3 Consider hydrogen gas having the same density as the density of air under

normal temperature and pressure (ρ = 1.29 kg m−3). Given the fact that the

ionization potential χ of hydrogen is 13.6 eV, use the Saha equation (2.29) to

calculate the fraction of ionization x at different temperatures T and make a

plot of x versus T .

2.4 Find out the specific intensity I (τ, μ > 0) at an arbitrary optical depth τ

inside a plane-parallel grey atmosphere obeying the Eddington approximation.

You may assume a constant energy flux F passing through the atmosphere.

2.5 Consider a spherical cloud of gas with a radius R and a constant inside

temperature T far away from the observer. (a) Assuming the cloud to be

optically thin, find out how the brightness seen by the observer would vary

as a function of distance b from the cloud centre. (b) What is the overall

effective temperature of the cloud surface? (c) How will the answers to (a)–

(b) be modified if the cloud were optically thick?

2.6 How will you calculate the spectrum of radiation emerging from a

grey atmosphere assuming Eddington approximation? Those of you who are

comfortable with numerical computations may like to write a small computer

program to compute Iν(0, 1) as a function of ν and plot it.

Suppose G shows the spectrum from a grey atmosphere and R the spec-

trum from a real atmosphere (see Figure 2.11). What can you say about the

variation of αν with frequency?

Fig. 2.11 See Exercise 2.6.
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2.7 Consider an atmosphere of completely ionized hydrogen having the same

density as the density of the Earth’s atmosphere. Using the fact that a beam

of light passing through this atmosphere will be attenuated due to Thomson

scattering by free electrons, calculate the path length which this beam has

to traverse before its intensity is reduced to half its original strength. (This

problem should give you an idea of why the matter-radiation decoupling to be

discussed in §11.7 took place after the number of free electrons was reduced

due to the formation of atoms.)
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Stellar astrophysics I: Basic
theoretical ideas and
observational data

3.1 Introduction

At the beginning of §2.4, we pointed out the scope of the subject stellar
interior. It appears from observational data (to be discussed in detail later) that
various quantities pertaining to stars have some relations amongst each other.
For example, a more massive star usually has a higher luminosity and also a
higher surface temperature. To explain such observed relations theoretically, we
have to figure out the equations which should hold inside a star and then solve
them to construct models of stellar structure.

The years ≈1920–1940 constituted the golden period of research in this
field, when theoretical developments led to elegant explanations of a vast mass
of observational data pertaining to stars. Ever since that time, the subject of
stellar interior or stellar structure has remained a cornerstone of modern astro-
physics and improved computational powers have led to more detailed models.
This is a subject in which theory and observations are intimately combined
together to build up an imposing edifice. While presenting a subject like this,
the first question that a teacher or a writer has to face is this: from a purely
pedagogical point of view, is it better to start with a discussion of observational
data or with a discussion of basic theoretical ideas?

It follows from simple theoretical considerations that there must be objects
like stars, provided energy can be generated by some mechanism in the central
regions. We need not know the details of the energy generation mechanism to
make this prediction. Eddington, who played the leading role in establishing the
theoretical discipline of stellar structure, has imagined a physicist on a cloud-
bound planet, who has never seen stars but makes theoretical predictions of stars

61
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on the basis of his calculations (Eddington, 1926, p. 16). Then one day the veil
of cloud is removed and the physicist is able to look at the stars he has predicted.
Although important trends in observational data were discovered before their
theoretical explanation and, in fact, provided a motivation for developing the
theory, here we shall proceed somewhat like Eddington’s physicist on a cloud-
bound planet. First we shall discuss some of the basic theoretical ideas. Then
we shall present the observations and discuss whether our theoretical results
are confirmed by observations. Although some of the patterns in the observa-
tional data can be explained by very simple theoretical considerations, we shall
see that it is necessary to delve deeper into theory to have a more complete
picture. After familiarizing ourselves with observational data in the later parts
of this chapter, we shall return to some of the deeper theoretical issues in the
next chapter.

3.2 Basic equations of stellar structure

We now establish the basic equations of stellar structure by assuming the star to
be spherically symmetric. If the star is rotating sufficiently rapidly, then there
will be some flattening in the direction of the rotation axis. Again, if the star has
strong magnetic fields, that can be another cause of departure from spherical
symmetry. Such complications are neglected in the first treatment of stellar
structure. When we look at our own Sun, we find spherical symmetry to be
a fairly good approximation. The rotational flattening of the Sun is negligible.
Although the solar corona is highly non-spherical due to the presence of mag-
netic fields, the magnetic fields are not strong enough to cause departures from
spherical symmetry below the surface of the Sun.

3.2.1 Hydrostatic equilibrium in stars

Let Mr be the mass inside the radius r of a star. Then the mass inside radius
r + dr should be Mr + dMr , which means that dMr is the mass of the spherical
shell between radii r and r + dr . If ρ is the density at radius r , then the mass of
this shell is ρ × 4πr2dr , i.e.

dMr = 4πr2ρ dr,

from which

dMr

dr
= 4πr2ρ. (3.1)

This is the first of our stellar structure equations.
Let us now consider a small portion of the shell between r and r + dr . If dA

is the transverse area of this small element, the forces exerted by pressure acting
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on its inward and outward surfaces are P dA and −(P + dP) dA, where P and
P + dP are respectively the pressures at radii r and r + dr . So the net force
arising out of pressure is −dP dA, which should be balanced by gravity under
equilibrium conditions. The gravitational field at r is caused by the mass Mr

inside r and is equal to −GMr/r2. Since the mass of the small element under
consideration is ρ dr dA, the force balance condition for it is

−dP dA − GMr

r2
ρ dr dA = 0,

from which

dP

dr
= − GMr

r2
ρ. (3.2)

This is the second of the stellar structure equations.
A look at (3.1) and (3.2) will show that they involve three variable functions

of the radial coordinate r : Mr , ρ and P . Certainly two equations are not enough
to solve for three variable functions. We shall see in Chapter 5 that there are
special kinds of dense stars like white dwarfs and neutron stars inside which
pressure becomes a function of density alone. In such cases, the number of inde-
pendent variables becomes two rather than three, and the above equations (3.1)
and (3.2) can be solved to find the stellar structure. In normal stars, however, the
stellar material behaves very much like a perfect gas, and pressure is a function
of both density and temperature, having the form P ∝ ρT . In such a situation,
we need additional equations for temperature and energy generation to solve the
stellar structure. These additional equations will be derived in §3.2.3.

Central pressure and temperature of the Sun

Although the hydrostatic equilibrium equation (3.2) does not tell us the whole
story about the stellar interior, we now show that it can nevertheless provide us
with valuable clues about the interior conditions of stars. In the astrophysical
Universe, we often have to deal with quantities for whose magnitudes we have
no a priori feeling. For example, what are the temperature Tc and pressure Pc

at the centre of the Sun? Nothing from our everyday life gives even a clue
for the values of these quantities. So even an order of magnitude estimate
correct within a factor of 10 is an important first step. We now show that (3.2)
allows us to make an approximate estimate of Pc and Tc. Throughout this book,
we shall again and again make such order of magnitude estimates of various
astrophysical quantities without solving the equations exactly. For various order
of magnitude estimates involving stars, we shall use the following approximate
values of solar luminosity L� and solar radius R�:

L� ≈ 4 × 1026 W, (3.3)

R� ≈ 7 × 108 m. (3.4)
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Their accurate values are given in Appendix A. Some of the other quantities
needed in order of magnitude estimates are listed in Table 1.1.

For the purpose of an order of magnitude estimate, the derivative dP/dr can
be replaced by −Pc/R�. The various quantities on the right-hand side of (3.2)
have to be replaced by their appropriate averages. Taking M�/2 and R�/2 to
be the averages of Mr and r , (3.2) reduces to the approximate equation

Pc

R�
≈ G(M�/2)

(R�/2)2

(
M�

4
3π R3�

)
.

On substituting the values of M� and R�, we find

Pc ≈ 6 × 1014 N m−2. (3.5)

Since the gas inside the Sun behaves very much like a perfect gas, we can use
P = nκBT , where n is the number density of gas particles. Assuming the gas
to contain hydrogen predominantly, the number of atoms per unit volume is
ρ/mH. Since hydrogen is completely ionized in the deep solar interior and each
hydrogen atom contributes two particles (a proton and an electron), we have
n = 2ρ/mH so that

P = 2κB

mH
ρ T .

If we take the central density to be about twice the mean density, then at the
centre of the Sun

Pc = 4κB

mH

(
M�

4
3π R3�

)
Tc.

On taking the value of Pc from (3.5) and substituting the values of other
quantities, we obtain

Tc ≈ 107 K. (3.6)

Thus we have estimated the values of central pressure and temperature of
the Sun in a relatively painless way. These values compare quite favourably with
the values which one obtains from a detailed solution of all stellar structure
equations. This example should illustrate the power of an order of magnitude
estimate, which is such a favourite tool of the working astrophysicist!

3.2.2 Virial theorem for stars

In ordinary stars like the Sun, the inward gravitational pull is balanced by the
excess pressure of the hot interior. In other words, it is the thermal energy of
the interior which balances gravity. We, therefore, expect that the total thermal
energy should be of the same order as the total gravitational energy. This can
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be rigorously established from the hydrostatic equilibrium equation (3.2). We
multiply both sides of (3.2) by 4πr3 and then integrate from the centre of the
star to its outer radius R. This gives∫ R

0

dP

dr
4πr3dr =

∫ R

0

(
−GMr

r2
ρ

)
4πr3dr.

The left-hand side can be easily integrated by parts, leading to

−
∫ R

0
3P × 4πr2dr =

∫ R

0

(
−GMr

r

)
4πr2ρ dr. (3.7)

The right-hand side is clearly the total gravitational energy EG of the star, i.e.

EG =
∫ R

0

(
−GMr

r

)
4πρ r2dr. (3.8)

Since (3/2)κBT is the mean energy of thermal motion per particle in a region
of temperature T and hence (3/2)nκBT is the thermal energy per unit volume,
the total thermal energy of the star is given by

ET =
∫ R

0

3

2
nκBT × 4πr2dr =

∫ R

0

3

2
P × 4πr2dr. (3.9)

Using (3.8) and (3.9), we can write (3.7) in the form

2ET + EG = 0. (3.10)

This elegant and famous result is known as the virial theorem.
From (3.10), we get

ET = −1

2
EG = 1

2
|EG|, (3.11)

since the total gravitational energy EG, as given by (3.8), is clearly a negative
quantity. The sum of thermal and gravitational energies

E = EG + ET = 1

2
EG = −1

2
|EG| (3.12)

is also negative. It is not difficult to understand why E should be negative.
Suppose that a star formed by slow gravitational contraction of material which
was initially spread over a much larger volume. As the star contracts, it must
become hotter and radiates away some energy so that the energy of the star has
to become negative.

We now know that a normal star radiates energy which is produced by
nuclear reactions in the interior (to be discussed in the next chapter). So, apart
from thermal and gravitational energies, a star has another store of energy, i.e.
nuclear energy. In the early years of stellar research, however, this additional
source of energy was not known and E as given by (3.12) was regarded as
the total energy. When Helmholtz (1854) and Kelvin (1861) first addressed



66 Stellar astrophysics I: Basic theoretical ideas and observational data

the question of the source of stellar energy, it was believed that the thermal
and gravitational energies were all that one needed to consider. In such a
scenario, a star could gradually contract and a part of the gravitational potential
energy released in the process could radiate away. We expect the star to be
in approximate hydrostatic equilibrium as it collapses slowly and hence the
virial theorem (3.10) should always hold approximately. As the star contracts,
it becomes more gravitationally bound making |EG| larger and it follows from
(3.11) that ET also becomes larger, implying that the star becomes hotter. Now,
the gravitational potential energy lost during the contraction of the star has to be
transformed into other forms of energy. It is clear from (3.11) that exactly half of
the gravitational energy released is transformed into thermal energy. The other
half must leave the system so that the total energy E can be given by (3.12). We
thus arrive at a very beautiful result. If there was no such thing as nuclear energy,
then all stars had to contract slowly. Half of the gravitational potential energy
released in the process has to be converted to thermal energy, whereas the other
half should leave the system, presumably in the form of radiation. Helmholtz
(1854) and Kelvin (1861) suggested that this is how stars shine.

If we estimate the lifetime of a star on the basis of this theory, then we
can at once see that this theory could not possibly be correct. According to
this theory, the Sun has so far radiated away an amount of energy equal to
(1/2)|EG|. Assuming that the Sun always radiated energy at the present rate
L�, we conclude that the age of the Sun should be

τKH ≈
1
2 |EG|

L�
. (3.13)

An approximate value of |EG| can be easily calculated from (3.8). Replacing
Mr and r by their average values, we have

|EG| ≈ G(M�/2)

(R�/2)
× M� ≈ 4 × 1041 J. (3.14)

Putting this in (3.13), we find the Kelvin–Helmholtz time scale to be

τKH ≈ 107 yr.

Even in the days of Kelvin and Helmholtz, there was enough geological evi-
dence that the Earth was much older than this. So the age of the Sun definitely
could not be so short!

3.2.3 Energy transport inside stars

The energy generated by nuclear reactions in the central region of a star is
transported outward. We now have to derive equations which describe this
process. Let Lr be the total amount of energy flux per unit time which flows
outward across a spherical surface of radius r inside the star (the spherical
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surface being centred at the centre of the star). We expect Lr to be equal to
the luminosity L of the star at the outer radius r = R of the star. If Lr + dLr is
the outward energy flux at radius r + dr , then dLr is obviously the additional
input to the energy flux made by the spherical shell between r and r + dr . If
ε is the rate of energy generation per unit mass per unit time (presumably by
nuclear reactions), then we should have

dLr = 4πr2dr × ρ ε,

from which

dLr

dr
= 4πr2ρ ε. (3.15)

After (3.1) and (3.2), this is the third of the important stellar structure equations.
The energy flux is driven by the temperature gradient inside the star. We

need an equation for that as well. We know that there are three important modes
of heat transfer in nature: conduction, convection and radiation. Although con-
duction is important in compact stars like white dwarfs, it turns out to be totally
unimportant in the interiors of normal stars. In the next subsection, we shall
discuss the possibility of convection. Right now, let us consider a region in the
interior of a star where heat is transported outward only by radiative transfer. We
have already derived an expression for the energy flux per unit area by radiative
transfer in (2.78). Replacing z by r , the energy flux Lr across the spherical
surface of radius r is given by

Lr = 4πr2 F = −4πr2 c

χρ

d

dr

(aB

3
T 4
)

,

from which

dT

dr
= − 3

4aBc

χρ

T 3

Lr

4πr2
. (3.16)

This is the fourth equation of stellar structure if the heat flux is carried outward
by radiative transfer. We need to replace (3.16) by a different equation if the
heat flux is carried by convection. We shall derive this alternative equation in
the next subsection.

It may be noted that the first three equations of stellar structure – (3.1), (3.2)
and (3.15) – follow from fairly straightforward considerations. Only (3.16),
which was obtained by Eddington (1916), is somewhat non-trivial. It may be
useful for the reader to look at an instructive alternative derivation of (3.16)
given by Eddington (1926, §71).

3.2.4 Convection inside stars

In radiative transfer, energy is transported without any material motion. Convec-
tion, on the other hand, involves up and down motions of the gas. Hot blobs of
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Fig. 3.1 Vertical displacement of a blob of gas in a stratified atmosphere.

gas move upward and cold blobs of gas move downward, thereby transporting
heat. Let us now find out under what circumstances this is likely to happen.

Suppose we have a perfect gas in hydrostatic equilibrium inside a star. We
now consider a blob of gas which has been displaced vertically upward as shown
in Figure 3.1. Initially the blob of gas had the same density ρ and the same
pressure P as the surroundings. The external gas density and pressure at the new
position of the blob are ρ′ and P ′. We know that pressure imbalances in a gas are
rather quickly removed by acoustic waves, but heat exchange between different
parts of the gas takes more time. Hence it is not unreasonable to consider the
blob to have been displaced adiabatically and to have the same pressure P ′ as
the surroundings in its new position. Let ρ∗ be its density in the new position.
If ρ∗ < ρ′, then the displaced blob will be buoyant and will continue to move
upward further away from its initial position, making the system unstable and
giving rise to convection. On the other hand, if ρ∗ > ρ′, then the blob will try
to return to its original position so that the system will be stable and there will
be no convection. So convection is of the nature of an instability in the system.
To find the condition for convective instability, we have to determine whether
ρ∗ is greater than or less than the surrounding density ρ′.

From the assumption that the blob has been displaced adiabatically, it
follows that

ρ∗ = ρ

(
P ′

P

)1/γ

. (3.17)

If dP/dr is the pressure gradient in the atmosphere, we can substitute

P ′ = P + dP

dr
�r
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and make a binomial expansion keeping terms to the linear order in �r . This
gives

ρ∗ = ρ + ρ

γP

dP

dr
�r. (3.18)

On the other hand,

ρ′ = ρ + dρ

dr
�r.

Using ρ = P/RT , we get

ρ′ = ρ + ρ

P

dP

dr
�r − ρ

T

dT

dr
�r. (3.19)

Here dρ/dr and dT/dr are the density and temperature gradients in the atmo-
sphere. From (3.18) and (3.19),

ρ∗ − ρ′ =
[
−
(

1 − 1

γ

)
ρ

P

dP

dr
+ ρ

T

dT

dr

]
�r. (3.20)

Keeping in mind that dT/dr and dP/dr are both negative, the atmosphere is
stable if ∣∣∣∣dT

dr

∣∣∣∣ <
(

1 − 1

γ

)
T

P

∣∣∣∣dP

dr

∣∣∣∣ . (3.21)

This is the famous Schwarzschild stability condition (Schwarzschild, 1906). If
the temperature gradient of the atmosphere is steeper than the critical value
(1 − 1/γ )(T/P)|dP/dr |, then the atmosphere is unstable to convection.

Convection is an extremely efficient mechanism for transporting energy.
The temperature gradient has to be only slightly steeper than the critical gradient
to drive the typical stellar energy flux. We would not be very far off the mark if
we take

dT

dr
=
(

1 − 1

γ

)
T

P

dP

dr
(3.22)

inside the convection zone. In order to make more accurate calculations, one
has to take the help of mixing length theory, which was developed by Biermann
(1948) and Vitense (1953). It is described in any standard textbook on stellar
structure (see, for example, Kippenhahn and Weigert, 1990, Chapter 7). This
theory assumes that upward-moving hot blobs or downward-moving cold blobs
typically traverse a vertical distance called the mixing length, after which they
lose their identity and mix their heat contents with their surroundings. By
assuming a reasonable value of the mixing length, it is possible to calculate
the small difference between the actual temperature gradient and the critical
gradient, which is responsible for transporting the necessary heat flux. We shall
not discuss mixing length theory in this elementary textbook.
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While constructing a model of a star, one has to proceed in the following
way. First one assumes that there is no convection and heat transport is entirely
due to radiative transport described by (3.16). After calculating the temperature
distribution on the basis of this assumption, the next step is to check if the
temperature gradient obtained in this way satisfies the Schwarzschild stability
condition (3.21). If it is satisfied, then it can be taken as established that the
heat flux is really carried by radiative transport and the temperature gradient
is given by (3.16). On the other hand, if the stability condition (3.21) is not
satisfied in some regions, then the heat flux is primarily carried by convec-
tion in those regions and one has to repeat the calculation by using (3.22)
instead of (3.16).

3.3 Constructing stellar models

We have already derived all the necessary equations for constructing stellar
models. Let us now see how it can be done.

First of all, one has to specify the chemical composition of a star, since
opacity and the nuclear energy generation rate depend on the chemical compo-
sition. The chemical composition can be given by specifying the mass fraction
Xi of various elements present in the stellar material. The next step is to figure
out the equation of state P(ρ, T, Xi ), the opacity χ(ρ, T, Xi ) and the nuclear
energy generation rate ε(ρ, T, Xi ) as functions of density, temperature and
chemical composition. In §2.6, we have already discussed the opacity calcu-
lation. In the next chapter, we shall discuss how the nuclear energy generation
rate is calculated. Before discussing the stellar structure models, we make a few
comments about the equation of state.

The density at the centre of the Sun is more than 100 times the density
of water. However, still the material there behaves like a perfect gas, because
the temperature is so high that the interatomic potential energies are negligible
compared to the typical kinetic energies of the particles and atoms do not get
a chance to bind together to form a solid or a liquid. If we can assume the
gas to be completely ionized, then the equation of state becomes particularly
simple. Let X be the mass fraction of hydrogen, Y the mass fraction of helium
and Z the mass fraction of other heavier elements (often referred to as ‘metals’
by astronomers!). The number of hydrogen atoms per unit volume is Xρ/mH.
Since each hydrogen atom contributes two particles (one electron and one
nucleus which is a proton), there will be 2Xρ/mH particles per unit volume from
fully ionized hydrogen. The number density of helium atoms will be Yρ/4 mH

and they will contribute 3Yρ/4 mH particles. Since a heavy atom of atomic mass
A approximately contributes A/2 particles, it is easy to see that the contribution
to the number density from heavier elements is Zρ/2 mH. Hence the number of
particles per unit volume is
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n =
(

2X + 3

4
Y + 1

2
Z

)
ρ

mH

so that the gas pressure is given by

P = κB

μ mH
ρ T, (3.23)

where

μ =
(

2X + 3

4
Y + 1

2
Z

)−1

(3.24)

is known as the mean molecular weight. We shall see that (3.23) will be quite
adequate for the purpose of qualitatively understanding various properties of
stars. For accurate stellar models, however, one needs to take account of the
partial ionization, especially in the outer layers of the star, and should also
include the radiation pressure, which becomes important for more massive stars.
Finally, when the density is very high, the electron gas becomes degenerate,
i.e. it obeys the Fermi–Dirac distribution rather than the classical Maxwellian
distribution. This gives rise to what is called the degeneracy pressure, which will
be discussed in detail in §5.2. This pressure can play a crucial role in balancing
gravity when the nuclear fuel is exhausted in a star. A more complete discussion
of the equation of state is postponed to §5.2.

Let us now write down all the equations for stellar structure in one place.
They are

dMr

dr
= 4πr2ρ, (3.25)

dP

dr
= −GMr

r2
ρ, (3.26)

dLr

dr
= 4πr2ρε, (3.27)

dT

dr
= − 3

4aBc

χρ

T 3

Lr

4πr2

dT

dr
=
(

1 − 1

γ

)
T

P

dP

dr

⎫⎪⎪⎬
⎪⎪⎭ . (3.28)

We discussed at the end of the previous section how one determines which form
of (3.28) is to be used. In a typical star, the convection may take place in a
certain range of radius, whereas heat is transported by radiative transfer in other
regions. So, for the same stellar model, it may be necessary to use one form of
(3.28) in some regions and the other form elsewhere. Once the equation of state
P(ρ, T, Xi ), the opacity χ(ρ, T, Xi ) and the nuclear energy generation rate
ε(ρ, T, Xi ) are given, the above equations involve four independent functions
of r : ρ, T , Mr and Lr . The number of independent equations is also four. It is
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straightforward to figure out the boundary conditions. We have the following
two boundary conditions at the centre of the star

Mr = 0 at r = 0, (3.29)

Lr = 0 at r = 0. (3.30)

The radius r = R of the star is the point where both ρ and T become very small
compared to their values in the interior. Hence the simplest boundary conditions
for them are

ρ = 0 at r = R, (3.31)

T = 0 at r = R. (3.32)

Since there are four equations involving four variables, with one boundary
condition for each variable, this is clearly a mathematically well-posed problem.
Unfortunately, not much progress can be made analytically unless one makes
drastically simplifying assumptions. However, it is not difficult to solve the
equations of stellar structure numerically.

Although it is not our aim to give a detailed discussion of the numerical
methods, let us try to give an idea how one proceeds. Suppose we want to
construct a model of a star with a given central density ρc. Taking the central
temperature to have a value Tc and using the boundary conditions (3.29)–(3.30),
we can start integrating (3.25)–(3.28) from r = 0. In general, ρ and T will not
become zero at the same value of r so that it will not be possible to satisfy
(3.31)–(3.32) simultaneously. We then have to try out the procedure again
and again by varying the value of the central temperature Tc, until we find a
combination ρc and Tc for which the solution would be such that ρ and T will
become simultaneously zero for some particular r . We would regard that r to be
the radius R of the star, and boundary conditions (3.31)–(3.32) will be satisfied.
The values of Mr and Lr at r = R would give us the mass and the luminosity
of the star. We thus see that in principle the structure of a star with a central
density ρc can be found this way, and such a star would have a definite mass
and definite luminosity. Although the procedure outlined above gives an idea
of how a stellar structure can be found, this simple procedure unfortunately
does not work properly. The equation of radiative energy transfer in (3.28) has a
factor T 3 in the denominator and this factor becomes very large near the surface
where T is very small. This leads to a numerical instability. One can think of the
alternative of starting the numerical integration from the stellar surface r = R.
This leads to a numerical instability at the centre due to the factor r2 in the
denominator of (3.26). One possible way of getting around these difficulties
is to start the numerical integrations both from r = 0 and r = R, and then
match them smoothly at an intermediate point. Although this method works,
it is not a particularly efficient method. A more efficient numerical algorithm
was developed by Henyey, Vardya and Bodenheimer (1965) and is known as
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the Henyey method. This is a standard method widely used in solving stellar
structures and is described in standard textbooks (see, for example, Kippenhahn
and Weigert, 1990, §11.2).

Uniqueness of solutions?

For the sake of simplicity, let us consider stars of given uniform composition.
Then the equation of state, the opacity and the nuclear energy generation rate
all become functions of density and pressure alone. From the discussion of the
previous section, it would seem that it will be possible to construct a unique
stellar structure solution starting from a given central density ρc. Such a solution
would correspond to a star of given mass M . Hence, at first sight, it appears that
there should be a unique stellar structure solution for a star of a given mass. In
fact, in the early years of stellar research, astronomers believed that the structure
of a star of given mass and given chemical composition should be unique. This
result was known as the Vogt–Russell theorem (Vogt, 1926; Russell, Dugan and
Stewart, 1927). Even the otherwise careful Chandrasekhar gave a ‘proof’ of this
theorem in his book (Chandrasekhar, 1939, pp. 252–253).

Further research showed that solving the stellar structure equations is a
complicated problem and often solutions were not unique. In other words, the
Vogt–Russell theorem could not be a mathematically correct result! Let us give
one counter-example. Consider a star of mass M�. Such a star can have a
structure like the Sun. We shall see in Chapter 5 that it is possible for such a
star to have a different configuration – the white dwarf configuration. At first
sight, it may seem that this may be due to the change in chemical composition,
since the Sun is expected to become a white dwarf when its nuclear fuel is
exhausted, leading to a change in its chemical composition. However, we shall
see in Chapter 5 that the white dwarf configuration arises when stellar matter is
in a degenerate state. It should in principle be hypothetically possible to put
even the solar material into a degenerate state and a white dwarf star with
the solar composition is a theoretical possibility. It is thus clear that a star of
mass M� can have at least two distinct configurations and both of these should
follow from the stellar structure equations. The Vogt–Russell theorem cannot
be correct.

Although the Vogt–Russell theorem is not correct from a strictly mathe-
matical point of view, for practical purposes a normal star of a given mass M
and standard composition may be taken to have a reasonably unique structure.
Such a structure would correspond to a luminosity L and radius R. In other
words, by solving the stellar structure equations, it should be possible to find
the luminosity L and radius R of a star of mass M . If it were possible to solve
the stellar structure equations (3.25)–(3.28) analytically, we could have found
out how L and R are related to M . Unfortunately it is not possible to solve the
stellar structure equations analytically. Only if we are allowed to make drastic



74 Stellar astrophysics I: Basic theoretical ideas and observational data

assumptions and simplifications, is it possible to proceed analytically and obtain
a few approximate relations amongst various quantities pertaining to a star.

3.4 Some relations amongst stellar quantities

We shall now do a few drastic things with the stellar structure equations (3.25)–
(3.28) to extract some relations amongst various quantities pertaining to a star.
Since some of our steps will be highly questionable in nature, we shall have to
take the derived results with a degree of caution. A comparison with detailed
stellar models, however, will show that we are not very much off the track.
Our aim will be to find how various quantities scale with each other. We
shall, therefore, ignore the constant factors in our equations. A slightly more
sophisticated approach than ours is to construct what are called homologous
stellar models, in which it is assumed that various quantities vary inside different
stars in similar ways. Several standard textbooks discuss homologous stellar
models, a particularly excellent account being given by Tayler (1994, pp. 110–
117; see also Kippenhahn and Weigert, 1990, Chapter 20).

Let us replace the left-hand side of the hydrostatic equation (3.26) by
−P/R, where P can be taken as the typical pressure inside the star. Replacing
Mr/r2 on the right-hand side by M/R2, we are led to

P

R
∝ M

R2
ρ,

from which

P ∝ M2

R4
(3.33)

on taking ρ ∝ M/R3. The equation of state P ∝ ρT would imply

P ∝ M

R3
T . (3.34)

For (3.33) and (3.34) to hold simultaneously, we must have

T ∝ M

R
. (3.35)

In other words, inside temperatures of different stars should be proportional
to M/R.

After subjecting (3.26) to this drastic treatment, we do a similar thing with
the radiative energy transfer equation (3.28). If we assume that the radiative
transfer equation holds throughout the star and further the variation of χ inside
the star is not very appreciable, then we can write
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T

R
∝ M

R3T 3

L

R2
,

from which it follows that

L ∝ (T R)4

M
. (3.36)

It is seen from (3.35) that T R should be proportional to M . Substituting this in
(3.36), we come to the conclusion

L ∝ M3. (3.37)

This is called the mass–luminosity relation, which implies that a more massive
star should be more luminous. Since we derived this relation by making some
drastic assumptions, one may express doubts about the correctness of this
relation. Figure 3.2 shows a plot of log L versus log M as obtained from detailed
numerical solutions of stellar structure equations. On this figure, we superpose
a dashed line with a slope corresponding to the relation (3.37). This line is not
too far off from what we get from detailed stellar models. We shall present a
comparison with observational data in the next section.

We saw in the previous chapter that the surface of a star behaves approxi-
mately like a blackbody. Hence, if Teff is the effective surface temperature, then
we must have

Fig. 3.2 Luminosity as a function of mass computed by detailed stellar models. The

dashed line indicates the slope that would result if L varied as M3. Adapted from

Hansen and Kawaler (1994, p. 43) who use the results of Iben (1965) and Brunish and

Truran (1982).
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L = 4π R2σ T 4
eff, (3.38)

where σ is the Stefan–Boltzmann constant. If we assume that Teff is a measure
of the typical interior temperature of the star (i.e. if hotter stars have hotter
surface temperatures), then we can write from the above

L ∝ R2 T 4. (3.39)

Since L goes as M3 by (3.37) and RT goes as M by (3.35), it follows from
(3.39) that

M3 ∝ M2 T 2

so that

M ∝ T 2. (3.40)

Using (3.37) and the fact we are assuming Teff to go as T , we can write

L ∝ T 6
eff. (3.41)

We thus conclude that two important observable quantities of stars – their
luminosities and their effective surface temperatures – should be related as
given by (3.41). A plot of luminosity versus surface temperature for a num-
ber of stars is known as the Hertzsprung–Russell diagram, or HR diagram
in brief, after Hertzsprung (1911) and Russell (1913) who produced the first
observational plots of this kind. For historical reasons, the convention is to
plot the effective surface temperature Teff increasing towards the left! We
shall explain the reason for this convention in the next section, where HR
diagrams of stars will be discussed in detail. Figure 3.3 shows a theoretical
HR diagram constructed from detailed numerical models of stars, where the
dashed line indicates the slope that we would get if the scaling relation (3.41)
was strictly valid. We shall see in the next section that the scaling relation
(3.41) matches the observational data also reasonably well. Thus, in spite of
various crude and questionable assumptions, we have managed to derive an
important scaling law which is not very far from the truth. Different points on
the curve in Figure 3.3 corresponds to stars of different masses, which are also
indicated.

A star lives as a normal star as long as it has got nuclear fuel to burn. Since
the amount of nuclear fuel is proportional to mass and the rate at which the
fuel is burnt is proportional to luminosity, the lifetime τ of a star should be
given by

τ ∝ M

L
. (3.42)

Making use of (3.37), we have
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Fig. 3.3 The relation between luminosities and surface temperatures of stars as com-

puted by detailed stellar models. The dashed line indicates the slope that would result

if L varied as T 6
eff. The masses of stars corresponding to different points on the curve

are also shown. Adapted from Hansen and Kawaler (1994, p. 40) who use the results of

Iben (1965) and Brunish and Truran (1982).

τ ∝ M−2. (3.43)

Hence, more massive stars live for shorter times. A more massive star has more
nuclear fuel to burn; but it burns this fuel at such a fast rate that it runs out of
the fuel in a shorter time. This very important result that massive stars are short-
lived helps us understand many aspects of observational data, as we shall see in
the next two sections.

3.5 A summary of stellar observational data

In the previous section, we arrived at some theoretical conclusions about how
various quantities connected with stars may be related to each other. Are these
conclusions borne out by observational data? Before we can answer this ques-
tion, we discuss briefly how various stellar parameters are determined.

3.5.1 Determination of stellar parameters

For any star that is not too faint, it is possible to take the spectrum. So we first
discuss what we can learn from the spectrum. Then we point out what further
information can be obtained if the star (i) is nearby or (ii) is in a binary system.
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Stellar spectra: surface temperature, composition, stellar classification

We have seen in §2.4 that the surface of a star behaves approximately like a
blackbody, the main departure from the blackbody spectrum being the spectral
lines. Hence, by fitting the spectrum of a star to a blackbody spectrum, it is
possible to estimate the effective surface temperature Teff of the star. One of the
easy things to measure of a star is its apparent magnitude in the U , B and V
bands as defined in §1.4. As we pointed out in §1.4, the quantity B − V is a
measure of the star’s colour. It is the effective surface temperature Teff which
determines where the peak of the spectrum will be and thereby determines the
colour of the star (a hotter star being bluish and a colder star reddish). We thus
expect a one-to-one correspondence between B − V and Teff, at least for stars of
similar properties. Although we showed the theoretical HR diagram (Figure 3.3)
with Teff plotted on the horizontal axis, observational HR diagrams usually have
the directly measurable quantity B − V on their horizontal axes.

The composition of the star can be found out from its spectral lines. This is,
however, not as straightforward as one may at first think. Let us explain this by
considering the example of hydrogen. Since all stars are predominantly made of
hydrogen, we may expect hydrogen lines to be present in the spectra of all stars.
In reality, hydrogen lines are found only in stars of intermediate temperature.
Hydrogen lines in the visible part of the spectrum consist of Balmer lines,
which are produced due to atomic transitions to the n = 2 atomic state from
higher states (n = 3, 4, . . .). If the stellar surface temperature is too high, then
hydrogen is completely ionized and such atomic transitions do not take place.
On the other hand, a low surface temperature would imply that all hydrogen
atoms are mostly in the ground state n = 1, with very few atoms occupying
the states n = 3, 4, . . . . Only for intermediate stellar surface temperatures, the
levels n = 3, 4, . . . are well populated and appropriate atomic transitions take
place to produce the Balmer lines. It was Saha (1921) who first realized that the
strengths of spectral lines by themselves do not give us the composition of a
stellar atmosphere. Matter of the same composition can produce very different
spectra when kept at different temperatures. Saha (1920, 1921) developed his
famous theory of thermal ionization and provided a satisfactory explanation
why spectra of stars with different surface temperatures look different.

Around 1890, a group of astronomers at Harvard Observatory led by
E. C. Pickering had developed a scheme of classifying stellar spectra in which
a particular type of spectrum would be denoted by a Roman letter. Saha’s work
led to the realization that different spectral classes corresponded to different
surface temperatures of stars. The spectral classes in the order of progressively
decreasing surface temperature are O, B, A, F, G, K, M. Generations of astron-
omy students remembered these spectral classes with the help of the mnemonic
‘Oh be a fine girl kiss me’, the first letters of the successive words giving the
names of spectral classes. We pointed out in §3.4 that HR diagrams are plotted
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with surface temperature on the horizontal axis increasing leftward. This is
because HR diagrams were originally constructed by plotting spectral classes
on the horizontal axis, before it was realized that spectral classes corresponded
to surface temperatures.

Although spectral lines depend crucially on the surface temperature apart
from composition, it is possible to carry out a sophisticated analysis of stellar
spectra to determine the composition of the surface material of the star. We
have indicated in §2.4.3 the basic idea behind the formation of spectral lines
and discussed in §2.7 how an analysis of spectral lines can be carried on
in very simple situations. Further details of spectral analysis are beyond the
scope of this book. Apart from composition, spectral lines give us other crucial
information. The star’s velocity component along the line of sight would cause
a Doppler shift of spectral lines, and by measuring this Doppler shift, the line of
sight velocity of a star can be measured. Again, if the star is strongly magnetic,
then one can hope to detect the Zeeman effect in the stellar spectra which would
give information about the magnetic field.

Nearby stars: distance, luminosity

If a star is within a few pc, we can determine the distance of the star from
a measurement of its parallax. Distances of about one hundred thousand stars
have been determined by the Hipparcos astronomy satellite devoted to accurate
measurements of stellar positions (Perryman et al., 1995).

Once the distance to the star is known, we can find the absolute magnitude
in any band by applying (1.8). The absolute magnitude in the V band, known as
the absolute visual magnitude, is denoted by MV and is a measure of the energy
the star is giving out in visible light. A star like the Sun may be giving out
most of its energy in the visible light. But stars with higher surface temperature
may be giving out energy predominantly in the ultraviolet and stars with lower
surface temperature in the infrared. Hence MV does not give a correct estimate
of the total luminosity of the star. If we could measure the total energy received
from the star in all wavelengths and calculated the absolute magnitude from that,
that would be called the absolute bolometric magnitude, denoted by Mbol. If we
know the surface temperature Teff of the star, then we can estimate the fraction
of the emitted energy which will go in the V band. Hence, from a measurement
of MV, it is possible to infer Mbol which is related to the luminosity of the star.
Thus, for nearby stars, once we have found out the distance, we also can infer
the luminosity (or Mbol) from a measurement of MV.

Binary stars: stellar mass determination

One of the fundamental parameters of a star is its mass. The mass of a star
can be estimated only from the gravitational attraction it produces and we can
observe the gravitational attraction only if there is a nearby object on which it
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acts. Luckily many stars are found in binary systems and one can determine
the masses of both the stars by observing the effect of each on the other. Some
binary stars are resolved through powerful telescopes. In other cases, the binary
nature is inferred from indirect evidence. If one star is much dimmer than the
other and the dimmer star sometimes blocks the light coming from the brighter
star, then we can observe a periodic variation of brightness. Such binaries are
called eclipsing binaries. As the two stars in a binary system move around their
common centre of gravity, one star may sometimes be moving towards us and
sometimes away from us, leading to a periodic variation in the Doppler shift of
spectral lines. Binaries displaying such periodically varying Doppler shifts in
their spectra are known as spectroscopic binaries.

Once the binary period and the velocities of the companions are known,
it is straightforward to apply Newtonian gravitational mechanics to calculate
the masses of the two companions (see, for example, Böhm-Vitense, 1989,
Chapter 9). Since we can determine stellar masses only for stars in binary
systems, one worry is whether stars of which we know masses constitute an
unbiased statistical sample of stars. We shall discuss in §4.5 that binary stars
very close to each other can transfer mass between themselves and evolve
differently from isolated stars. However, if the stars in the binary system are
sufficiently far away to ensure that mutual gravitational attraction does not
distort their shapes significantly, then the nature of these stars would not be
too different from isolated stars and they can be taken as typical representative
samples in statistical studies of stars.

3.5.2 Important features of observational data

Mass–luminosity relation

If a star is both nearby and in a binary, then both its luminosity and mass
can be determined. Plotting luminosities and masses of such stars, we get
Figure 3.4. Our simple theoretical considerations led to (3.37), implying that
luminosity should go as the cube of mass. The fact that a straight line fits the
data reasonably well implies that L indeed goes as Mn , the index n being given
by the slope of the straight line having value 3.7. Thus the very crude scaling
arguments used in §3.4 brought us quite close to the truth.

HR diagram of nearby stars

For nearby stars, we can determine the luminosities and then plot the luminosi-
ties against surface temperatures (obtained from the spectra). As we pointed out
in the previous section, the diagram obtained in this way is known as the HR
diagram. Figure 3.5 shows the HR diagram of nearby stars based on the distance
measurements by the Hipparcos astronomy satellite (Perryman et al., 1995). It
may be noted that the quantities plotted on the axes are the colour index B − V
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Fig. 3.4 The observational mass–luminosity relation. The different symbols correspond

to different types of binaries (i.e. visual binaries are indicated by crosses, spectroscopic

binaries by open squares, etc.). From Böhm-Vitense (1989, p. 87), based on the data

presented by Popper (1980).

and the absolute visual magnitude MV, which are directly measured (rather
than Teff and L which are inferred from these measurements). Stars lying on
the right side of the diagram are reddish in colour, whereas stars lying on the
left side are bluish in colour. HR diagrams with MV plotted against B − V are
also called colour–magnitude diagrams. Most stars seem to lie on a diagonal
strip in Figure 3.5 from the upper left corner to the lower right corner. This
diagonal strip is called the main sequence. We shall discuss the stars outside the
main sequence in the next section. The scaling laws discussed in the previous
section are expected to apply to the stars on the main sequence. If we consider
a median curve passing through the points on the main sequence, it will give
a relation between MV and B − V . As we have already discussed, B − V is
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Fig. 3.5 The HR diagram (or colour–magnitude diagram) of nearby stars, constructed

from the measurements by the Hipparcos astronomy satellite. From Perryman et al.

(1995). ( c©European Southern Observatory. Reproduced with permission from Astron-

omy and Astrophysics.)

in turn related to Teff and MV is related to the absolute bolometric magnitude
Mbol. Table 3.1 shows how these various quantities are related for stars lying
on the main sequence. Figure 3.6 showing the relationship between Mbol and
Teff for main sequence stars is made from the last two columns of Table 3.1.
It is clear that a straight line is a good fit. This straight line corresponds to a
scaling relation L ∝ T n

eff with n = 5.6. Our crude arguments in the last section
had given a remarkably close power law index of 6 (see (3.41))!

3.6 Main sequence, red giants and white dwarfs

Although most of the data points in Figure 3.5 lie on the diagonal strip called
the main sequence, there are also many data points in the upper right corner



3.6 Main sequence, red giants and white dwarfs 83

Table 3.1 The relationship amongst colour index

B − V , absolute visual magnitude MV, effective

surface temperature Teff and absolute bolometric

magnitude Mbol for main sequence stars. Adapted

from Tayler (1994, p. 17).

B − V MV log Teff Mbol

0.0 0.8 4.03 0.4
0.2 2.0 3.91 1.9
0.4 2.8 3.84 2.8
0.6 4.4 3.77 4.3
0.8 5.8 3.72 5.6
1.0 6.6 3.65 6.2
1.2 7.3 3.59 6.6

Fig. 3.6 The relation between Mbol and Teff for stars lying on the median of the main

sequence, with a best fit straight line. Based on data given by Tayler (1994, p. 17).

and a few data points in the lower left corner. The data points in the upper right
correspond to stars which are red in colour and have luminosities much larger
than the luminosities of red stars on the main sequence. Since unit areas of
all stars with the same surface temperature give out energy at approximately
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the same rate (due to the Stefan–Boltzmann law of surface emission from
blackbodies), the stars in the upper right corner have to be much larger in size
than the red stars on the main sequence, in order to be much more luminous.
This clearly follows from (3.38). The stars lying in the upper right corner of
the HR diagram are, therefore, called red giants. The stars lying in the lower
left corner of the HR diagram are bluish-white in colour and have much smaller
luminosities compared to blue stars on the main sequence. By arguments similar
to what we have just given, these stars have to be much smaller in size compared
to bluish-white stars on the main sequence. So these stars in the lower left corner
of the HR diagram are called white dwarfs.

We have already provided a theoretical explanation of the main sequence.
The approximate scaling relation (3.41) derived in the previous section is a
reasonable fit for the main sequence. We know that more luminous stars are
more massive. So the upper left corner of the main sequence corresponds to
more massive stars and the lower right corner to less massive stars. The mass
of a star determines at which point of the main sequence the star would lie.
The main sequence is essentially a sequence of stellar masses, with the mass
increasing from the lower right towards the upper left. This should also be clear
from the theoretical HR diagram shown in Figure 3.3, in which the masses of
stars are demarcated.

Detailed explanations of red giants and white dwarfs will be provided in
the next two chapters. Here we make only a few general remarks. We shall
see in §4.3 that stars in the main sequence generate energy by converting
hydrogen into helium. While a steady energy generation goes on in this way,
the internal thermal energy balances the gravity and the structure of the star
does not change much with time. This means that the position of the star in
the HR diagram does not change much while hydrogen is being converted
into helium in its interior. However, when hydrogen is appreciably depleted
in the stellar core, the nuclear energy generation drops and is not able to
balance the inward pull of gravity completely. This leads to a contraction of
the core and, by the Kelvin–Helmholtz arguments presented in §3.2.2, we
know that this will cause the core to heat up. Detailed calculations show that
this process also dumps some heat in the surrounding layers of the star and
inflates those layers. Red giant stars are believed to be caused in this way. We
shall see in §4.5 that several nuclear reactions can take place in the very hot
cores of red giants, leading to the production of various elements up to iron if
certain conditions are satisfied. Eventually, however, all possible nuclear fuel
is exhausted and the star can no longer produce thermal energy by nuclear
reactions to balance gravity. What then happens? Since electrons are fermions,
they obey Pauli’s exclusion principle, i.e. two electrons cannot occupy the same
quantum state. So electrons resist being pushed into very small volumes, once
the density is sufficiently high and all the low-lying quantum states are filled.
The pressure arising out of this factor, called the electron degeneracy pressure,
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will be derived in §5.2. We shall then show in §5.3 that, even in the absence
of other energy sources, the electron degeneracy pressure alone can balance
gravity if the mass of the star is less than the famous Chandrasekhar mass
limit. White dwarfs are supposed to be very dense, dead stars in which no
more nuclear reactions are taking place and gravity is balanced by the electron
degeneracy pressure of the dense stellar material. The surface temperature of
white dwarfs is a remnant of the heat produced in the gravitational contraction.
Eventually, after the white dwarf radiates out the heat, it will become a cold
dark object.

3.6.1 The ends of the main sequence. Eddington luminosity limit

The lightest stars on the main sequence at the lower right corner of the HR
diagram have masses of order 0.1M�, whereas the most massive stars at the
upper left corner have masses of order 100M�. Why do all stars have masses in
this narrow range of about three orders of magnitude? Other stellar parameters
like luminosity and radius vary much more.

Let us first point out what determines the lower limit of stellar mass.
As we shall point out in §8.3, stars form out of the gravitational collapse of
interstellar gas clouds. When a newly forming proto-star shrinks gravitationally,
the Kelvin–Helmholtz theory outlined in §3.2.2 should hold and the proto-
star should become hotter while it shrinks. Eventually its interior may become
hot enough for nuclear reactions to start, causing the gravitational contraction
to halt. Thus the proto-star becomes a real star burning nuclear fuel inside.
However, if the mass of the proto-star is less than a lower limit, then the interior
does not become hot enough for nuclear reactions to start, because the electron
degeneracy pressure halts the gravitational contraction before the temperature
can become sufficiently high. Such an object is called a brown dwarf. Detailed
theoretical calculations suggest that 0.08M� is the lower limit for the mass
of a star generating energy by nuclear reactions (see Exercise 5.9). A gravita-
tionally contracting object with less mass becomes a brown dwarf. A brown
dwarf will never have a surface temperature as high as that of even the least
massive stars. However, after its formation, for some time a brown dwarf will
be radiating away the heat produced during its gravitational contraction and can
be detected. The first unambiguous detection of a brown dwarf was reported by
Nakajima et al. (1995).

Let us now turn our attention to very massive stars, with very high tem-
peratures inside. The radiation pressure becomes more important inside more
massive stars. You will learn a historically important argument for it when you
work out Exercise 5.5 in Chapter 5. Eventually the very high radiation pressure
inside a massive star can make the star unstable. It is straightforward to show
that a high radiation pressure can lift the outer layers of a star. The energy flux of
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radiation at the surface of a star with luminosity L and radius R is L/4π R2. If χ

is the opacity, then ρχ is the absorption coefficient and the energy absorbed per
unit volume per unit time is ρχ(L/4π R2). The momentum associated with this
energy can be obtained by dividing this by c, which will give us the momentum
absorbed per unit time in a unit volume, which is nothing but the force exerted
on this unit volume. The star will be able to hold on to this outer layer of
gas only if the inward force of gravity is stronger than this force exerted by
radiation, i.e. if

GM

R2
ρ >

L

4π R2

ρχ

c
,

from which

L <
4πc GM

χ
. (3.44)

This limit of luminosity is known as the Eddington luminosity limit (Eddington,
1924). Note that the radius R has cancelled out of this expression. Since we have
the approximate relation (3.37) that L goes as M3, we can write L = λM3. It
then follows from (3.44) that the Eddington limit will be violated if the mass of
the star were to be larger than Mmax given by

λM2
max = 4πc G

χ
. (3.45)

While Mmax given by (3.45) may be an absolute upper limit beyond which a
star’s outer layers would be blown off by radiation, in reality stars with mass
considerably less than this Mmax become unstable due to radiation pressure and
are not able to exist (see, for example, Kippenhahn and Weigert, 1990, §22.4,
§39.5).

3.6.2 HR diagrams of star clusters

Many stars are found in clusters. There are some relatively loosely bound
clusters, each having a few dozens of stars. Such loosely bound clusters are
called open clusters. Of more interest to us are the globular clusters, which are
very tightly bound almost spherical clusters, containing of the order of 105 stars.
Figure 3.7 shows a globular cluster. As we shall discuss in §6.1.2, the globular
clusters are found around the centre of our Galaxy. From an astrophysical point
of view, the main importance of a star cluster is that it gives us a group of stars
which are believed to have been born at about the same time and which are at
roughly the same distance from us.

If all the stars in a cluster are at the same distance d, then we see from
(1.8) that the difference between absolute magnitude and apparent magnitude
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Fig. 3.7 A globular cluster of stars, photographed at Kavalur Observatory.

will be the same for all stars. Hence we can construct the HR diagram of a
star cluster by plotting the apparent magnitude (instead of absolute magnitude)
against B − V . Figure 3.8 shows such an HR diagram of a globular cluster. One
can clearly see the main sequence. By using (1.8), one can easily find out the
distance d of the globular cluster which will yield such values of the absolute
magnitude that the main sequence of the globular cluster will coincide with the
main sequence of nearby stars as seen in Figure 3.5. This is a very powerful
method of determining distances to star clusters.

The overall appearance of Figure 3.8, however, is quite different from
Figure 3.5. For example, in Figure 3.5 we find that the main sequence continues
to values of B − V less than 0.0 on the left side. On the other hand, the main
sequence in Figure 3.8 seems to end at around B − V = 0.3. We know that main
sequence stars with lower values of B − V correspond to more massive stars.
So the globular cluster is basically missing stars on the main sequence heavier
than a certain mass. The explanation for this is not difficult to give. We have
already pointed out that more massive stars have shorter lifetimes (see (3.43)).
So, in a globular cluster of a certain age, stars heavier than a particular mass
would have finished their lives on the main sequence. As we shall see in §4.5,
stars lie on the main sequence as long as hydrogen is converted into helium.
After that, a star becomes a red giant as a result of the inflation of outer layers.
We see in Figure 3.8 that there is a branch of stars proceeding towards the region
of red giant stars (upper right corner) from the place where the main sequence
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Fig. 3.8 The HR diagram of stars in the globular cluster M3. From Johnson and

Sandage (1956). ( c©American Astronomical Society. Reproduced with permission from

Astrophysical Journal.)

seems to end abruptly. Presumably these are stars in a state of transition from
the main sequence to the red giant phase. Since this transition takes relatively
less time compared to lifetimes of stars, the probability of coming across stars
in this transitory phase is not very high in a random sample of stars. That is why
we see relatively few stars between the main sequence and the red giant phase
in the HR diagram of nearby stars. After finishing the red giant phase, a star
may proceed towards becoming a white dwarf. Some points in Figure 3.8 seem
to correspond to such stars.

The stars at the abrupt turning point of the main sequence are the stars
which are just running out of hydrogen in the core. So the age of the globular
cluster is essentially equal to the main sequence lifetime of these stars at the
turning point. Hence, from a theoretical estimate of the lifetimes of stars, one
can determine the age of a globular cluster simply by noting the turning point of
the main sequence. Figure 3.9 is a composite HR diagram by superposing the
HR diagrams of several star clusters. The vertical axis displays the absolute
magnitude, which can be found easily after determining the distance of the
cluster by matching the main sequence. The clusters with turning points lower
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Fig. 3.9 A composite HR diagram sketching the extent of the main sequence for several

star clusters. From Sandage (1957). ( c©American Astronomical Society. Reproduced
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down are clearly older. Detailed theoretical calculations suggest that the oldest
globular clusters are about 1.5 × 1010 yr old. This poses an important constraint
on cosmology, since the Universe could not be younger than this!

Exercises

3.1 Estimate the total thermal energy of the Sun from the fact that its internal

temperature is of order 107 K. Show that this is of the same order as the rough

estimate of gravitational potential energy.

3.2 If the Sun was producing its energy by slow contraction as suggested by

Helmholtz and Kelvin, estimate the amount by which the radius of the Sun has

to decrease every year to produce the observed luminosity.
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3.3 Show that the radiation pressure at the centre of the Sun is negligible

compared to the gas pressure, by estimating the ratio of the radiation pressure

to the gas pressure.

3.4 The Sun has a convection zone from 0.7 R� to the solar surface. Find

out how density, pressure and temperature vary within this convection zone by

assuming that (i) equation (3.22) holds exactly inside the convection zone and

(ii) the convection zone contains a very small fraction of the Sun’s mass so that

the gravitational field in the convection zone can be taken to be −GM�/r2.

(According to current solar models, the convection zone contains only about

2% of solar mass.)

3.5 Using the fact that the opacity in very hot stars is provided by Thomson

scattering, show that L/M has to be less than a critical value and find its

numerical value. How does it compare with L�/M�? Use (3.45) to estimate

the maximum mass Mmax of a star such that the outer layers would be blown

off by radiation if the mass of the star was larger. (Note that stars with such

high mass actually do not exist.)

3.6 From Figures 3.5 and 3.8, estimate the distance of the globular cluster

M3 from us.

3.7 Make a very rough estimate of the wavelengths at which a star of mass

9M� and a star of mass 0.25M� will give out maximum radiation.
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Stellar astrophysics II:
Nucleosynthesis and other

advanced topics

4.1 The possibility of nuclear reactions in stars

We have seen in the previous chapter that many aspects of stellar structure can
be understood without a detailed knowledge of stellar energy generation mech-
anisms. This is indeed fortunate because not much was known about energy
generation mechanisms when Eddington was carrying out his pioneering inves-
tigations of stellar structure in the 1920s. Eddington (1920) correctly surmised
that the Kelvin–Helmholtz hypothesis of energy generation by contraction (see
§3.2.2) could not possibly be true and stellar energy must be produced by sub-
atomic processes. Nuclear physics, however, was still in its infancy and details
of how the stellar energy is produced could not be worked out at that time.
With the rapid advances in nuclear physics within the next few years, it became
possible to work out the details of energy-producing nuclear reactions inside
stars. To build sufficiently detailed and realistic models of stars and stellar
evolution, a good understanding of energy generation mechanisms is essential.
We turn to this subject now.

Let us consider a nucleus of atomic mass A and atomic number Z . It is made
of Z protons and A − Z neutrons. The mass mnuc of the nucleus is always found
to be less than the combined mass of these protons and neutrons. It is the energy
equivalent of this mass deficit which provides the binding energy of the nucleus
and is given by

EB = [Zmp + (A − Z)mn − mnuc]c2. (4.1)

To find out how tightly bound a nucleus is, we need to consider the binding
energy per nucleon

91
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Fig. 4.1 A smooth curve showing the binding energy per nucleon, plotted against the

atomic mass number.

f = EB

A
. (4.2)

Figure 4.1 shows a plot of f for different atomic nuclei. It is seen that the
intermediate-mass nuclei around iron are most tightly bound. So energy is
released in two kinds of nuclear reactions: the fusion of very light nuclei into
somewhat heavier nuclei or the fission of very heavy nuclei into intermediate-
mass nuclei. Energy production in the interiors of stars is believed to be due to
nuclear fusion. We note that f for helium is 6.6 MeV, which is about 0.007 of
the mass of a nucleon. Hence, if a mass M� of hydrogen is fully converted into
helium, the total amount of energy released will be 0.007M�c2. Dividing this
by the solar luminosity L�, we get an estimate of the lifetime of a star which
shines by converting hydrogen into helium, i.e.

τnuc ≈ 0.007M�c2

L�
. (4.3)

On putting in the values of M� and L�, this turns out to be

τnuc ≈ 1011 yr,

which is much longer than the Kelvin–Helmholtz time scale given by (3.13) and
is of the same order as the age of the Universe.

All nuclei are positively charged and normally repel each other. Only when
two nuclei are brought within about 10−15 m, can the short-range nuclear forces
overcome the electrical repulsion and the nuclei can fuse. A typical internuclear
potential is shown in Figure 4.2. For two nuclei with atomic numbers Z1 and
Z2, the electrostatic potential is

1

4πε0

Z1 Z2e2

r
.

The height of this potential at the nuclear radius r ≈ 10−15 m turns out to be
about Z1 Z2 MeV. At the centre of the Sun where the temperature is of order
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Fig. 4.2 A sketch of a typical nuclear potential.

107 K, the typical kinetic energy κBT of a particle is about a keV, which is
about 103 lower than the electrostatic potential barrier between nuclei. Even
the centre of the Sun is not hot enough for the nuclei to overcome the mutual
electrical repulsion and come close together for nuclear fusion – according to
classical physics! However, one of the standard results of quantum mechanics
is that a particle can tunnel through a potential barrier. While studying α-decay,
Gamow (1928) calculated the probability for the α-particle to tunnel from the
inside of the nucleus to the outside by penetrating the potential barrier. The same
probability should hold for a particle to tunnel from the outside through the
potential barrier of the nucleus. On taking account of the tunnelling probability,
it was found that nuclear fusion can indeed take place in the interior of the Sun
(Atkinson and Houtermans, 1929).

The basic principles for calculating the rate of any nuclear reaction inside a
star will be discussed in the next section. Then in §4.3 we shall list some of the
specific nuclear reactions likely to take place in stellar interiors.

4.2 Calculation of nuclear reaction rates

Suppose a nucleus having charge Z1e can react with a nucleus having charge
Z2e, their number densities per unit volume being n1 and n2. We want to
calculate the rate of the reaction, i.e. the number of reactions taking place per
unit volume per unit time.

If both types of nuclei have a Maxwellian velocity distribution, it is straight-
forward to show that the probability of the relative velocity between a pair being
v also follows a Maxwellian distribution

f (v) dv =
(

m

2πκBT

)3/2

exp

(
− mv2

2κBT

)
4πv2dv,
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where m is the reduced mass m1m2/(m1 + m2). In terms of the kinetic energy

E = 1

2
mv2,

the distribution can be written as

f (E) dE = 2√
π

E1/2

(κBT )3/2
exp

(
− E

κBT

)
d E . (4.4)

If σ(E) is the reaction cross-section between the two nuclei approaching each
other with energy E , then it is easy to see that the reaction rate is given by

r = n1n2〈σv〉, (4.5)

where

〈σv〉 =
∫ ∞

0
σ(E) v f (E) dE . (4.6)

From (4.5) and (4.6), it should be clear that we need only the reaction
cross-section σ(E) to calculate the reaction rate. We now discuss how this
cross-section can be found.

As we pointed out in §4.1, the typical particle energy in a stellar interior is
much less than the height of the potential barrier sketched in Figure 4.2. Hence
the cross-section σ(E) has to depend on the probability of tunnelling through
this potential barrier. The quantum mechanical tunnelling probability through
such a barrier was first calculated by Gamow (1928) and is reproduced in many
textbooks on nuclear physics (see, for example, Yarwood, 1958, §19.5). We
write down the expression without derivation (you are asked to do the derivation
in Exercise 4.1 with suitable hints). For nuclei approaching each other with
energy E , the probability of tunnelling through the potential barrier is given by

P ∝ exp

[
− 1

2ε0�

(m
2

)1/2 Z1 Z2e2

√
E

]
. (4.7)

Now, without the tunnelling probability, the reaction cross-section is expected
to go as approximately λ2, where λ is the de Broglie wavelength. Since λ2 ∝
1/E , we can write down the cross-section including the tunnelling probability in
the form

σ(E) = S(E)

E
exp

[
− b√

E

]
, (4.8)

where

b = 1

2ε0�

(m
2

)1/2
Z1 Z2e2, (4.9)

and S(E) is a slowly varying function of E . It should be noted that the assump-
tion of slow variation of S(E) has its limitations. Occasionally the cross-section
of a nuclear reaction may become very large for a certain energy, as sketched in
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Fig. 4.3 A sketch showing the variation of a nuclear reaction cross-section with energy

around a resonance.

Fig. 4.4 Variation with energy of the Gamow factor, the Maxwellian factor and their

product (the curve with the shading underneath).

Figure 4.3. This is called a resonance. Only in the absence of resonances, can
we take S(E) to be a slowly varying function. Usually S(E) is determined from
laboratory experiments.

On substituting (4.4) and (4.8) into (4.6), we finally get

〈σv〉 = 23/2

√
πm

1

(κBT )3/2

∫ ∞

0
S(E) e−E/κBT e−b/

√
E dE . (4.10)

The function exp(−E/κBT ) decreases rapidly with E , whereas the other func-
tion exp(−b/

√
E) increases rapidly with E , as shown in Figure 4.4. Their

product has an appreciable value only for a narrow range of energy around E0.
We can replace the slowly varying function S(E) by its value S(E0) at E0 and
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take it outside the integral. Then the integral in (4.10) is given by

J =
∫ ∞

0
eg(E) dE, (4.11)

where

g(E) = − E

κBT
− b√

E
. (4.12)

The value of J is given by the shaded area in Figure 4.4. From dg/dE = 0, we
can find the value of E0 where the function g(E) is maximum, which gives

E0 =
(

1

2
bκBT

)2/3

=
[(m

2

)1/2 Z1 Z2e2κBT

4ε0�

]2/3

. (4.13)

Let the value of g(E) at E0 be denoted by −τ , i.e.

τ = −g(E0) = 3
E0

κBT
= 3

[(
m

2κBT

)1/2 Z1 Z2e2

4ε0�

]2/3

. (4.14)

We can now expand g(E) in a Taylor series around the point E = E0, which
gives

g(E) = g(E0) +
(

dg

dE

)
E=E0

(E − E0) + 1

2

(
d2g

dE2

)
E=E0

(E − E0)
2 + · · ·

= −τ − τ

4

(
E

E0
− 1

)2

+ · · ·

on calculating d2g/d E2 from (4.12) and noting that dg/dE = 0 at E = E0.
Substituting this in (4.11), we get

J ≈ e−τ

∫ ∞

0
e
− τ

4

(
E

E0
−1
)2

dE . (4.15)

Since the integrand makes significant contributions only in a narrow range of E
around E0, we can replace the lower limit by −∞. Then the integral in (4.15)
becomes a Gaussian integral which can be evaluated easily and gives

J ≈ 2

3
κBT

√
πτe−τ . (4.16)

From (4.10) (keeping in mind that τ goes as T −1/3), we now have

〈σv〉 ∝ S(E0)

T 2/3
exp

⎡
⎣−3

(
e4

32ε2
0κB�2

m Z2
1 Z2

2

T

)1/3
⎤
⎦ . (4.17)

Once S(E) for the nuclear reaction is found from laboratory experiments, the
reaction rate can be obtained by substituting (4.17) into (4.5).
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For calculating stellar models, we need to know the energy generation rate
by the nuclear reaction. If �E is the energy released in this nuclear reaction,
then the energy generation rate per unit volume is r �E , with r given by (4.5).
This must be equal to ρε, where ε is as defined in §3.2.3, i.e.

ρε = r �E = n1n2〈σv〉�E . (4.18)

If X1 and X2 are the mass fractions of the two elements which take part in the
nuclear reaction, then n1 and n2 should respectively be proportional to ρX1 and
ρX2. It is then clear from (4.17) and (4.18) that the nuclear energy generation
function ε should have the following functional dependence on various relevant
quantities:

ε = Cρ X1 X2
1

T 2/3
exp

⎡
⎣−3

(
e4

32ε2
0κB�2

m Z2
1 Z2

2

T

)1/3
⎤
⎦ . (4.19)

Once the coefficient C is estimated from the experimentally determined cross-
section S(E), we have the necessary input for stellar structure calculations.
The function ε increases with temperature sharply because of the exponential
involving temperature. Since Z2

1 Z2
2/T appears in the exponential, it should be

clear that reactions involving heavier nuclei are much less likely compared to
reactions involving lighter nuclei at a given temperature. We now turn to the
specific nuclear reactions which are likely to take place inside stars.

4.3 Important nuclear reactions in stellar interiors

Although nuclear reactions inside stars involve no chemical burning, it is quite
customary to refer to energy generation by nuclear reactions as nuclear burning
and the element which gets transformed in the nuclear reactions as nuclear
fuel. As we pointed out in the previous section, one needs an experimentally
determined cross-section S(E) for a nuclear reaction to calculate the energy
generation by that reaction in stellar interiors. As we already pointed out,
typical particle energies in stellar interiors are of the order of keV. Laboratory
experiments are usually done for energies of order MeV so that the Coulomb
barrier does not pose a big problem and the nuclear reactions become more
likely. From measurements of S(E) at MeV energies, one has to extrapolate to
keV energies for application to stellar interiors. For an account of the historical
development of this subject, the interested reader should be referred to the Nobel
Lecture by Fowler (1984), who was a pioneer in the experimental measurement
of many cross-sections relevant for astrophysics. Fowler (1984) gives plots of
S(E) for many astrophysically relevant nuclear reactions.

In the early decades of the twentieth century, astronomers were not sure of
the composition of stars. However, by the time Russell (1929) carried out an
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extensive spectroscopic analysis of the Sun, it had become clear that the stars
are mainly made up of hydrogen. Also, it should be apparent from (4.19) that
hydrogen can ‘burn’ at a temperature lower than the temperatures necessary
to burn helium and other heavier elements with higher atomic number Z .
We believe that the main-sequence stars generate their energies by burning
hydrogen into helium. By the late 1930s, nuclear physics had developed suffi-
ciently to enable physicists to come up with schemes of likely nuclear reactions
inside stars.

Bethe and Critchfield (1938) proposed what is now known as the proton–
proton or pp chain. The energy generation inside the Sun primarily takes place
due to this chain. In the first two reactions of this chain, deuterium 2H and then
3He are produced as follows:

1H + 1H −→ 2H + e+ + ν,

2H + 1H −→ 3He + γ. (4.20)

After the production of 3He, the reactions can proceed through three alternative
branches: pp1, pp2, pp3. The branch pp1 is by far the dominant branch for
conditions corresponding to the solar interior. It involves two nuclei of 3He
producing a nucleus of 4He:

pp1 : 3He + 3He −→ 4He + 1H + 1H. (4.21)

On considering all the reactions in the pp1 branch, it should be clear that
effectively four 1H nuclei combine to form one 4He nucleus. The other two
branches (pp2 and pp3) start dominating only when the temperature is above
107 K. They require the prior existence of 4He and first form 7Be:

3He + 4He −→ 7Be + γ. (4.22)

Afterwards 7Be can lead to the following two kinds of reactions:

pp2 : 7Be + e− −→ 7Li + ν,

7Li + 1H −→ 4He + 4He. (4.23)

pp3 : 7Be + 1H −→ 8B + γ,

8B −→ 8Be + e+ + ν,

8Be −→ 4He + 4He. (4.24)

Our job is now to find the energy generation function ε for the whole chain
of reactions. How can this be done? We note that the first reaction in (4.20)
is mediated by the weak interaction (the emission of a neutrino is usually the
signature of a reaction being mediated by the weak interaction) and is a slow
reaction with a small cross-section. Even though some of the other reactions
may be faster, they cannot proceed without the 2H nuclei which are produced in
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the first slow reaction. It is thus the first reaction which determines the reaction
rate in a steady state. In general, when a series of reactions will have to take
place, the slowest reaction determines the rate at the steady state. However,
while calculating the energy generation, it is necessary to add up the energies
released in all the reactions in the chain. When all these are done carefully, the
energy generation rate ε is given by

εpp = 2.4 × 10−1ρX2
(

106

T

)2/3

exp

[
−33.8

(
106

T

)1/3]
W kg−1, (4.25)

when the contributions of pp2 and pp3 branches are neglected. Here X is the
mass fraction of hydrogen.

If carbon, nitrogen and oxygen are already present and can act as catalysts,
then hydrogen can be synthesized into helium by a completely different series
of nuclear reactions. This series of reactions, known as the CNO cycle, was
independently suggested by von Weizsäcker (1938) and Bethe (1939). The
reactions in this cycle are the following:

12C + 1H −→13N + γ,

13N −→13C + e+ + ν,

13C + 1H −→14N + γ,

14N + 1H −→15O + γ,

15O −→15N + e+ + ν,

15N + 1H −→12C + 4He. (4.26)

On adding up these reactions, the net result again is that four 1H nuclei have
combined together to make one 4He nucleus. Again, the reaction rate in the
steady state is governed by the slowest reaction in the cycle, which in this case
happens to be the fourth reaction in (4.26). The energy generation rate by the
CNO cycle is found to be

εCNO = 8.7 × 1020 ρXCNO X

(
106

T

)2/3

exp

[
−152.3

(
106

T

)1/3]
W kg−1,

(4.27)
where XCNO is the sum of the mass fractions for carbon, nitrogen and oxygen.
It should be noted that both (4.25) and (4.27) are of the same form as (4.19).

The variations of εpp and εCNO as functions of T are shown in Figure 4.5
for a typical stellar composition. It should be clear from this figure that for stars
like the Sun with the central temperatures of order 107, the pp chain should be
the dominant energy generation mechanism. On the other hand, more massive
stars with higher central temperatures generate energy predominantly by the
CNO cycle.
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Fig. 4.5 The variation with temperature of the energy generation rate by hydrogen

burning, for the two major reaction chains. From Tayler (1994, p. 92).

Apart from explaining the energy generation mechanism in stars, the other
important goal of nuclear astrophysics is to explain the abundances of various
elements in the Universe. As we shall see in §11.3, we believe that nuclear
reactions took place in the early Universe and some significant fraction of
baryonic matter was converted into helium. The helium synthesized in stars
makes additions to this primordial helium. The next important question is
how the heavier elements are produced. Gamow (1946) suggested that all the
elements were synthesized in the early Universe. We now think that this was a
wrong idea and heavier elements are synthesized in stars. Let us see how this
can happen. After some helium has been synthesized from hydrogen by say pp
chain reactions, we shall have a mixture of hydrogen and helium nuclei. Let us
consider such a mixture. If heavier nuclei have to be built up from this, then the
obvious first step may be either of these two reactions: (i) one hydrogen and one
helium nuclei combine to produce a nucleus of mass 5; (ii) two helium nuclei
combine to produce a nucleus of mass 8. However, laboratory experiments
failed to discover any stable nucleus of mass 5 or 8. It became clear that these
two obvious nuclear reactions could not provide the next step of synthesizing
heavier nuclei. Then how are heavier nuclei produced? This problem was solved
by Salpeter (1952), who suggested what is known as the triple alpha reaction.
In this reaction, three 4He nuclei combine together as follows:

4He + 4He + 4He −→ 12C + γ. (4.28)

Since this reaction involves three particles, it is much less likely to occur
compared to reactions involving two particles. Also, the Coulomb repulsion is
stronger between helium nuclei than between the nuclei involved in pp chain
reactions, requiring a higher temperature (which should be evident from (4.19)).
In the conditions prevailing in the early Universe, this reaction is found to
be highly improbable and nucleosynthesis could not possibly proceed beyond
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helium. Inside stellar cores, however, this reaction can take place when the
temperature is higher than 108 K. But, even then, the rate would have been
too slow if the cross-section of this reaction was non-resonant. Hoyle (1954)
conjectured that there must be a resonance to make the reaction rate appreciable.
This resonance was almost immediately found in laboratory experiments.

Detailed calculations show that central temperatures of main-sequence stars
are not high enough for the triple alpha reaction. So stars in the main sequence
generate energy by the pp chain (less massive stars) or CNO cycle (more
massive stars). When, however, hydrogen is exhausted in the core, hydrogen-
burning reactions can no longer halt the inward pull of gravity. The core then
starts shrinking, as we shall discuss more in §4.5. As we shall see in the
next chapter, it is possible for gravity to be eventually balanced by degeneracy
pressure when the core density is sufficiently high (provided the core mass does
not exceed the famous Chandrasekhar limit to be derived in §5.3). However,
while the core shrinks, its temperature rises by the Kelvin–Helmholtz arguments
given in §3.2.2. If the star is not too massive, then its central temperature may
never become high enough to start the triple alpha reaction and the star may
end up as a white dwarf with a helium core. In the case of very massive stars,
on the other hand, the temperature of the shrinking core may become very high
for other nuclear reactions involving heavier nuclei to start. Once a new nuclear
reaction is ignited, it can halt the inward pull of gravity. After carbon has been
synthesized by the triple alpha process, the next heavier nuclei can be built up
from carbon. There is a vast literature on the various nuclear reactions which
build up heavier nuclei. We shall not get into this complex subject here. In
sufficiently massive stars, it is believed that nuclear reactions can go all the way
up to the most stable nucleus, iron. So such stars may eventually have an iron
core, beyond which it is not possible to generate energy by nuclear reactions.
All possible nuclear reactions in stellar interiors were systematically discussed
by Burbidge, Burbidge, Fowler and Hoyle (1957). One important question is
why we see elements heavier than iron in the Universe, or why we even see
elements higher than helium in the solar system, since the Sun has not yet gone
beyond the stage of synthesizing helium from hydrogen. These issues will be
discussed in §4.7.

4.4 Detailed stellar models and experimental confirmation

We explained in §3.3 how detailed stellar models are calculated. One of the
important inputs in a stellar model calculation is the nuclear energy generation
rate. We have seen in §4.2 and §4.3 how this rate can be determined. So we
now understand in principle how a stellar model is constructed. The equation of
state P(ρ, T, Xi ), the opacity χ(ρ, T, Xi ) and the nuclear energy generation
rate ε(ρ, T, Xi ) all depend on the chemical composition of the star. So we
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Table 4.1 The standard solar model. The

density ρ is in kg m−3. Adapted from

Bahcall and Ulrich (1988).

R/R� Mr /M� Lr /L� T ρ

0.000 0.000 0.000 1.56e+7 1.48e+5
0.053 0.014 0.106 1.48e+7 1.23e+5
0.103 0.081 0.466 1.30e+7 8.40e+4
0.151 0.192 0.777 1.11e+7 5.61e+4
0.201 0.340 0.939 9.31e+6 3.51e+4
0.252 0.490 0.989 7.86e+6 2.09e+4
0.302 0.620 0.999 6.70e+6 1.20e+4
0.426 0.830 1.001 4.73e+6 2.96e+3
0.543 0.924 1.001 3.53e+6 8.42e+2
0.691 0.974 1.000 2.38e+6 2.05e+2
0.822 0.993 1.000 1.19e+6 6.42e+1
0.909 0.999 1.000 5.25e+5 1.87e+1
1.000 1.000 1.000 5.77e+3 0.00e+0

need to specify the composition, keeping in mind that the composition changes
continously due to nuclear reactions – at least in the core where these reactions
take place. To construct the model of a star of a definite mass, usually an initial
uniform composition is assumed and first a stellar model is calculated on the
basis of it. This model would correspond to a star of this mass when it is just
born. Then one finds out how the composition of the core will change due to
nuclear reactions after some time. A stellar model calculated with this changed
composition corresponds to the star some time after it is born. By constructing
successive models with changed compositions, one finds how the star evolves
with time. While hydrogen is being converted into helium in the core of a star,
the overall structure of the star is found not to change much and the star lies
on the main sequence in the HR diagram. Only when hydrogen is depleted
sufficiently in the core, drastic changes in the overall characteristics of the star
start taking place. We shall discuss these in the next section.

The age of the solar system is estimated by such methods as the analysis
of radioactive nuclei with long half-lives in the old rocks and meteorites. We
believe the Sun to be about 4.6 × 109 yr old. So a standard solar model is
constructed by first solving the stellar structure equations by assuming that the
present composition of the solar surface was initially the composition of the
whole Sun and then by advancing this model through 4.6 × 109 yr. Table 4.1
presents the standard solar model. Before discussing how this standard solar
model has been beautifully confirmed by recent experiments, we turn to some
other important points.

We showed in §3.4 that many properties of stars can be understood without
solving the stellar structure equations in detail. Now we want to discuss some
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important results which follow from detailed stellar structure models. We saw
in §3.4 that more massive stars are more luminous and hotter, i.e. both their
surfaces and central regions are hotter than surfaces and central regions respec-
tively of less massive stars. It should be clear from Figure 4.5 that the CNO cycle
must be the main hydrogen burning process for more massive stars, whereas
the pp chain is the main hydrogen burning process for less massive stars (up
to stars slightly heavier than the Sun). From the exponential factors in (4.25)
and (4.27), it follows that εCNO is a much more rapidly increasing function
of temperature than εpp. As a result, the CNO cycle in the core of a massive
star tries to create a steep temperature gradient. A steep temperature gradient
is likely to violate the Schwarzschild stability condition (3.21), giving rise to
convection. Detailed calculations show that the massive stars have convective
cores, whereas the cores of less massive stars are stable against convection. In
the case of less massive stars, the temperature in the outer layers just below
the surface is less than the temperature in the outer layers of more massive
stars. A look at Kramers’s law (2.79) and Figure 2.8 should convince the reader
that the opacity should be higher in the outer layers of less massive stars. If
the energy flux were to be carried by radiative transfer, it follows from (3.16)
that the temperature gradient will have to be steep if the opacity was high.
Again we expect the Schwarzschild condition (3.21) to be violated and the
energy flux to be carried by convection in the regions where opacity is high.
To sum up, more massive stars have convective cores surrounded by stable
envelopes, whereas less massive stars have convective envelopes surrounding
stable cores.

It follows from the standard solar model that the Sun has a stable core up to
a radius of about 0.7R�, beyond which the temperature gradient is unstable and
heat is transported by convection. This theoretical conclusion is corroborated
by high-quality photographs of the solar surface like the one in Figure 4.6.
This photograph really gives the impression that we are looking at the top of
a layer of convecting fluid. Since the upcoming hot gases are brighter and the
downgoing cold gases are darker, we get the granular pattern which changes in
a few minutes.

One of the main triumphs of stellar structure theory is that it can account
for various properties of the stars on the main sequence (mass–luminosity
relation and colour–magnitude relation). We saw in §3.4 that even fairly crude
arguments based on the stellar structure equations give us a reasonable idea
how these relations arise. However, apart from explaining these relations, stellar
structure theory has led to very detailed stellar models constructed by many
theorists over the years. Is there some way to test if these detailed theoretical
stellar models are indeed close to reality? In other words, do densities, tem-
peratures and pressures vary in the interiors of stars exactly in accordance with
these theoretical stellar models? Two recent developments described below give
us confidence that the standard solar model describes the interior of the Sun
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Fig. 4.6 A photograph of the solar surface showing the granulation pattern due to

convection (photographed with the Vacuum Tower Telescope of the Kippenheuer

Institut located in Tenerife). Courtesy: W. Schmidt.

extremely well and probably the same is true for theoretical models of stars with
other masses.

4.4.1 Helioseismology

This subject, which is the study of solar oscillations, began when Leighton,
Noyes and Simon (1962) discovered that the surface of the Sun is con-
tinuously oscillating with periods of the order of a few minutes. We
know that an air column in a pipe vibrates only at some eigenfrequen-
cies. A careful analysis of the solar oscillations revealed the existence of
many discrete frequencies. It became clear that the observed oscillations
are essentially superpositions of many modes with discrete eigenfrequen-
cies. By now several thousands of eigenfrequencies have been measured very
accurately.

The eigenfrequencies of an air column depend on the length of the column
and the sound speed inside it, since sound waves travel back and forth inside the
column to set up the standing modes. Similarly, the eigenmodes of the Sun are
caused by sound waves (we would call them ‘sound waves’ even though their
frequencies are usually outside the audible range) which interfere constructively
after passing through and around the Sun. Since different modes go up to
different depths in the interior of the Sun, the analysis of many modes together
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Fig. 4.7 The difference between the density inferred from helioseismology and the

density calculated from the standard solar model (divided by the density), as a function

of the solar radius. From Chitre and Antia (1999). ( c©Indian Academy of Sciences.

Reproduced with permission from Current Science.)

tells us how the sound speed varies with depth in the interior of the Sun. The
sound speed is given by

cs =
√

γP

ρ
(4.29)

(see §8.3). Once sound speeds at different depths are inferred from helioseis-
mology, one can use (4.29) to determine the density as a function of depth inside
the Sun. Figure 4.7 shows how the density, inferred from helioseismology and
calculated from the standard model, differ from each other. The difference is
considerably less than 2% at all depths. Thus helioseismology has verified the
standard solar model to a very high degree of accuracy.

4.4.2 Solar neutrino experiments

We believe that energy inside stars is produced by nuclear fusion, because that
is the most satisfactory theoretical idea we have been able to come up with.
However, we saw in §3.4 and §3.5 that many aspects of observational data
can be explained to a reasonable extent without any detailed knowledge of the
energy generation process. So, can we have an independent experimental check
that nuclear reactions are really taking place inside stars? The nuclear reactions
taking place in the interior of the Sun are listed in (4.20)–(4.24). It may be noted
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that a neutrino is a by-product in many of the reactions. Since neutrinos interact
with matter only through the weak interaction, most of the neutrinos created at
the centre of the Sun would come out without interacting with the material of the
Sun at all. Thus, at the Earth, we expect a flux of neutrinos directly coming from
the centre of the Sun. Detecting this flux of neutrinos is a sure way of confirming
that nuclear reactions are indeed taking place in the centre of the Sun. In the
1960s the famous first solar neutrino experiment began (Davis, Harmer and
Hoffman, 1968). The flux of neutrinos was detected, but the experimentally
measured flux was found to be about one-third of what was theoretically pre-
dicted. Let us take a more detailed look at the solar neutrino experiment.

We take stock of the nuclear reactions which produce neutrinos. In the first
reaction of (4.23), 7Be gives rise to a neutrino besides a nucleus 7Li. Since
there are only two end products, the conservations of momentum and energy
easily show that each of the product particles should have a specific value of
energy. Actually, the 7Be neutrino can have two discrete energies: 0.38 MeV
and 0.86 MeV. There are two other important reactions producing neutrinos: (i)
the first reaction of (4.20) and (ii) the second reaction of (4.24). We would refer
to these neutrinos as pp neutrinos and 8B neutrinos respectively. In both these
cases, the neutrino is one of the three end products. So it is possible for the
neutrino to have a distribution of energy. The pp neutrinos have energy in the
range 0–0.4 MeV, whereas the 8B neutrinos have the energy range 0–15 MeV.
Figure 4.8 shows the spectrum of neutrinos theoretically predicted by the stan-
dard solar model. It should be noted that the vertical axis is logarithmic and
the flux of 8B neutrinos is several orders smaller than the flux of pp neutrinos.
The flux of 8B neutrinos depends sensitively on the solar model, since these
neutrinos are produced in a reaction in the pp3 branch. This branch becomes
more important if the temperature is higher. In a different solar model with the
central temperature lower than what is predicted by the standard model, the 8B
neutrino flux can be considerably less. On the other hand, the pp neutrinos come
from the main nuclear reaction. The luminosity of the Sun fixes the number of
reactions taking place per unit time and determines the pp neutrino flux. The
value of this flux, therefore, is independent of the solar model used.

Since neutrinos interact so weakly with matter, it is not easy to detect them.
The pioneering experiment of Davis used the following reaction

37Cl + ν → 37Ar + e−, (4.30)

for which the threshold neutrino energy is 0.814 MeV, as indicated in Figure 4.8.
So only the 8B neutrinos can produce this reaction. A huge tank of the cleaning
fluid C2Cl4 was placed deep underground in a gold mine, to cut down the
disturbances expected at the terrestrial surface. Neutrinos are the only particles
which penetrated to this depth and occasionally interacted with a 37Cl nucleus
to produce 37Ar. Since 37Ar is radioactive, one could estimate the number
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Fig. 4.8 The expected spectrum of the solar neutrino flux, based on the standard solar

model. The detection ranges of the different experiments are indicated. Adapted from

Bahcall (1999).

of 37Ar nuclei produced from the number of radioactive decays and thereby
find the solar neutrino flux. A convenient unit to express the neutrino flux
measurement is SNU (Solar Neutrino Units), defined as 10−36 interactions per
target atom per second. The chlorine experiment of Davis has fixed the flux
to a value 2.56 ± 0.23 SNU on the basis of 25 years of operation, whereas
the theoretical value predicted by the standard solar model is 7.7 ± 1.2 SNU
(Bahcall, 1999). For many years, Davis’s experiment was the only solar neutrino
experiment and one possible explanation of the discrepancy was that the central
temperature of the Sun could be less than what is predicted by the standard solar
model. Other neutrino experiments were planned to settle this question.

Two experiments in Japan – Kamiokande and SuperKamiokande – used
pure water, in which neutrinos with energy above 7 MeV can scatter elec-
trons to high velocities which produce Cerenkov radiation. Again only the
8B neutrinos could be detected and the flux was found to be half of what
was theoretically predicted. However, using an array of Cerenkov detectors, it
was possible to ascertain the direction from which the neutrinos were coming
and to show for the first time that neutrinos were really coming from the Sun
(Hirata et al., 1990).

It became of utmost importance to detect the low-energy pp neutrinos, since
the predicted theoretical flux is independent of the solar model. Low-energy
neutrinos induce the following reaction in gallium

71Ga + ν → 71Ge + e−. (4.31)
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Hence one can use gallium as a detector of pp neutrinos. Two experiments using
gallium – GALLEX (Anselmann et al., 1995) and SAGE (Abdurashitov et al.,
1996) – have given the rate of 73 ± 5 SNU, whereas the theoretical prediction
from the standard solar model is 129 ± 8 SNU (Bahcall, 1999). Although there
is virtually no uncertainty in the predicted flux of pp neutrinos, gallium detectors
detect neutrinos from other reactions as well, giving rise to the uncertainty in
the theoretical flux.

The results of the various solar neutrino experiments taken together left
little doubt that something must be happening to a part of the solar neutrino
flux so that a part is not detected by the detectors on the Earth. We know that
there are three kinds of neutrinos: the electron neutrino, the muon neutrino and
the tau neutrino. If neutrinos have non-zero mass, then it can be shown that it
is possible for one type of neutrino to get spontaneously converted into other
types. Such neutrino oscillations have been confirmed recently by the Sudbury
Neutrino Observatory (Ahmad et al., 2002). The nuclear reactions in the Sun
produce electron neutrinos and all the solar neutrino experiments also detect
electron neutrinos only. Presumably, during the flight from the Sun to the Earth,
some of the electron neutrinos get converted into the other types and are not
detected in the solar neutrino experiments. This is now believed to be the reason
why the measured flux is less than what is theoretically predicted.

4.5 Stellar evolution

We pointed out in §4.3 that a main-sequence star is expected to generate energy
steadily as long as hydrogen in the core is converted into helium. The luminosity
or the surface temperature of the star does not change much during this phase
when it lies on the main sequence. Eventually, the hydrogen in the core of the
star is exhausted. What then happens to the star? This is the central question
of stellar evolution. Unfortunately, the only way of answering this question
is through very detailed numerical computations. Nothing much can be done
analytically or on the basis of general arguments. Stellar evolution is a very
important topic for the professional astrophysicist and very large numbers of
detailed computations have been done by many groups on this subject. The
picture which emerges from these computations is quite complicated in its
details. A star evolves through many very different stages. Also, stars of differ-
ent masses evolve very differently. To a physicist who is not interested in very
detailed astrophysical phenomenology, stellar evolution often appears to be a
messy, confusing and unattractive subject. Since the emphasis of this book has
been on those astrophysical topics which are of interest to physicists, we refrain
from giving a detailed account of stellar evolution. There is another reason for
not getting into the details of the subject. The author of this book does not claim
to have any particular insight into this subject. Instead of reading an account
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by this author, the readers will do much better to read the excellent reviews
of Iben (1967, 1974) or the relevant chapters from the book by Kippenhahn
and Weigert (1990, Ch. 31–34). The groups of Iben and Kippenhahn have been
responsible for some of the most thorough calculations of stellar evolution in
the last few decades. For a relatively non-technical but superbly written account
of the subject, see Tayler (1994, Ch. 6). We describe below only some of the
salient features of stellar evolution.

Once hydrogen is exhausted in the stellar core, not enough energy is gener-
ated there to balance the inward pull of gravity. As a result, the core of the star
starts shrinking and the gravitational potential energy released in the process
generates heat, as suggested in the Kelvin–Helmholtz theory (§3.2.2). We know
from the Kelvin–Helmholtz theory that the core would get hotter in this process.
This has two important consequences.

(1) Heavier elements undergo nuclear fusion at higher temperatures, since
a stronger Coulomb barrier has to be overcome. When the core becomes
sufficiently hot, helium starts burning to produce carbon, halting the Kelvin–
Helmholtz contraction. When helium is exhausted, the same cycle repeats, until
the core becomes hot enough for the next nuclear fuel to burn. In very heavy
stars, the core eventually ends up being iron, which has the most strongly
bound nuclei. On the other hand, for light stars, the core temperature may never
become high enough (before the electron degeneracy pressure halts the gravita-
tional contraction) even for helium burning, so that the core remains a helium
core. Very massive stars go through a complicated phase when different nuclear
fuels burn in different spherical shells of the star with different temperatures.

(2) The excess heat produced in the Kelvin–Helmholtz contraction of the
core inflates the outer layers of the star. Hence the star can bloat up to a huge
size, while its luminosity does not change that much, so that its surface tem-
perature drops. This causes the position of the star in the HR diagram to move
away from the main sequence and follow the trajectory shown in Figure 4.9.
Thus the star ends up being a red giant. Detailed computations show that the
trajectories of massive stars can be even more complicated than the trajectory
sketched in this figure, since the position of the star in the HR diagram changes
whenever a new nuclear fuel is ignited in the core of the star. Figure 4.10
shows theoretical trajectories of stars of different masses based on detailed
computations. Whenever a new nuclear fuel is ignited, there is a tendency of
the trajectory proceeding back towards the main sequence. It may be noted that
the trajectories never move towards the right of the HR diagram beyond a certain
regime, since it was shown by Hayashi (1961) that stellar models lying too far
on the right side of the HR diagram would be unstable and there would be a
forbidden region there within which no stars can lie.

Eventually all nuclear fuels in the core that could be ignited at the prevailing
conditions are exhausted and no more nuclear energy is produced to halt the
gravitational contraction. If the mass of the core is less than a critical mass,
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Fig. 4.9 A schematic trajectory of a star in the HR diagram. From Longair (1994,

p. 31), after a figure of Mihalas and Binney (1981).

then gravity inside it can be balanced by electron degeneracy pressure (to be
discussed in §5.2) when the density rises to sufficiently high values. Then the
core may stop shrinking any more. In such a situation, the bloated envelope of
the star also cannot persist too long. There are various mass loss mechanisms
by which a large part of the outer envelope may be lost – either steadily or
more violently, as we discuss in the next two sections. Any remaining part
of the envelope may again settle on the core, so that we finally may have a
compact star, which has a hot white surface initially and then gradually cools.
Figure 4.9 shows the trajectory of the star as it evolves to become a white
dwarf. Most stellar evolution codes fail to predict very reliable trajectories in
the HR diagram in this phase, because many aspects of the theory are still
rather ill-understood. As we shall see in §5.3, the mass limit of white dwarfs
is about 1.4M�. However, considerably more massive stars also eventually may
end up as white dwarfs by losing a large part of the mass. If the final mass
remains larger than this mass limit, then the other possible final configurations
are neutron stars and black holes, to be discussed in the next chapter.

4.5.1 Evolution in binary systems

A significant fraction of all stars are estimated to be in binary systems. If it
is a close binary with the two stars very near each other, then their evolutions
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can differ in important ways from the evolution of isolated stars. We shall see
in §5.5 and §5.6 that the topic of binary evolution is of great significance in
understanding many astrophysical phenomena. We, therefore, make some brief
remarks on the binary evolution problem.

The two stars in a binary system revolve around their common centre of
mass, with an angular velocity denoted by 
. In a frame of reference rotating
with 
, the two stars will be at rest. The force acting on a particle at rest in this
frame will be the gravitational attractions of the two stars plus the centrifugal
force. The effective potential will be given by

� = −G M1

r1
− G M2

r2
− 1

2

2s2, (4.32)

where r1 and r2 are the distances of the particle from the centres of the two
stars, whereas s is the distance from the rotation axis passing through the centre
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Fig. 4.11 Equipotential surfaces of two stars rotating around a common centre of mass,

in the rotating frame of reference.

of mass. Figure 4.11 shows some of the equipotential surfaces in a typical case.
The surface of a star should be an equipotential surface, if we want to ensure
that there are no unbalanced horizontal forces at the stellar surface. Each of the
stars should extend up to some equipotential surface.

We notice in Figure 4.11 that equipotential surfaces near any one of the stars
go around that star alone. On the other hand, the equipotential surfaces far away
surround both the stars. There is a critical surface made with the equipotential
surfaces around the two stars touching at a point L. This point is called the inner
Lagrange point, whereas the critical surface is known as the Roche lobe. When
one of the stars becomes a red giant, its surface may bloat up to the Roche
lobe, after which the gas from the surface should start falling into the other
star through the inner Lagrange point. We shall discuss some consequences of
binary mass transfer in §5.5 and §5.6. Such a mass transfer can lead to varieties
of complicated situations. The more massive star of the binary finishes its life
on the main sequence first and becomes a red giant. If it succeeds in transferring
a significant amount of mass to the other star, then this other star may become
more massive and may start evolving faster.

4.6 Mass loss from stars. Stellar winds

When a star becomes a red giant, the gravitational attraction at its inflated
surface becomes much smaller than that at an ordinary stellar surface. This
reduces the star’s ability to hold on to the material on its surface and the surface
material may keep escaping. Even in the case of an ordinary star like the Sun,
material is continuously escaping from its corona in the form of a flow known
as the solar wind. Let us consider why this happens.
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Although the temperature of the solar surface is about 6000 K, the corona
has a much higher temperature of the order of a million degrees. An elementary
discussion of some possible reasons for this high temperature of the corona will
be given in §8.9. Before the discovery of the solar wind, the corona was believed
to be in static equilibrium. We reproduce below a simple but famous derivation
by Parker (1958), showing that a hydrostatic solution of the corona leads to
inconsistencies. Although the corona appears fairly non-spherical, one can try
to construct a first approximate model of the corona by assuming spherical sym-
metry so that quantities like density and pressure can be regarded as functions
of radius r alone. Since the corona has very little mass, the gravitational field in
the corona can be regarded as an inverse-square field created by the mass of the
Sun M�. The hydrostatic equation (3.2) applied to the corona becomes

dP

dr
= −GM�

r2

μ mH

κB

P

T
, (4.33)

where we have made use of (3.23) to eliminate ρ.
Without bothering about what heats the corona, we shall assume that the

heat is produced in the lower layers of the corona so that outer regions of the
corona can be modelled by taking a boundary condition that T = T0 at some
radius r = r0 near the base of the corona. This is somewhat like calculating the
temperature distribution in a metal rod with one end heated in a furnace. If the
temperature of the furnace is given as a boundary condition, then the problem
can be solved without knowing whether the furnace is heated by charcoal, gas or
electricity. In the tenuous gas of the corona, conduction is the main mode of heat
transport. In steady state, we expect that the same heat flux will pass through
successive spherical surfaces in the outer corona. Let us consider a spherical
surface at radius r . The heat flux through unit area of this surface is given by
K (dT/dR), where K is the thermal conductivity. Hence the heat flux through
the whole spherical surface is

4πr2K
dT

dr
,

which should be a constant for different r . It follows from the kinetic theory of
plasmas that the thermal conductivity K of a plasma goes as the 5/2 power of
temperature (see, for example, Choudhuri, 1998, §13.5). Hence we have

r2T 5/2 dT

dr
= constant, (4.34)

of which the solution is

T = T0

(r0

r

)2/7
(4.35)
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satisfying the boundary conditions that T = T0 at r = r0 and T = 0 at infinity.
Substituting for T in (4.33) from (4.35), we get

dP

P
= −GM�μ mH

κBT0r2/7
0

dr

r12/7
,

of which the solution satisfying P = P0 at r = r0 is

P = P0 exp

[
7GM�μ mH

5κBT0r0

{(r0

r

)5/7 − 1

}]
. (4.36)

The surprising thing to note is that the pressure has a non-zero asymptotic value
as r goes to infinity. It is not possible to obtain a solution of the problem such
that both P and T are zero at infinity. The asymptotic value of P at infinity is
much larger than the typical value of the pressure of the interstellar medium.

What is the significance of this non-zero pressure at infinity? Parker (1958)
concluded correctly that the hot solar corona could be in static equilibrium only
if some appropriate pressure is applied at infinity to stop it from expanding.
Since there is nothing to contain the corona by applying the necessary pressure,
Parker (1958) suggested that the outer parts of the corona must be expanding in
the form of solar wind. The solar wind was detected from spacecraft observa-
tions just a few years after Parker’s bold prediction. Parker (1958) worked out
a detailed hydrodynamic model of the solar wind as well, which we shall not
discuss in this book. If the Sun were surrounded by a gas cloud with pressure
larger than the pressure at infinity needed to maintain hydrostatic equilibrium,
then we would have an inflow of gas into the Sun. Such a process is called
accretion. The theory of spherical accretion was worked out by Bondi (1952).
It is basically the reverse of a spherical wind (see Choudhuri, 1998, §6.8).

The solar wind is an example of what is called a thermally driven wind. It
is caused by the high temperature of the corona, which makes it difficult for
gravity to hold on to the gas. There are other mechanisms of driving winds. We
pointed out in §3.6.1 that the radiation force in the outer atmosphere of a very
massive star may become comparable to gravity. This may cause a radiatively
driven wind. If a star is rotating very fast, that may lead to a centrifugally
driven wind. The Sun loses only about 10−14 M� yr−1 due to the solar wind.
Because of the weak gravity at the surface of a red giant, often red giants have
much stronger winds. It is possible for a star to lose a significant fraction of
its mass while passing through the red giant phase. A dramatic confirmation of
mass loss comes from the observations of what are called planetary nebulae.
Figure 4.12 shows a planetary nebula. Through the low-resolution telescopes of
earlier times, a planetary nebula looked somewhat like a planet. We now know
that a planetary nebula is essentially the outer shell of a star which has been
blown off. At the centre of a planetary nebula, we usually find the hot core of
the star, which is eventually expected to become a white dwarf. There is an even
more violent mass loss mechanism, a supernova, which we discuss now.
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Fig. 4.12 The Ring Nebula, a well-known planetary nebula, photographed with the

Hubble Space Telescope. Courtesy: NASA and Space Telescope Science Institute.

4.7 Supernovae

Chinese astronomers recorded that in the year 1054 a star in the Taurus constel-
lation became so bright that it was visible during daytime. Figure 4.13 shows
what a modern telescope finds in that spot of the sky. We see a luminous
gas shell, known as the Crab Nebula because of its crab-like appearance. By
comparing photographs taken at intervals of a few years, one easily finds that the
shell is increasing in size and a simple backward extrapolation suggests that this
shell must have started from a very small size around 1054. Presumably, what
the Chinese astronomers recorded was the explosion of a star which created
today’s Crab Nebula. Statistical estimates suggest that there should be about
30 such supernova explosions in our Galaxy in every 1000 years. However, we
are able to see only a very small fraction of our Galaxy in visible light, as we
shall discuss in §6.1.3. Tycho and Kepler carefully studied two supernovae in
our Galaxy seen in the years 1572 and 1604 respectively. No supernova has
been observed in our Galaxy after the invention of the telescope! However, a
supernova was seen in 1987 in the Large Magellanic Cloud, which is a compan-
ion to our Galaxy at a distance of about 55 kpc. Christened as SN 1987A, this
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Fig. 4.13 The Crab Nebula, the remnant of the supernova seen from the Earth in

1054. Photographed with the Hubble Space Telescope. Courtesy: NASA, ESA, J. Hester

and A. Loll.

was the most thoroughly studied supernova in the history of astronomy and has
considerably increased our knowledge about supernovae. The energy involved
in a typical supernova explosion is estimated to be about 1045 J.

By studying many supernovae, astronomers have concluded that supernovae
can be divided into two types: Type I supernovae and Type II supernovae,
which have certain different characteristics. These two classes are divided into
some subclasses, but we shall not get into those details here. Amongst Type I
supernovae, we shall confine our attention to the subclass Type Ia. All Type
Ia supernovae appear almost identical. They reach exactly the same maximum
intrinsic luminosity and afterwards their luminosities also decrease in exactly
the same way. On the other hand, the Type II supernovae show some variations
from one supernova to the other. We summarize below our current ideas of the
physical mechanisms which trigger these two types of supernovae. The readers
should be warned to take these theoretical ideas as provisional and not yet
completely established.

Any model of Type Ia supernovae should explain why they always look
almost identical. Suppose a white dwarf is in a close binary system. When its
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companion becomes a red giant, it is possible for a mass transfer to take place
onto the white dwarf, as discussed in §4.5.1. We shall show in §5.3 that the
maximum mass which a white dwarf can have is the Chandrasekhar mass of
about 1.4M�, beyond which it is not possible for electron degeneracy pressure
to balance gravity. Suppose the mass transfer increases the mass of the white
dwarf just beyond the Chandrasekhar mass. Then gravity cannot be balanced
any more and the white dwarf star may have a catastrophic explosion, which
probably disrupts the star completely without leaving any remnant behind. If
all the Type Ia supernovae are produced in this way, by the explosions of white
dwarfs of identical mass under identical conditions, then it is certainly expected
that all these supernovae should appear identical.

Type II supernovae are believed to take place in much more massive stars.
This is inferred from the fact that they usually take place in regions where star
formation has taken place recently and massive stars, which are short-lived,
are found only in such regions. When the core of the massive star completely
runs out of all nuclear fuels, it starts shrinking until the core density becomes
comparable to the density inside an atomic nucleus (≈1017 kg m−3). We shall
show in §5.4 that the neutron degeneracy pressure may balance gravity at
such densities. When this happens, the rapidly shrinking core suddenly stops
shrinking any more. The surrounding material falling inward with the core gets
bounced back when the collapse of the core is suddenly halted. Presumably
the Type II supernova is caused by the explosive bouncing off of the envelope
surrounding the newly formed neutron star core.

The variation of the supernova luminosity with time is called its light curve.
Figure 4.14 shows the light curve of SN 1987A, which was a Type II supernova.
A large portion of the light curve appears like an exponential decay (note that
the vertical axis in Figure 4.14 is logarithmic) with a half-life of about 77 days.
Now 56Co, which is a radioactive isotope of cobalt, decays into 56Fe with a
half-life of 77.1 days. It is believed that copious amounts of 56Co are produced
in a Type II supernova and it is the decay of this which is responsible for the
light curve.

We pointed out in §4.3 that nuclear reactions in the interiors of very massive
stars may convert the core into iron, which is the maximally bound nucleus, so
that no more nuclear burning is possible after its formation. How are the heavier
elements produced then? Our current view is that the elements heavier than iron
are synthesized in Type II supernovae, in a way suggested in a classic paper
by Burbidge, Burbidge, Fowler and Hoyle (1957). Let us summarize the main
ideas below. It is possible for an electron and a proton to combine to form a
neutron:

p + e− → n + ν. (4.37)

However, since the mass of a neutron is more than the combined mass of a
proton and an electron, this reaction cannot proceed unless some extra energy is
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Fig. 4.14 The light curve of SN 1987A. The dashed lines indicate how the number

densities of the radioactively decaying nuclei 56Co and 57Co would decline with time.

From Chevalier (1992). ( c©Nature Publishing Group. Reproduced with permission from

Nature.)

supplied. In a supernova explosion, electrons suddenly become highly energetic
and it becomes possible for the above reaction to proceed, producing large
numbers of neutrons and neutrinos. Now consider a nucleus of mass A and
charge Z . The electrostatic repulsion of a heavy nucleus is much stronger than
that of a light nucleus. So another charged particle cannot easily come near the
heavy nucleus. But the uncharged neutron can come close and get absorbed by
it, increasing the mass of the nucleus to A + 1. It is well known that nuclei
too massive for their charge Z tend to be unstable to β-decay. If the nucleus
emits a β-particle, we end up with a nucleus of mass A + 1 and charge Z + 1
starting from a nucleus of mass A and charge Z . Heavier nuclei can be built up in
this way.

Our solar system has many elements heavier than iron which, as far as
our present understanding goes, could only be synthesized in a supernova.
Presumably there was a very massive star in our neighbourhood before the solar
system formed. This massive star must have ended its life in a supernova and
the debris of this supernova with heavy elements got mixed with interstellar gas,
out of which the solar system formed.

Our preceding discussion suggests that many neutrinos should be produced
by reaction (4.37) when the core collapses violently to trigger a Type II super-
nova. Evidence for this was found when 20 neutrinos from SN 1987A were
detected by two experiments – one of them being Kamiokande which we have
discussed in §4.4.2 in connection with solar neutrinos. The flux estimated from
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these neutrinos suggests that a very major portion of the gravitational potential
energy lost (in the core collapse to produce a neutron star) must be carried away
by the neutrinos. The arrival times of the neutrinos were spread over 12 s. If all
the neutrinos were emitted at the same time and had zero mass, then they would
have all travelled at speed c and should have arrived simultaneously. On the
other hand, if the neutrinos had mass, then the less energetic neutrinos would
have travelled slightly slower and one gets an upper bound of 20 eV for the
neutrino mass from the observed spread in arrival times. The reader is asked to
work this out in Exercise 4.6. This is an upper bound, since it is possible that
the neutrinos were emitted at slightly different times and then travelled at the
same speed.

4.8 Stellar rotation and magnetic fields

In our discussion of stellar structure, we have assumed spherical symmetry.
There are two factors which could cause departures from spherical symmetry of
a star – rotation and magnetic field. We know quite a lot about the rotation and
magnetic field of our nearest star – the Sun. Within the last few years, our knowl-
edge about the rotation and magnetic field of other stars has also increased. For
normal stars, the effect of rotation or magnetic field is usually not enough to
cause appreciable departures from spherical symmetry, which is the case for
the Sun. Even when stellar rotation or the stellar magnetic field may not be
important from the point of view of stellar structure, they are certainly intriguing
astrophysical effects which can have many other consequences. Before leaving
the subject of stellar astrophysics, here we provide a brief summary of what we
know about solar rotation and magnetic fields.

Solar rotation

It was known for a long time that the Sun does not rotate like a solid body. The
equator of the Sun rotates faster than the pole, taking about 25 days to go around
the rotation axis, whereas a point near the pole would take more than 30 days
to go around. It has now become possible to map the distribution of angular
velocity in the interior of the Sun with the help of helioseismology, which was
introduced briefly in §4.4.1. We basically measure the eigenfrequencies of many
modes of oscillation in the Sun. Because of the spherical geometry, we expect
that the velocity associated with a normal mode must be of the form

v(t, r, θ, φ) = exp(−i ωnlmt) ξnlm(r)Ylm(θ, φ), (4.38)

where Ylm(θ, φ) is a spherical harmonic. If the Sun were non-rotating, it can be
shown that ωnlm would be independent of m. In other words, the eigenfunctions
with the same n and l, but different m, would have the same frequencies. But



120 Stellar astrophysics II: Nucleosynthesis and other advanced topics

Fig. 4.15 The contours of constant angular velocity inside the Sun, as obtained by

helioseismology. The contours are marked with rotation frequency in nHz. It may be

noted that frequencies of 340 nHz and 450 nHz correspond respectively to rotation

periods of 34.0 days and 25.7 days. Courtesy: J. Christensen-Dalsgaard and M. J.

Thomson.

rotation causes frequencies with different m to be split (Gough, 1978). We point
out the analogy from atomic physics that the energy levels of the hydrogen atom
for different m are degenerate in the absence of a magnetic field. But a magnetic
field lifts this degeneracy and splits the levels. In exactly the same way, the
rotation of the Sun lifts the degeneracy of eigenfrequencies with different m.
The amount of splitting of a mode depends basically on the angular velocity in
the region where the mode has the largest amplitude. By studying the splittings
of different modes having the largest amplitudes in different regions of the Sun,
one can then obtain a map of how the angular velocity varies in the interior of
the Sun. Figure 4.15 shows a map giving the distribution of angular velocity in
the interior of the Sun. The Sun has a convection zone from 0.7R� to R�, within
which the variations of angular velocity are confined, with a radial gradient of
angular velocity at the bottom of the convection zone.

Solar magnetic fields

It has been known in the Western world from the time of Galileo that the Sun
often has dark spots on the surface. Hale (1908) discovered Zeeman splitting
in the spectra of sunspots, thereby concluding that sunspots are regions of
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Fig. 4.16 A newly formed bipolar sunspot pair, in which one spot is fragmented. From

Zwaan (1985). ( c©Springer. Reproduced with permission from Solar Physics.)

concentrated magnetic field of order 0.3 T. This is the first time that somebody
conclusively established the existence of magnetic fields outside the Earth’s
environment. Often one finds two large sunspots lying side by side at nearly
the same solar latitude. Figure 4.16 shows a sunspot pair in which one sunspot
is actually broken into several fragments, which is often the case. Hale et al.
(1919) discovered that two sunspots in such a pair have opposite polarities,
making up a magnetic bipole. They also found that these magnetic bipoles
are oriented in opposite directions in the two hemispheres. Figure 4.17 is a
magnetogram image of the whole solar disk, where regions of positive polarity
are indicated by white and regions of negative polarity by black, the regions
without appreciable magnetic field being represented in grey. One notes that
most bipolar magnetic regions are roughly aligned parallel to the solar equator.
In the magnetic bipolar regions in the northern hemisphere, one finds the posi-
tive polarity (white) to appear on the right side of the negative polarity (black).
This is reversed in the southern hemisphere, where white appears to the left of
black. We shall discuss in §8.6 how one theoretically explains these remarkable
observations.

Even before it was realized that sunspots are regions of strong magnetic
fields, it was discovered that the number of sunspots on the solar surface
increases and decreases in a cyclic fashion, with a period of about 11 years.
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Fig. 4.17 A magnetogram picture of the full solar disk. The regions with positive and

negative polarities are respectively shown in white and black, with grey indicating

regions where the magnetic field is weak. Courtesy: K. Harvey.

There is a phase in the cycle when not many sunspots are seen. Then sunspots
start appearing at around 40◦ latitude. As time goes on, newer sunspots tend
to appear at lower and lower latitudes. This is clearly seen in the so-called
butterfly diagram first introduced by Maunder (1904). Figure 4.18 shows a
butterfly diagram in which the horizontal axis is time. At any particular time,
those ranges of latitude (vertical axis) are marked where sunspots appear.
The butterfly pattern results from the equatorward shift of the latitude zones
where sunspots are seen. Eventually one finds only very few sunspots near the
equator. Then the next cycle begins with sunspots appearing again around 40◦
latitude. It is found that the polarities of bipolar sunspots get reversed from one
11-year cycle to the next. In other words, if we had taken a magnetogram exactly
like Figure 4.17 about 11 years before or after the time when Figure 4.17 was
produced, then we would see black on the right side in the northern hemisphere
and white on the right side in the southern. It thus implies that the period of the
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Fig. 4.18 The butterfly diagram showing the distribution of sunspots in latitude (vertical

axis) at different times (horizontal axis). Courtesy: K. Harvey.

solar cycle is actually 22 years, if we want the magnetic field to come back to
the initial configuration.

Astronomers have got evidence that many other stars have large starspots
and also magnetic cycles like the Sun. Why do stars have magnetic fields at all
and what gives rise to the cyclic behaviour of the magnetic fields? In §8.7 we
shall give a qualitative introduction to the complex subject known as dynamo
theory which seeks to answer this question.

4.9 Extrasolar planets

The study of planetary motions played a key role in the historical development
of astronomy. The study of physical characteristics of planets, however, has
now become a branch of science quite distinct from astrophysics and is usually
referred to as planetary science. In this book, we do not get into a discussion
of planetary science, since the methods and concepts used in planetary science
are quite different from those used in modern astrophysics. But there is one
question connected with planets which has always excited astronomers: do other
Sun-like stars also have planets? The direct detection of a planet even around
a nearby star is still extremely difficult with today’s observing techniques. The
best chance of discovering extrasolar planets is through indirect methods. For
example, if a sufficiently heavy planet (like Jupiter or heavier) revolves around
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a star in a nearby orbit, its gravitational attraction would make the star also go
in a circular or elliptical orbit around the common centre of mass. This would
make the radial velocity of the star with respect to us vary periodically with
time, which can be detected from the Doppler shifts of the star’s spectral lines.
While there have been several claims in the past for the discovery of extrasolar
planets, Mayor and Queloz (1995) are credited with the first discovery which
is accepted by astronomers to be genuine and which ushered in an era of many
subsequent discoveries of extrasolar planets in very rapid succession. There are
a few hundred confirmed detections at the time of writing this book and the list
is growing rapidly.

As we pointed out in §3.6.1 and shall discuss in more detail in §8.3, stars
form due to gravitational collapse of gas clouds in the interstellar medium.
Planetary systems are also believed to form as a part of this star formation
process. So presumably the planets can throw some light as to how stars
form. Astrophysicists have yet to figure out what clues the recently discovered
extrasolar planets give of the star formation process.

Exercises

4.1 Consider a nucleus of charge Z1e approaching another nucleus of charge

Z2e with the energy of relative motion equal to E . According to classical

physics, the nuclei should not be able to come closer than a distance r1

given by

E = 1

4πε0

Z1 Z2e2

r1
.

Using the WKB approximation of quantum mechanics, show that the tun-

nelling probability of the two nuclei coming within the range of nuclear forces

is given by

P ∝ exp

[
−2
∫ r1

r0

{
2m

�2

(
1

4πε0

Z1 Z2e2

r
− E

)}1/2

dr

]
,

where m is the reduced mass and r = r0 is the inner edge of the potential bar-

rier at the nuclear surface. You can easily work out this integral by substituting

r = r1 cos2 θ and assuming r1/r0 � 1. Show that the final result is (4.7).

4.2 For two protons, show that the argument of the exponential given in the

nuclear energy generation rate expression (4.19) becomes what is given in

(4.25).

4.3 According to current solar models, the centre of the Sun has a temperature

of about 1.56 × 107 K, a density of about 1.48 × 105 kg m−3 and a chemical
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composition given by XH = 0.64, XHe = 0.34, XCNO = 0.015. Estimate the

amount of energy that is generated per unit volume at the centre of the Sun due

to the pp chain and the CNO cycle.

4.4 Make a very rough estimate of the time that an acoustic wave propagating

radially inward in the Sun would take to go from one end of the Sun to the other

end.

4.5 Near the orbit of the Earth, the solar wind has a velocity of about 400 km

s−1 and contains about 10 protons per cm3. Assuming that the solar wind

always had these characteristics during the Sun’s lifetime of 4.5 × 109 yr,

estimate the fraction of mass the Sun would have lost in the solar wind during

its lifetime.

4.6 Neutrinos from Supernova 1987A which reached the Earth travelling a

distance of 55 kpc were found to have energies in the range 6–39 MeV. If the

spread of 12 s in arrival times was caused by neutrinos of different energies

travelling at different speeds, show that the neutrino mass cannot be much

more than about 20 eV.
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End states of stellar collapse

5.1 Introduction

We have seen in the previous two chapters that the gravitational attraction inside
a normal star is balanced by the thermal pressure caused by the thermonuclear
reactions taking place in the stellar interior. Eventually, however, the nuclear
fuel of the star is exhausted and there is no further source of thermal pressure
to balance gravity. We have pointed out in §4.5 that such a star keeps on
contracting – unless some kind of pressure other than thermal pressure is
eventually able to balance gravity again. The aim of this chapter is to discuss
the possible end configurations of stars which have no nuclear fuel left in them.

We have to make use of one very important property of Fermi particles.
In a unit cell of volume h3 in the six-dimensional position-momentum phase
space, there cannot be more than two Fermi particles (one with spin up and the
other with spin down). The electrons inside the stellar matter make up a Fermi
gas, and when the density inside the contracting star becomes sufficiently high,
this electron gas becomes ‘degenerate’. This means that the theoretical limit of
two particles per unit cell of phase space is almost reached. We shall show in
§5.2 that such a degenerate Fermi gas exerts what is known as the degeneracy
pressure. White dwarf stars discussed in §3.6 are believed to represent stellar
configurations in which the inward pull of gravity is balanced by the degeneracy
pressure of the electron gas. The structure of white dwarfs is discussed in
§5.3, where we derive the famous result that a white dwarf configuration is
possible only if the mass of the star is less than the Chandrasekhar mass limit of
about 1.4M�.

Another possible end configuration of stars is the neutron star configura-
tion. As we shall show in §5.4, at very high densities electrons are forced to
combine with the nuclei to produce matter primarily consisting of neutrons.
Since neutrons are also Fermi particles, a gas of neutrons also exerts degeneracy
pressure. A neutron star is a stellar configuration in which gravity is balanced
by the neutron degeneracy pressure. Since the equation of state of matter at the

127
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very high densities prevailing inside neutron stars is not accurately known, the
structure of neutron stars is not understood as well as the structure of white
dwarfs. Neutron stars also have an upper limit of mass like white dwarfs. But
this mass limit is not known very precisely due to the uncertainties in our
knowledge of the equation of state. Most comprehensive calculations suggest
that this mass limit is not more than 2M�.

Although neutron stars were theoretically postulated in the 1930s soon after
the discovery of the neutron, they remained a theoretical curiosity for more than
three decades. Pulsars were discovered in 1968 and were quickly identified to be
rotating neutron stars. The very important field of observational investigations
of neutron stars is summarized in §5.5–5.6.

The initial mass of a star does not necessarily have to be less than the mass
limit of white dwarfs or neutron stars for the star to end up into one of these con-
figurations. We have pointed out in §4.6–4.7 that a star can lose a considerable
part of its mass during the late phases of evolution – in the form of a steady wind
during the red giant phase, or through more drastic ejection mechanisms like
the shedding of the outer shell as a planetary nebula or a supernova explosion.
From statistical studies of various kinds of stars, it is inferred that stars less
massive than about 4M� eventually become white dwarfs, whereas stars with
initial masses in the range 4M� to 10M� are believed to end up as neutron stars,
typically after undergoing a supernova explosion (see, for example, Shapiro and
Teukolsky, 1983, §1.3). Stars with initial masses more than 10M� probably
cannot shed enough mass to become white dwarfs or neutron stars. They have
to go on contracting until the gravitational attraction is so strong that even light
cannot escape. The physics of this black hole configuration will be discussed in
§13.3. However, we shall make some comments on the observational evidence
for black holes in §5.6.

5.2 Degeneracy pressure of a Fermi gas

The pressure in a gas arises from the random motions of the particles consti-
tuting the gas. If 4π f (p)p2dp is the number of particles having momentum
between p and p + dp (assuming the distribution function to be isotropic),
whereas v is the velocity of a particle having momentum p, then the pressure P
of the gas is given by a standard expression in kinetic theory

P = 1

3

∫
vp f (p) 4πp2 dp. (5.1)

The reader should be able to derive it easily by considering a unit area on the
wall of the gas container, figuring out the distribution of particles hitting this
area in unit time and keeping in mind that the momentum changes in the elastic
collisions provide the pressure (Exercise 5.1).
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For an ordinary gas, on substituting the Maxwellian distribution in (5.1), the
pressure is found to be given by nκBT , where n is the number of particles per
unit volume (Exercise 5.1). The pressure of stellar material containing different
types of particles is given by (3.23). It is clear that this pressure, which arises
out of thermal motions of particles, should go to zero at T = 0 – provided we
assume the validity of classical physics. However, when a gas of Fermi particles
is compressed to very high density, many of the particles are forced to remain in
non-zero momentum states even at T = 0, thereby giving rise to the degeneracy
pressure. When stellar matter is compressed, electrons become degenerate much
before protons and other nuclei. The reason behind this is quite simple. If the
kinetic energy p2/2m is equally partitioned amongst different types of particles,
the lighter electrons are expected to have smaller momenta. Hence they occupy
a much smaller volume of the momentum space and consequently their number
density in this region of momentum space is higher than the corresponding
number density of heavier particles. At a density which makes electrons degen-
erate, the heavier particles still remain non-degenerate (i.e. their phase space
occupancy remains well below the theoretical limit). Electrons which occupy
real space volume V and have momenta in the range d3p in momentum space
have 2 V d3p/h3 states in phase space available to them (two being due to the
two spin states). If d3p corresponds to the shell between p and p + dp, then
the number of states per unit volume within this shell is clearly 8πp2 dp/h3.
The occupancies of these states are given by the Fermi–Dirac statistics (see, for
example, Pathria, 1996, Chapter 8). To make life simple, we shall neglect the
finite-temperature effects and assume that all states below the Fermi momentum
pF are occupied, whereas all states above pF are unoccupied. Then the number
density ne of electrons is given by

ne =
∫ pF

0

8π

h3
p2dp = 8π

3h3
p3

F. (5.2)

If all states between p and p + dp are occupied, then 8πp2dp/h3 must equal
4π f (p)p2dp, implying that f (p) in (5.1) should be 2/h3 if p < pF and 0 if
p > pF. Hence

P = 8π

3h3

∫ pF

0
v p3dp. (5.3)

We now use the relativistic expression that the momentum of a particle is given
by p = mγ v, where γ is the Lorentz factor (see, for example, Jackson, 1999,
§11.5). Then

v = p

mγ
= pc2

E
= pc2√

p2c2 + m2c4
. (5.4)
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On using (5.3) and (5.4), the pressure due to the degenerate electron gas is
finally given by

P = 8π

3h3

∫ pF

0

p4c2√
p2c2 + m2

ec4
dp. (5.5)

Our aim is to derive an equation of state connecting the pressure and density.
Protons and other heavier nuclei present in the stellar material contribute to
density, but not to pressure because they are non-degenerate. Let us first find
out the relation between the density ρ and the electron number density ne. If
X is the hydrogen mass fraction, then the number density of hydrogen atoms
(which are ionized and no longer exist in atomic form) is Xρ/mH. These atoms
contribute Xρ/mH electrons per unit volume. A helium atom has atomic mass 4
and contributes two electrons, i.e. the number of electrons contributed is 0.5 per
atomic mass unit. For heavier atoms also, the number of electrons contributed
is usually very close to 0.5 per atomic mass unit. In other words, for helium
and atoms heavier than helium, the number of electrons is half the number
of nucleons. In a unit volume of stellar matter, these atoms provide a mass
(1 − X)ρ, which corresponds to (1 − X)ρ/mH nucleons. There are (1 − X)ρ/

2mH corresponding electrons. Hence the electron number density is given by

ne = Xρ

mH
+ (1 − X)ρ

2mH
= ρ

2mH
(1 + X).

We write this in the form

ne = ρ

μemH
, (5.6)

where μe is the mean molecular weight of electrons given by

μe = 2

1 + X
. (5.7)

From (5.2) and (5.6), it follows that the Fermi momentum pF is given by

pF =
(

3h3ρ

8πμemH

)1/3

. (5.8)

On evaluating the integral (5.5) with this expression of pF, we get the equation
of state relating P and ρ. Here we shall only consider the two extreme cases of
the electrons being non-relativistic and fully relativistic. The reader is asked to
work out the general case in Exercise 5.2.

When the electrons are non-relativistic, we can write√
p2c2 + m2

ec4 ≈ mec2
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so that (5.5) gives

P = 8π

15h3me
p5

F.

On substituting from (5.8), we have

P = K1ρ
5/3, (5.9)

where K1 is given by

K1 = 32/3

20π2/3

h2

mem5/3
H μ

5/3
e

= 1.00 × 107

μ
5/3
e

(5.10)

if we use SI units. The above non-relativistic equation of state for degenerate
electrons was derived by Fowler (1926) who was the first person to realize that
gravity inside a white dwarf must be balanced by electron degeneracy pressure.

When the electrons are fully relativistic, we can write√
p2c2 + m2

ec4 ≈ pc

so that (5.5) gives

P = 2πc

3h3
p4

F.

On substituting from (5.8), we have

P = K2ρ
4/3, (5.11)

where K2 is given by

K2 = 31/3

8π1/3

hc

m4/3
H μ

4/3
e

= 1.24 × 1010

μ
4/3
e

(5.12)

if we use SI units.
We now have (5.9) and (5.11) giving the two extreme limits of the equation

of state of degenerate stellar matter, whereas the ideal gas equation of state is
given by (3.23). One important question is: which equation of state should be
used when? For a particular combination of ρ and T , one of the expressions
(3.23), (5.9) or (5.11) would be the most appropriate. In other words, if we
make a diagram by plotting T versus ρ, regimes where different expressions of
pressure should be used would correspond to different regions in this diagram.
On a boundary between two such regions in the T versus ρ plot, the two
different expressions for pressure valid on the two sides of the boundary should
give the same value. Figure 5.1 shows the diagram constructed in this way,
indicating the regions of validity of the ideal gas equation of state (3.23), the
non-relativistic degenerate equation of state (5.9) and the relativistic equation of
state (5.11). Blackbody radiation at temperature T exerts pressure (1/3)aBT 4
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Fig. 5.1 Different regions in a density–temperature plot in which different equations of

state hold. The dashed line indicates the run of density and temperature in the interior

of the Sun. Adapted from Kippenhahn and Weigert (1990, p. 130).

and this also has to be included in a complete treatment. Figure 5.1 also indicates
the region where the radiation pressure is going to be the dominant pressure. The
dashed line corresponds to the run of temperature and density inside the Sun,
indicating that the ideal gas equation of state is completely adequate in dealing
with stars like the Sun.

5.3 Structure of white dwarfs. Chandrasekhar mass limit

It should be clear from the previous section that the equation of state of degen-
erate matter relates pressure with density (i.e. it does not involve temperature).
Suppose we now want to calculate the structure of a star entirely made of
degenerate matter (such as a white dwarf). The equations (3.25) and (3.26) alone
suffice to formulate the problem completely if P is known as a function of ρ

alone. Out of the three unknown variables ρ, P and Mr appearing in these two
equations, one is no longer independent and the other two can be obtained by
solving these two equations. The remaining two equations of stellar structure,
(3.27) and (3.28), become redundant. Constructing the model of a star made of
degenerate matter is, therefore, a mathematically simpler and cleaner problem
than the problem of constructing the model of a normal star. We turn to this
problem now. We can easily combine (3.25) and (3.26) into one single equation
by eliminating Mr :

1

r2

d

dr

(
r2

ρ

dP

dr

)
= −4πGρ. (5.13)

Given an equation of state of the form P(ρ), we can easily integrate (5.13).
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The two limiting equations of state (5.9) and (5.11) are both of the form

P = Kρ(1+ 1
n ) (5.14)

with n equal to 3/2 and 3 respectively for the non-relativistic and fully rela-
tivistic cases. A relation like (5.14) between density and pressure is called a
polytropic relation. We now write the density inside the star in the form

ρ = ρcθ
n, (5.15)

where ρc is the density at the centre of the star and θ is a new dimensionless
variable which clearly has to have the value 1 at the centre. Substituting (5.15)
into (5.14), we get

P = Kρ
n+1

n
c θn+1. (5.16)

We also introduce another dimensionless variable ξ through

r = aξ, (5.17)

where a defined as

a =
⎡
⎣(n + 1)Kρ

1−n
n

c

4πG

⎤
⎦

1/2

(5.18)

has the dimension of length. On using (5.15), (5.16), (5.17) and (5.18), the basic
structure equation (5.13) reduces to

1

ξ2

d

dξ

(
ξ2 dθ

dξ

)
= − θn, (5.19)

which is known as the Lane–Emden equation (Homer Lane, 1869; Emden,
1907). If the material inside a star satisfies the polytropic relation, the structure
of the star can be found by solving the Lane–Emden equation. Since this is a
second-order equation, we need two boundary conditions to integrate it. One
boundary condition is obviously

θ(ξ = 0) = 1. (5.20)

The other boundary condition comes from the consideration that we do not want
a cusp in the density at the centre of the star, which implies(

dθ

dξ

)
ξ=0

= 0. (5.21)

It may be noted that the polytropic relation and the Lane–Emden equation
played an important role in the history of stellar structure research. Some of
the early pioneers like Emden (1907) and Eddington (1926) tried to obtain
insights into the structures of stars by assuming the polytropic relation (5.14)
to hold inside stars and then by solving the Lane–Emden equation. We know
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that such an approach gives only a very approximate model of a normal star.
For understanding the structures of white dwarfs, however, this is the standard
approach.

We now need to solve the Lane–Emden equation (5.19) subject to the two
boundary conditions (5.20) and (5.21). It is possible to find analytical solutions
if n has the values 0, 1 or 5 (see Exercise 5.4). Solving the Lane–Emden
equation numerically for other values of n is fairly straightforward. If n is less
than 5, then θ falls to zero for a finite value of ξ , which we denote by ξ1. We
interpret this as the surface of the star, where density and pressure as given by
(5.15) and (5.16) have to go to zero.

We now want to show that it is possible to draw important conclusions
without actually solving the Lane–Emden equation. Suppose we have a group
of stars made up of matter satisfying the polytropic equation of state (5.14) with
a particular value of n. Different stars in this group will have different values
of ρc. We expect that a star with a particular value of ρc will have a particular
value of radius R and a particular value of mass M . We now want to find out
how ρc, R and M are related to each other amongst the stars in our group. If
ξ1 is the value of ξ where θ goes to zero, then the physical radius of the star is
given by

R = aξ1.

Looking at the expression of a as given by (5.18), we conclude that

R ∝ ρ
1−n
2n

c , (5.22)

since all the other quantities appearing in the expression of R are the same for
all members in our group of stars. The mass of the star is given by

M =
∫ R

0
4πr2ρ dr = 4πa3ρc

∫ ξ1

0
ξ2θndξ. (5.23)

Again the integral
∫ ξ1

0 ξ2θndξ is going to be the same for all the members in
our group of stars. Noting the dependence of a on ρc, we find

M ∝
(

ρ
1−n
2n

c

)3

ρc,

i.e.

M ∝ ρ
3−n
2n

c . (5.24)

We have noted that n = 3/2 substituted into (5.14) gives the non-relativistic
equation of state (5.9). On putting n = 3/2 in (5.22) and (5.24), we get

R ∝ ρ
−1/6
c , M ∝ ρ

1/2
c ,
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Fig. 5.2 The variation of radius with mass for white dwarfs. The solid curve corre-

sponds to the full solution, where the dashed curve is obtained by using the non-

relativistic equation of state (5.9). This figure is adapted from Chandrasekhar (1984),

where the unit of radius l1 used on the vertical axis is defined.

which combine to give

R ∝ M−1/3. (5.25)

This is the very important mass–radius relation of white dwarfs within which
matter satisfies the non-relativistic equation of state (5.9). The dashed line in
Figure 5.2 shows how radius varies with mass when (5.9) is used to solve the
structure of the white dwarf. It is clear that white dwarfs of increasing mass are
smaller in size.

We now need to consider the case of the relativistic equation of state (5.11),
which follows from (5.14) on taking n = 3. A very surprising result is that the
mass M becomes independent of ρc on substituting n = 3 in (5.24). In other
words, the mass of a star obeying the relativistic equation of state (5.11) has a
fixed value and can be obtained from (5.23). On multiplying (5.19) by ξ2 and
integrating from ξ = 0 to ξ = ξ1, we get∫ ξ1

0
ξ2θndξ = −ξ2

1

(
dθ

dξ

)
ξ=ξ1

. (5.26)

The integral in (5.23) can thus be replaced by |ξ2
1 θ ′(ξ1)|, where the prime

denotes differentiation with respect to ξ . Additionally, we substitute the expres-
sion of a as given by (5.18) into (5.23) and then put the expression (5.12) in the
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place of K . This finally gives

MCh =
√

6

32π

(
hc

G

)3/2 ( 2

μe

)2 ξ2
1 |θ ′(ξ1)|

m2
H

. (5.27)

On solving the Lane–Emden equation numerically for n = 3, we find
ξ2

1 |θ ′(ξ1)| = 2.018. Substituting the values of other quantities in (5.27), we find

MCh = 1.46

(
2

μe

)2

M�. (5.28)

We have come to the surprising conclusion that only this fixed value of mass
is possible if the stellar material satisfies the relativistic equation of state (5.11)
exactly. This fixed mass MCh is taken as the unit of mass on the horizontal
axis of Figure 5.2. To understand what is happening, we have to consider the
full equation of state following from (5.5) instead of considering the non-
relativistic and fully relativistic limits. Using this equation of state in (5.13),
one can find out the variation of radius with mass. This problem was worked out
numerically by Chandrasekhar (1935). The solid curve in Figure 5.2 indicates
the results we get on using the full equation of state. For white dwarfs of smaller
masses (which also have larger sizes), the interior density is not so high and
the non-relativistic limit of the equation of state holds. Hence the solid curve
coincides with the non-relativistic dashed curve on the left side of the figure. For
increasing masses and larger interior densities, the Fermi momentum pF starts
becoming larger as seen from (5.8). When pFc ≈ mec2, the relativistic effects
become important and the dashed curve deviates from the solid curve. On com-
paring (5.9) and (5.11), we find that the relativistic effects make the equation of
state ‘less stiff’ or ‘softer’, i.e. the pressure does not rise with density as rapidly
as in the non-relativistic case. This is basically due to the fact that the speeds of
particles saturate at c and the pressure, which results from the random motions
of particles, cannot increase with density as rapidly as it was increasing before
the saturation. Matter with a softer equation of state is less efficient in counter-
acting gravity. As a result, we find that the solid curve is below the dashed curve,
which implies that the radius of a white dwarf of given mass is less when the
complete equation of state (which is softer than the non-relativistic one) is used.
Eventually, as we move towards the right side of the figure, the radius becomes
too small and the interior density becomes too high so that the relativistic limit
of the equation of state is approached. The mass MCh corresponding to the
relativistic limit of the equation of state is the limiting mass for which the radius
goes to zero. This is the celebrated Chandrasekhar mass limit (Chandrasekhar,
1931). It is not possible for white dwarfs to have larger masses.

White dwarfs usually form from the cores of stars in which hydrogen has
been completely burnt out to produce helium (and higher elements in some
circumstances). If the hydrogen mass fraction X ≈ 0, then it follows from (5.7)
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that μe ≈ 2. Hence (5.28) implies that the Chandrasekhar mass limit should be
around 1.4M�. It is seen in Figure 5.1 that the equation of state starts becoming
relativistic when the density is of order 109 kg m−3. This can be taken as the
typical density inside a white dwarf. If the mass is of order 1030 kg, then the
radius has to be about 107 m ≈ 104 km. This is indeed the typical size of a
white dwarf.

5.4 The neutron drip and neutron stars

Just as the degeneracy pressure of electrons supports a white dwarf against
gravity, the degeneracy pressure of neutrons supports a neutron star. Accord-
ing to astrophysical folklore, on hearing of the discovery of the neutron in
Cavendish Laboratory (Chadwick, 1932), Landau immediately suggested that
there can be stars primarily made up of neutrons. Unlike protons, neutrons are
electrically neutral and hence many neutrons can be brought together without
being disrupted by electrostatic repulsion. However, neutrons are known to
decay according to the reaction

n → p + e + ν̄ (5.29)

with a half-life of about 13 minutes. A reverse reaction is also in principle
possible:

p + e → n + ν. (5.30)

Since the neutron mass is more than the combined mass of a proton and an elec-
tron, the reaction (5.30) can take place only if some energy is supplied to make
up for this mass deficit. Therefore, under ordinary laboratory circumstances,
(5.30) is an unlikely reaction and free neutrons decay away following (5.29).

When matter is compressed to very high densities, things change drastically.
For simplicity, let us assume that the highly compressed matter consists of
electrons, protons and neutrons (i.e. we do not include the possibility that nuclei
form). As we already pointed out in §5.2, the electrons become degenerate with
the rise of density while the other heavier particles still remain non-degenerate.
Suppose we want to put an additional electron in a region of high density. We
know that all the levels are filled up to the Fermi momentum pF, which is related
to the number density ne of electrons by (5.2). Let

EF =
√

p2
Fc2 + m2

ec4

be the Fermi energy associated with this Fermi momentum pF. Unless an energy
EF − mec2 is added to an electron, it is not possible to put the electron in the
region of high density, since all the lower energy states are filled. Consider
the situation when this excess energy required becomes equal to or larger than
(mn − mp − me)c2, the amount by which the neutron mass exceeds the sum of



138 End states of stellar collapse

the proton mass and the electron mass. In this situation, it will be energetically
favourable for the electron to combine with a proton to produce a neutron, in
accordance with (5.30), rather than to exist as a free electron (assuming that
neutrons are non-degenerate and a neutron can be created at the lowest energy
state). The condition for this critical situation is√

p2
F,cc2 + m2

ec4 − mec2 = (mn − mp − me)c
2,

where pF,c is the critical Fermi momentum. From this

mec2

(
1 + p2

F,c

m2
ec2

)1/2

= Qc2,

where Q = mn − mp. This equation can be cast in the following form to give
the critical Fermi momentum:

pF,c = mec

[(
Q

me

)2

− 1

]1/2

. (5.31)

Since the Fermi momentum increases with density, we expect the Fermi
momentum to be less than pF,c when the density is below a critical density.
In this situation, free electrons are energetically favoured and we do not expect
any neutrons to be present, since they would decay away following (5.29). The
critical density, at which the Fermi momentum becomes equal to pF,c, can be
obtained by putting the values of fundamental constants in (5.31) to get pF,c,
then obtaining ne with the help of (5.2) and multiplying ne by mp + me (since
only protons and electrons are present below the critical density). This gives

ρc = 1.2 × 1010 kg m−3. (5.32)

When the density is made higher than this, the electrons start combining with
protons to give neutrons. This phenomenon is called the neutron drip. At densi-
ties well above the critical density, matter would mainly consist of neutrons.
These neutrons do not decay according to (5.29) which is now completely
suppressed, since there are no free states for the product electron to occupy
(below the very high Fermi level).

We presented above a simplified calculation of neutron drip without con-
sidering the possible formation of nuclei. When the existence of nuclei is
taken into account, the calculation becomes much harder. The interested reader
may look at Shapiro and Teukolsky (1983, §2.6) for a derivation. On making
various reasonable assumptions, the more realistic value of the critical density
for neutron drip is found to be 3.2 × 1014 kg m−3. Strictly speaking, the term
‘neutron drip’ refers to neutrons getting out of nuclei when the density is raised
above the critical density.

If a stellar core is compressed by some means to densities higher than what
is needed for the neutron drip, the core will essentially consist of neutrons.
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Since neutrons are Fermi particles like electrons and obey the Pauli exclusion
principle, neutrons also can give rise to a degeneracy pressure. While deriving
the degeneracy pressure due to electrons in §5.2, we had used the Fermi–Dirac
statistics, which tacitly assumes that the particles are non-interacting. This is
not that bad an assumption for the electron gas inside a white dwarf. However,
when neutrons are packed to densities close to the density inside an atomic
nucleus (which is the case in the interiors of neutron stars), the neighbouring
neutrons interact with each other through nuclear forces and it is no longer
justified to treat them as non-interacting particles. Hence finding an accurate
equation of state for matter at such high densities is very difficult and the subject
is still not on a very firm footing. Like the Chandrasekhar limit of white dwarfs,
neutron stars also have a mass limit. However, this mass limit is not known
very accurately due to the uncertainty in our knowledge of the equation of state.
One can get an absolute theoretical limit by demanding that the equation of
state cannot be so stiff that the speed of sound is larger than the speed of light
(Rhoades and Ruffini, 1974). While this absolute theoretical limit of neutron star
mass is 3.2M�, it is generally believed that the actual mass limit is somewhat
less than this and most likely around 2M�.

Detailed calculations suggest that a neutron star typically has a radius of
order 10 km and internal density close to 1018 kg m−3. We have pointed out
in §1.5 that general relativity can be neglected if the factor 2GM/c2r is small
compared to 1. For a neutron star of mass M� and radius 10 km, this factor
is as large as 0.3. Hence general relativistic effects cannot be neglected in a
rigorous calculation. The hydrostatic equations (3.25) and (3.26) have to be
modified when general relativity is included, as shown by Oppenheimer and
Volkoff (1939). It is beyond the scope of this elementary textbook to discuss
these relativistic corrections.

Neutron stars remained a theorist’s curiosity for many years. Baade and
Zwicky (1934) made a remarkable suggestion that a neutron star may form in a
supernova explosion. When a star of mass M� collapses to a radius of 10 km,
the gravitational potential energy lost is of order 1046 J, which is tantalizingly
close to the energy output of a supernova. If the gravitational energy lost in
the collapse of the inner core to form a neutron star is somehow dumped into
the outer layers of the star, then the outer layers can explode with this energy.
Nobody took this idea seriously until a dramatic confirmation of this idea came
in the late 1960s, as we discuss in the next section.

5.5 Pulsars

A definitive observational confirmation for the existence of neutron stars came
when Hewish et al. (1968) discovered radio sources which were giving out
radio pulses at intervals of typically a second. The signal from such a source
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Fig. 5.3 Radio signals from the pulsar PSR 0329 + 54, which has a period of 0.714 s.

Note that different pulses are not identical and some pulses are even missing.

called a pulsar is shown in Figure 5.3. Soon after the discovery, Gold (1968)
identified pulsars as rotating neutron stars. The pulse period must be due to
some physical mechanism like rotation or oscillation. Theoretical estimates
of oscillation periods of white dwarfs or neutron stars show that they do not
match the observed pulsar periods (oscillation periods of normal stars are much
longer). If the pulsar period has to be identified with the rotation period of
some object, one has to make sure that the centrifugal force is not stronger
than gravity, i.e.


2r <
GM

r2
,

which implies


 < (Gρ)1/2. (5.33)

A rotation period of 1 s demands that the rotating object should have a density
higher than 1011 kg m−3 if it is not to be disrupted by the centrifugal force.
The pulsars with shortest periods could not be rotating white dwarfs (which
have densities of order 109 kg m−3). The only possibility is that the pulsars are
rotating neutron stars.

When pulsars were found near the centres of Crab and Vela supernova
remnants, the idea of Baade and Zwicky (1934) that neutron stars are born in
supernova explosions got dramatic support. However, only a few clear pulsar
and supernova remnant associations are known. Most of these cases are for
supernova remnants which are not very old (less than 105 yr). One possibility is
that many of the supernova explosions may be somewhat asymmetric and the
neutron stars may be born with a net momentum. So they move away from the
centres of the supernova remnants and are found associated with the remnants
only if not too much time elapsed since the explosion. The other possibilities
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are: many supernovae may not produce neutron stars, or the neutron stars may
not be visible to us as pulsars.

This brings us to a central question: why do rotating neutron stars become
visible as pulsars? Presumably the radio emission is produced at the magnetic
poles of the neutron star by complicated plasma processes which we shall not
discuss in this book. Very often the magnetic axis is inclined with respect to the
rotation axis. When the magnetic pole gets turned towards the observer during a
rotation period, the observer receives the radio pulse. The duty cycle of a typical
pulsar (i.e. the fraction of time during which the radio signal is received) is less
than 10%.

From where does the pulsar get the energy which is radiated away? The
rotational kinetic energy of the neutron star is believed to be the ultimate source
of energy. As this energy source is tapped, the neutron star rotation slows
down. The periods of all pulsars keep on increasing very slowly as a result
of this. The typical period increase rate is Ṗ ≈ 10−15 s s−1. This gives the
pulsar lifetime P/Ṗ , which is of order 107 yr. After a neutron star has existed
as a pulsar for time of the order of 107 yr, presumably its rotation becomes
so slow that it can no longer act as a pulsar. From the period increase rate of
the Crab pulsar, one can calculate the rotational kinetic energy loss rate (by
making some reasonable assumptions about mass and radius to get the moment
of inertia). This energy loss rate is about 6 × 1031 W (see Exercise 5.8) and
turns out to be approximately the same as the rate of total energy emission from
the whole Crab Nebula, which is several orders of magnitude larger than the
energy given out in the radio pulses. It thus seems that the energy for powering
the whole Crab Nebula ultimately comes from the rotational kinetic energy of
the pulsar.

A rapidly rotating object like a pulsar is expected to be somewhat flattened
near the poles. As the rotation slows down, the pulsar tries to take up a more
spherical shape. Since the crust of a neutron star is believed to be solid, the
shape of the neutron star cannot change continuously. When sufficient stress
builds up due to the slowing down of the neutron star, the crust suddenly
breaks and the neutron star is able to take up a less flattened shape, causing
a decrease in the moment of inertia because more material is brought near the
rotation axis. When this happens, the moment of inertia changes abruptly and
the angular velocity increases suddenly to conserve the angular momentum,
leading to a decrease in pulsar period. Such sudden decreases of pulsar periods
have been observed and are known as glitches. Apart from these occasional
sudden glitches, pulsar periods steadily keep on increasing. Figure 5.4 shows
the variation of the period of a pulsar with time. Four glitches can be seen in
this figure.

Standard textbooks of classical electrodynamics usually derive the expres-
sion for energy loss from an oscillating dipole (see, for example, Jackson, 1999,
§9.2). It is instructive to show that the analogous expression for the energy loss
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Fig. 5.4 Variation of the

period of pulsar PSR

0833 − 45 from late 1968

to mid-1980. Four glitches

are seen. From Downs

(1981). ( c©American Astro-

nomical Society. Repro-

duced with permission from

Astrophysical Journal.)

rate from an oscillating magnetic dipole m is

Ė = − μ0

6πc3
|m̈|2.

If the variation of m arises due to a magnetic dipole rotating about an axis with
an inclination α, then it follows that

Ė = − μ0

4 sin2 α

6πc3
|m|2, (5.34)

where |m| is the amplitude of the magnetic dipole and 
 is the angular velocity
of rotation. A simple way of modelling the emission from a pulsar is to treat
it as a rotating magnetic dipole. If the magnetic field of the pulsar is of dipole
nature, then the magnetic field at the pole is given by

Bp = μ0|m|
2π R3

,

where R is the radius of the neutron star. Writing 2π Bp R3/μ0 for |m| in (5.34),
we get

Ė = − 2π B2
p R6
4 sin2 α

3μ0c3
.

If this energy comes from the rotational kinetic energy 1
2 I
2 (where I is the

moment of inertia), then we must have

I 
̇ = − 2π B2
p R6
3 sin2 α

3μ0c3
. (5.35)
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Once 
 and 
̇ of a pulsar have been determined, one can use (5.35) to obtain
the pulsar magnetic field Bp by putting reasonable values of I and R. For the
Crab pulsar, this yields

Bp ≈ 5 × 108 T,

if we take sin α ≈ 1. The magnetic fields of pulsars are the strongest magnetic
fields known to mankind. A possible reason for these very strong magnetic
fields will be pointed out in §8.5. It is true that the assumption used in deriving
(5.35), namely that the pulsar is a rotating magnetic dipole sitting in a vacuum,
is approximate. It was shown by Goldreich and Julian (1969) that a rotating
neutron star should be surrounded by a magnetosphere filled with plasma.
However, even on purely dimensional grounds, we expect something like (5.35)
to hold at least approximately.

5.5.1 The binary pulsar and testing general relativity

We now discuss a very intriguing object which was first discovered by Hulse and
Taylor (1975). They found a pulsar with a mean period of 0.059 s. However, the
actual value of the period was found to vary above and below this mean value
periodically, with a period of about 8 hours. The most obvious explanation is
that the pulsar is orbiting around an unseen companion and the variation in the
pulsar period is due to the Doppler effect. When the pulsar is moving towards
us, its period is observed to decrease, whereas when the pulsar is moving away,
the period increases. One can determine the masses of both the pulsar and the
unseen binary companion by analysing the various orbit parameters (see, for
example, Shapiro and Teukolsky, 1983, §16.5). Both the masses are found to be
close to 1.4M�. The unseen companion seems to have exactly the mass beyond
which the white dwarf configuration is impossible. The unseen companion is
very likely to be another neutron star.

We thus have a remarkable system in which two neutron stars are orbiting
around each other, one of them acting as a pulsar. The orbit is found to be
highly eccentric, the eccentricity being 0.62. According to general relativity,
such an object would emit gravitational radiation, just as an orbiting charge
would emit electromagnetic radiation according to classical electrodynamics.
As the system loses energy in the gravitational radiation, the two neutron stars
should come closer and the orbital period should decrease. Careful general
relativistic calculations suggest a value Ṗorb = −2.40 × 10−12 for the orbital
period change. The measured value (−2.30 ± 0.22) × 10−12 is in very good
agreement. This provides a test of general relativity to a high degree of precision
and provides an indirect confirmation of the existence of gravitational radiation
(to be discussed in §13.5), which astronomers have yet to detect directly from
any astronomical system.
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5.5.2 Statistics of millisecond and binary pulsars

Backer et al. (1982) discovered a pulsar with a period of 1.56 ms, which was
considerably shorter than the period of any pulsar known at that time. The pulsar
with the second shortest period known at that time, the Crab pulsar, had a period
of 33.1 ms. Subsequently several other pulsars with periods less than 10 ms
were discovered. One striking feature is that a majority of them were found in
binary systems. After measuring the period variation Ṗ of these millisecond
pulsars, their magnetic fields could be estimated by applying (5.35). Most
of the millisecond pulsars were found to have magnetic fields around 104 T,
considerably less than the typical magnetic fields of ordinary pulsars (around
108 T). Figure 5.5 is a plot of magnetic field B against pulsar period of P . A
pulsar with known values of B and P is represented by a point in this figure.
Pulsars in binary systems are indicated by small circles. The ordinary pulsars
are towards the upper right part of the figure, whereas the millisecond pulsars
are towards the lower left. While very few of the ordinary pulsars are in binary
systems, many of the millisecond pulsars are found in binaries. It is clear that
the ordinary pulsars and the millisecond pulsars make two very distinct

Fig. 5.5 The periods and magnetic fields (in G = 10−4 T) of different pulsars. Pulsars

in binary systems are indicated by circles. See text for explanations of death line and

Hubble line. After a neutron star is spun up by binary accretion, it is expected to end

up slightly below a line denoted as the spin-up line. The arguments for calculating this

line are not given here. From Deshpande, Ramachandran and Srinivasan (1995), based

on the pulsar parameters provided by Taylor, Manchester and Lyne (1993). ( c©Indian

Academy of Sciences. Reproduced with permission from Journal of Astrophysics and

Astronomy.)
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population groups. If a neutron star is rotating too slowly or has a too weak
magnetic field, then presumably it would not act as a pulsar. The line marked
death line in Figure 5.5 is a line beyond which a neutron star no longer acts as
a pulsar. One can obtain this death line by theoretical arguments based on the
physics of pulsar magnetospheres, which we shall not discuss here. As a pulsar
becomes older, its period becomes longer and it follows a trajectory moving
towards the right in Figure 5.5. Eventually it crosses the death line and is no
longer visible as a pulsar. The age of a pulsar is approximately given by P/Ṗ .
The Hubble line in Figure 5.5 indicates a line below which the age of a pulsar
would be larger than the Hubble time (which is the approximate age of the
Universe, to be introduced in §9.3).

What is the relation of millisecond pulsars with ordinary pulsars? The fact
that millisecond pulsars are usually found in binary systems (those which are
found single probably had the binaries disrupted at some stage) has led to a
unified scenario in the last few years. When a neutron star is born, it is expected
to have values of rotation period P and magnetic field B typical of an ordinary
pulsar. Suppose the neutron star is in a binary system. At some stage, the binary
companion may become a red giant and fill up the Roche lobe. As discussed
in §4.5.1, this would lead to a transfer of mass from the inflated companion
star to the neutron star. The binary X-ray sources to be discussed in §5.6 are
believed to be neutron stars accreting matter from inflated binary companions.
Because of the orbital motion of the companion, the matter accreting onto the
neutron star from its companion will carry a considerable amount of angular
momentum. This is expected to increase the angular velocity of the accreting
neutron star, leading to a decrease in rotation period. Eventually, when the red
giant phase of the companion star is over (it may become a white dwarf or
another neutron star), the neutron star which has been spun up by accreting
matter with angular momentum becomes visible as a millisecond pulsar with
a short period P . It is necessary to provide an explanation of the magnetic
field decrease as well. Various alternative theoretical ideas have been suggested.
One idea is that the accreted material on the neutron star covers up and buries
the magnetic field so efficiently that very little magnetic field is present at the
surface. A numerical simulation of this idea by Konar and Choudhuri (2004)
shows that this is possible and the surface magnetic field decreases exactly by a
factor which is consistent with observational data.

5.6 Binary X-ray sources. Accretion disks

A second kind of evidence for the existence of neutron stars started coming
at about the same time when pulsars were discovered. Giacconi et al. (1962)
discovered several celestial X-ray sources with the help of Geiger counters
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sent aboard a rocket. After the satellite Uhuru devoted exclusively to X-ray
astronomy was launched, these X-ray sources could be studied in more detail.
Most of these sources were found to be in the galactic plane, indicating that
they are galactic objects. It became possible to identify the optical counterparts
of some of these X-sources. The optical counterparts were invariably binary
stellar systems. Something must be happening in these binaries to produce the
X-rays.

Suppose we drop a mass m from a height h in a gravitational field g. The
gravitational potential energy mgh is first converted into kinetic energy, and
then, on hitting the ground, this energy is transformed into other forms such as
heat and sound. Ordinarily, in this process, a very small fraction of the rest mass
energy mc2 is released. If, however, the mass m is dropped from infinity to a
star of mass M and radius R, then the gravitational energy lost is

GM

R
m = GM

c2 R
mc2.

For a typical neutron star of mass 1M� and radius 10 km, the factor GM/c2 R
turns out to be about 0.15. Hence the loss of gravitational energy may be a
very appreciable fraction of the rest mass energy, making such an infall of
matter into the deep gravitational well of a compact object like a neutron star a
tremendously efficient process for energy release.

We have pointed out in §4.5.1 that there can be mass transfer between
the two stars in a binary system. Suppose one member of a binary is a com-
pact object like a neutron star or a black hole, whereas the other member
is a star which has filled up the Roche lobe. Then the compact star will
accrete matter from its companion. The accreted matter loses a large amount
of gravitational potential energy while falling towards the compact star and
this energy presumably is radiated away. This seems to be the likely mech-
anism by which most of the X-ray sources are powered. We pointed out in
§5.5.2 that millisecond pulsars are believed to be neutron stars spun up by the
deposition of angular momentum in a binary mass transfer process. The X-
ray binary sources are basically such systems caught in the act of such mass
transfer. A millisecond pulsar is a possible end product after the mass transfer
is over.

Since the accreting material carries angular momentum, it is unlikely to fall
radially inward, but is expected to move inward slowly in the form of a disk as
shown in Figure 5.6. Such a disk is called an accretion disk. A particular parcel
of gas will follow a spiral path. A classic investigation of the accretion disk
physics is due to Shakura and Sunyaev (1973). Here we merely point out some
of the salient features. Just as the planets move in nearly circular orbits around
the Sun, a parcel of gas in an accretion disk also moves in a nearly circular
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Fig. 5.6 Sketch of an accretion disk in a binary stellar system.

orbit. Balancing gravity by centrifugal force, we can easily find that the angular
velocity at a distance r is given by


 =
(

GM

r3

)1/2

. (5.36)

The angular velocities of planets around the Sun indeed vary as r−3/2, leading
to Kepler’s third law of planetary motion. Hence a circular motion satisfying
(5.36) is often called Keplerian motion in astronomical jargon. If there was
no viscosity in the accretion disk, then parcels of gas could forever move in
Keplerian orbits, just as planets seem to move forever around the Sun. However,
the viscous drag between adjacent layers of gas moving with different angular
velocities causes material to spiral inward continuously in the inner regions of
the disk. As material spirals inward in the accretion disk losing gravitational
potential energy, this energy is radiated away from the disk.

If the accreting material falls on a compact object of mass M and radius R,
then a parcel of unit mass loses energy −GM/R in falling onto that object and
this energy is radiated away. If Ṁ is the mass accretion rate, then we expect the
resultant luminosity to be

L = GMṀ

R
. (5.37)

It is clear that the accretion rate Ṁ determines how luminous the source will be.
If the accretion rate is too high and the source is too luminous, then the outward
force on matter due to radiation pressure may be more than the inward pull due
to gravity. We have discussed this in §3.6.1 and came to the conclusion that
the luminosity cannot exceed the Eddington luminosity. Otherwise, matter will
be blown outward reducing the accretion rate until the accretion rate adjusts to
such a value that the luminosity does not exceed the Eddington luminosity. On
the basis of such arguments, we expect the luminosity of the brightest accreting
objects to be close to the Eddington luminosity. It is Thomson scattering which
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is the main source of opacity in accreting matter. Using the expression (2.84)
for opacity due to Thomson scattering, we find the Eddington luminosity from
(3.44) as follows:

LEdd = 4πc GMmH

σT
= 1.3 × 1031

(
M

M�

)
W, (5.38)

on putting values of various quantities. It is quite remarkable that the brightest
X-ray sources are found to have luminosities close to 1031 W on the lower side.
If the luminosity as given by (5.37) is equal to the Eddington luminosity given
by (5.38), then we find that the accretion rate is given by

Ṁ = 1.5 × 10−8 M� yr−1 (5.39)

on taking M = M�, R = 10 km. This is the typical accretion rate in binary
systems. Suppose the luminosity is emitted thermally from the neutron star
surface where the accreting material falls. The temperature T of this region
can be found from

L = 4π R2σ T 4.

On taking L = 1031 W and R = 10 km, the temperature is found to be about
2 × 107 K. Blackbody radiation at this temperature peaks in the X-ray part of the

Fig. 5.7 Mass estimates of neutron stars in binary X-ray systems and in binary pul-

sars. From Longair (1994, p. 114) who credits J. Taylor for the figure. ( c©Cambridge

University Press.)



Exercises 149

spectrum. Thus the theoretical model of accretion onto neutron stars gives a very
natural explanation of how the X-rays arise. For accretion onto white dwarfs, the
temperature would be much less and the radiation would not predominantly be
in the X-rays.

As we pointed out in §3.5.1, the mass of a star can be determined if
it is in a binary system. The masses of many neutron stars in binary X-
ray sources and binary pulsars have been determined. Figure 5.7 shows the
masses of several neutron stars which could be determined with reasonable
accuracy. All the masses are presumably below the upper mass limit of neutron
stars (which is not accurately known). However, there are a few binary X-
ray sources with accreting objects which possibly have masses higher than
3M�. The best-studied of these objects is Cygnus X-1. It shows variabilities
in luminosity in different time scales. The central accreting object is believed to
be a black hole rather than a neutron star, since its estimated mass is well above
what would be the neutron star mass limit based on any reasonable equation
of state.

Exercises

5.1 Derive the general expression (5.1) for pressure in a gas by considering

a unit area on the wall of the gas container, figuring out the distribution of

particles hitting this area in unit time and keeping in mind that the momentum

changes in the elastic collisions provide the pressure. From the expression of

the Maxwellian distribution given by (2.27), figure out f (p) for that distribu-

tion and show that the pressure exerted is nκBT .

5.2 Work out the integral in (5.5) by substituting p = mec sinh θ and show

that the general expression for the electron degeneracy pressure given by (5.5)

is equal to

P = πm4
ec5

3h3
f (x),

where

f (x) = x(2x2 − 3)
√

x2 + 1 + 3 sinh−1 x

and x = pF/mec. Evaluate f (x) numerically for various values of x and use

these numerical values to make a plot of log P against log ρ. Indicate regions

of the plot corresponding to the two limiting equations (5.9) and (5.11).

5.3 Carry out all the algebraic and numerical steps to obtain (5.9)–(5.12).

Then produce Figure 5.1 yourself by following the procedure mentioned in the

text. Justify this procedure by careful arguments.
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5.4 Consider the Lane–Emden equation

1

ξ2

d

dξ

(
ξ2 dθ

dξ

)
= − θn

to be solved with the boundary conditions

θ = 1,
dθ

dξ
= 0

at ξ = 0. Obtain analytical solutions for the cases n = 0 and n = 1.

[Hint: To solve for n = 1, first substitute

θ = χ

ξ
,

where χ is a new variable. Then show that this substitution transforms the

Lane–Emden equation to

d2χ

dξ2
= − χn

ξn−1
.]

5.5 Consider a star in which gas pressure and radiation pressure are both

important (i.e. the total pressure is the sum of the two). If the gas pressure

given by (3.23) is equal to a constant fraction β of the total pressure everywhere

inside the star, then show that the total pressure has to be related to the density

in the following way

Ptot =
(

3κ4
B

aBμ4m4
H

)1/3 (
1 − β

β4

)1/3

ρ4/3.

Now consider several stars with different masses having the same composition

(i.e. the same μ). Assuming that inside each of these stars the gas pressure

is everywhere a constant fraction β of the total pressure (but β has different

values for different stars), show that β inside a star would be related to its

mass M by an equation of the form

1 − β

β4
= CM2,

where C is a constant which you have to evaluate. Show that β is smaller

for larger M , implying that radiation pressure is increasingly more important

inside more massive stars. This is a historically important argument first given

by Eddington (1926, §84).

5.6 Those of you who are proficient in doing numerical calculations with

computers can use the equation of state derived in Exercise 5.2 to solve

the structure equation (5.13). On solving the equation with a particular

value ρc of central density, you will get a model of a star with mass M

and radius R. Plot R as a function of M and show that R falls to zero
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when M is equal to the Chandrasekhar mass. If you can do all these, then

you have repeated the calculation for which Chandrasekhar won the Nobel

Prize!

5.7 The Sun has a rotation period of about 27 days. If the Sun collapsed

to become a white dwarf conserving its angular momentum, what would be

the expected rotation period? What would be the rotation period if the Sun

collapsed to become a neutron star?

5.8 The Crab pulsar has period P = 0.033 s and characteristic slowing time

P/Ṗ = 2.5 × 103 yr. Estimate the energy loss rate and the magnetic field by

using (5.35).

5.9 Determine the constant of proportionality in the mass–radius relation

(5.25), using the fact that ξ1 = 3.65 and ξ2
1 |θ ′(ξ1)| = 2.71 for n = 3/2. We

pointed out in §3.6.1 that the limiting mass of a brown dwarf is 0.08M�.

Assuming that gravity is balanced by the electron degeneracy pressure, esti-

mate the radius of this limiting brown dwarf. If the brown dwarf formed by

gravitational collapse from a much larger size, estimate the thermal energy

acquired by the brown dwarf during its formation. Assuming the brown dwarf

to have a uniform temperature (which is not too bad an assumption because the

thermal conductivity of degenerate matter is high), estimate its temperature.

Note that the temperature has to be higher than 107 for nuclear burning to

start.
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Our Galaxy and its interstellar
matter

6.1 The shape and size of our Galaxy

When we look around at the night sky, we find that the stars are not distributed
very uniformly. There is a faint band of light – the Milky Way – going around
the celestial sphere in a great circle. Even a moderate telescope reveals that the
Milky Way is a collection of innumerable faint stars. Herschel (1785) offered
an explanation of the Milky Way by suggesting that we are near the centre of a
flat disk-like stellar system. When we look in the plane of the disk, we see many
more stars than what we see in the other directions, thus producing the band of
the Milky Way. After the development of photography, it became much easier
to record distributions of stars in different directions. In the beginning of the
twentieth century, Kapteyn attempted to put Herschel’s view on a firm footing,
by undertaking a huge programme of counting stars in different directions and
measuring their proper motions with a view of estimating distances. From a
painstaking statistical analysis of these data, it was inferred that we are at
the centre of an oblate stellar disk with a thickness of a few hundreds of pc
and a disk radius of about a few kpc (Kapteyn and van Rhijn, 1920; Kapteyn,
1922). This model is usually referred to as the Kapteyn Universe, since it was
believed at that time that this was the whole Universe! Before we discuss how
the Kapteyn Universe was demolished by Shapley’s work and what is still our
accepted view of our Galaxy got established, we want to say a few words about
star count analysis.

6.1.1 Some basics of star count analysis

We shall not discuss here the details of how the statistical analysis of star count
data is carried out. The interested readers may look at Chapter 4 of Mihalas and
Binney (1981). We just present some elementary considerations by assuming
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that the space around us is free of any absorbing material. Suppose we are
surrounded by identical stars of absolute magnitude M distributed in space with
a uniform density. We want to find the number N (m) of stars which appear
brighter than apparent magnitude m. It should be clear from (1.8) that a star
would have apparent magnitude m if it is located at a distance

d = (10)1+0.2(m−M) pc. (6.1)

All stars within a sphere of size (4/3)πd3 around us would appear brighter than
the magnitude m. The number N (m) of such stars, which is clearly proportional
to d3, can be written as

N (m) = C1100.6m, (6.2)

where C1 is a constant. So, if we find that the observed N (m) obeys (6.2) up to a
certain value of m, then we can conclude that stars are distributed uniformly up
to the distance d corresponding to that m as given by (6.1). If the observed N (m)

falls below what is theoretically expected from (6.2) beyond a certain m, then we
know that we are reaching the edge of the system at the distance corresponding
to that m. Checking whether the observed N (m) for a certain type of stars agrees
with (6.2) is a powerful test for finding if those stars are distributed uniformly
around us. This test can also be applied to study the distribution of galaxies
around our Galaxy.

If we had an infinite Universe uniformly populated with stars, then it can be
easily shown that the brightness of the sky would have been infinite – a result
known as the Olbers paradox (Olbers, 1826). The differential star count A(m)

(defined such that the number of stars having apparent magnitude between m
and m + dm is A(m)dm) is obviously given by

A(m) = dN (m)

dm
= C2100.6m, (6.3)

where C2 = 0.6C1 ln 10. From (1.6), we know that the light received by us from
the star of apparent magnitude m can be written as

l(m) = l010−0.4m . (6.4)

Hence the light received by us from stars with apparent magnitudes between m
and m + dm is

l(m) A(m) dm = l0C2100.2mdm

on substituting from (6.3) and (6.4). The total light received from all stars
brighter than m is then given by

L =
∫ m

−∞
l(m′) A(m′) dm′ = l0C2

∫ m

−∞
100.2m′

dm′ = K 100.2m, (6.5)

where
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K = l0C2

0.2 ln 10
= 3l0C1.

It is clear from (6.5) that L diverges exponentially with m as we include fainter
stars at greater distances which have increasingly larger values of m. Because of
the finite size of our Galaxy, we can get around the Olbers paradox for stars in
the Galaxy. However, we encounter this paradox again when we consider light
received by all the galaxies outside our Galaxy. The resolution of this paradox
for galaxies will be discussed in §14.4.1.

Our elementary discussion of star count analysis has been based on the
assumption that all stars are alike. It is not very difficult to extend this discussion
for a distribution of stars with different intrinsic properties (see Exercise 6.1).
Often one tries to count only stars of a particular spectral type which have
the absolute magnitudes lying in a narrow range. By obtaining the distribution
function N (m) for these stars in different directions and by comparing it with
the result (6.2) for uniform distribution, it is in principle possible to determine
the distances in different directions where these stars are under-abundant or
over-abundant, thereby generating a map of the density distribution of these
stars. Usually a particular telescope has a limit of apparent magnitude m to
which it can go. Intrinsically faint stars (with large M) reach the apparent
magnitude m at a relatively short distance, whereas intrinsically bright stars
(with smaller M) have this magnitude at a larger distance, as can be easily
seen from (6.1). Hence the telescope will show intrinsically bright stars at
large distances where intrinsically faint stars are no longer visible. If we do
a statistical analysis of the data taken by this telescope without properly taking
account of this fact, then we may end up with the conclusion that intrinsically
bright stars are more abundant at large distances compared to intrinsically faint
stars. This is called the Malmquist bias (Malmquist, 1924). In any statistical
analysis involving objects of different intrinsic luminosity, care has to be taken
to avoid this bias.

6.1.2 Shapley’s model

Even before the detailed papers on the Kapteyn Universe were published
(Kapteyn and van Rhijn, 1920; Kapteyn, 1922), a serious rival to this model
arose. In §3.6.2 we have discussed globular clusters, which are compact spher-
ical clusters of typically about 106 stars. Shapley (1918) noted that most of
the globular clusters are found around the constellation Sagittarius in the sky.
Shapley (1919) suggested that the centre of our Galaxy must be in the direction
of this constellation and the globular clusters must be distributed symmetrically
around this centre. Figure 6.1 shows an edge-on view based on our modern
perception of what the Galaxy would look like. The Galaxy has a thin disk with
a spheroidal bulge around its centre. The Sun is located in an outlying region
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Fig. 6.1 A schematic edge-on view of our Galaxy. The position of the Sun is

indicated by ×.

of this disk indicated by × in Figure 6.1 far away from the centre. About 200
globular clusters make up a roughly spherical halo around the galactic centre.

To establish the size of the Galaxy, we need to know the distances of
the globular clusters from us. For measuring distances of reasonably faraway
stellar systems, two kinds of stars with periodically varying luminosity –
Cepheid variables and RR Lyrae stars – have proved very useful. Leavitt (1912)
discovered that there was a relation between the period and the apparent lumi-
nosity of Cepheid variables in the Small Magellanic Cloud (which we now
know to be a galaxy not far from our Galaxy), the brighter ones having longer
periods. Since all the Cepheid variables in the Small Magellanic Cloud are
approximately at the same distance from us, there must be a relation between
period and absolute luminosity of these stars. The period–luminosity relation of
Cepheid variables was established later when the distances (and hence absolute
luminosities) of some Cepheid variables could be determined (essentially by
studying Cepheid variables in star clusters within our Galaxy of which the
distances could be estimated). So, if you measure the period of a Cepheid vari-
able, you can infer its absolute luminosity and, by comparing with the apparent
luminosity, you can then find the distance. In other words, a measurement of the
period of a Cepheid variable leads to a determination of its distance. Initially
it was thought that the Cepheid variables and RR Lyrae stars obey exactly
the same period–luminosity relation, leading to erroneous estimates of some
distances. Finally Baade (1954) showed that a Cepheid variable is somewhat
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brighter than an RR Lyrae star with the same period, necessitating the revision
of many extragalactic distances.

Shapley (1919) used the RR Lyrae stars in some globular clusters to esti-
mate their distances. From these measurements, he concluded that the galactic
centre is situated at a distance of 15 kpc from us. The current best estimate for
this distance is about 8 kpc (see §7.4.1 of Binney and Merrifield, 1998). The disk
of the Galaxy has a thickness of the order of 500 pc. The actual estimate of the
thickness depends on the kinds of stars we use to find this thickness. The bright
O and B stars are usually found rather close to the mid-plane of the disk, such
that one gets a lower value of the thickness of the disk on using these stars to
find the thickness (the number densities of these stars fall with a scale height of
about 50 pc from the mid-plane). On the other hand, stars of the other types can
be found at greater distances from the mid-plane, their densities falling with
more typical scale heights of order 200 or 300 pc (Gilmore and Reid, 1983).
Since O and B stars are short-lived, they are statistically younger than other
stars. So, presumably, as the stars grow older, they can acquire larger random
velocities, enabling them to rise further from the mid-plane against gravity. We
shall discuss this more in §7.6.2. Although we now know many more details not
known in Shapley’s time, our present view of the Galaxy is still essentially what
Shapley surmised.

While Shapley was establishing the size and shape of our Galaxy, a fierce
debate was going on whether some of the nebulous objects seen in the sky
are outside our Galaxy or are inside it. Shapley (1921) believed that they are
inside. However, this question was settled very soon by Hubble (1922) by
studying Cepheid variables in some of these nebulae and by demonstrating
from the distance estimates that they must be independent stellar systems
outside our Galaxy. We shall discuss external galaxies in Chapter 9. Some of
these have beautiful spiral structures. Figure 6.2 shows the Andromeda Galaxy,
which is the nearest large spiral galaxy. We believe that our Galaxy and the
Andromeda Galaxy are very similar in size, shape and appearance. If we go
outside our Galaxy and look at it, it would probably appear very similar to
Figure 6.2.

6.1.3 Interstellar extinction and reddening

The main reason why the Sun was put in the centre of the Kapteyn Universe is
that the Milky Way looks reasonably symmetric around us. If the Sun is actually
at the edge of our Galaxy, then why does the Milky Way look so symmetric? If
the interstellar space has some obscuring material, then we would not be able to
see too far into the galactic disk and our view of the disk would be symmetric,
even though the disk may actually extend much more in one direction than in
the other.
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Fig. 6.2 The Andromeda Galaxy M31. Courtesy: Robert Gendler.

A clear proof of the existence of interstellar obscuration was provided
by Trumpler (1930), who made a statistical study of open clusters, which are
typically loosely bound clusters of a few dozen stars. Unlike globular clusters
many of which are found away from the galactic disk, the open clusters mostly
lie in the disk of our Galaxy. Assuming that the open clusters are statistically
of the same size, one can estimate the distance from the angular size. Trumpler
(1930) found that the stars in more distant open clusters appeared dimmer than
what is expected from a simple inverse-square fall in intensity, clearly indicating
that the starlight coming from distant clusters has undergone some attenuation.
A more detailed discussion of the interstellar medium will be taken up in §6.5
and §6.6. Here we just mention that the interstellar medium contains particles
of dust mixed with gas. It is the dust particles which are responsible for the
absorption of starlight.

We had written down (1.8) assuming that there was no interstellar absorp-
tion and intensity fell by a simple inverse-square law. In the presence of inter-
stellar absorption, (1.8) should be modified to

m = M + 5 log10 d − 5 + Aλ, (6.6)

where Aλ gives the dimming caused by the interstellar dust. Since dimming
implies an increase of the apparent magnitude m, it should be clear that Aλ has
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to be positive. For visible light coming from stars in the galactic plane, a rough
rule of thumb for the dimming term is

AV ≈ 1.5 d, (6.7)

if d is measured in kpc. In other words, the amount of dimming of visible light
with distance is approximately equal to 1.5 magnitude kpc−1 in the galactic
plane. The subscript V in (6.7) implies that we are considering the extinction
Aλ in the V band introduced in §1.4.

Since the dust particles absorb more light at the shorter wavelengths (on the
bluer side), distant stars appear redder. We saw in §1.4 that the redness of a star
is given by (B − V ). As starlight passes through interstellar matter, its redness
measure (B − V ) keeps increasing. The change in it is denoted by E(B − V )

and the rule of thumb for this in the galactic plane is

E(B − V ) ≈ 0.5 d. (6.8)

Again d has to be in kpc. Since both Aλ and E(B − V ) depend linearly on
the distance d, their ratio Aλ/E(B − V ) is independent of d and is a measure
of interstellar extinction as a function of wavelength λ. Figure 6.3 plots the

Fig. 6.3 A plot of E(λ − V )/E(B − V ), which is a measure of light extinction by

interstellar dust, as a function of λ−1 in the directions of a few stars. An ‘aver-

age’ extinction curve is also indicated. From Bless and Savage (1972). ( c©American

Astronomical Society. Reproduced with permission from Astrophysical Journal.)
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related quantity E(λ − V )/E(B − V ), which is also a measure of interstellar
extinction, as a function of inverse wavelength in the directions of a few stars.
It is seen that there is an extinction peak around 2200 Å, which is usually
interpreted to be due to graphite present in the dust. Apart from this peak,
a straight line would not be a too bad fit for the absorption curve shown in
Figure 6.3. This implies that interstellar absorption roughly goes as λ−1, which
is a much weaker dependence than the dependence λ−4 expected from Rayleigh
scattering by molecules (see §2.6.1).

The existence of interstellar extinction and reddening makes the star count
analysis more complicated than what it would have been in the absence of
interstellar matter. For example, the expression (6.2) for N (m) was obtained by
assuming no absorption. There are, however, systematic methods of handling
the effects of interstellar matter in star count analysis, which we shall not
discuss here. Luckily interstellar dust is confined in a layer of thickness of about
±150 pc around the mid-plane of the Galaxy, close to which we lie. So, when
we look in directions away from the galactic plane, our view is not impaired by
interstellar extinction or reddening. It was known for a long time that external
galaxies could not be seen in a narrow zone near the galactic plane. This is
known as the zone of avoidance.

6.1.4 Galactic coordinates

We have introduced the widely used equatorial system of celestial coordinates in
§1.3. While presenting many galactic observations, it is often useful to introduce
galactic coordinates. The galactic latitude b of an object is its angular distance
from the galactic plane, which is taken as the equator in this system. The galactic
longitude l is measured from the direction of the galactic centre, which is taken
to be at l = 0o, b = 0o.

6.2 Galactic rotation

The gravitational field at a point inside or near the Galaxy is expected to be
directed towards the galactic centre. How is this gravitational field balanced, to
ensure that there is not a general fall of everything towards the galactic centre?
There are basically two ways of balancing gravity. A star may move in a circular
orbit such that the centrifugal force balances gravity (as in the case of planets
in the solar system). The other way of balancing gravity is through random
motions. Lindblad (1927) was the first to recognize that our Galaxy must be
having two subsystems. Most of the stars in the disk move in roughly circular
orbits around the galactic centre and constitute one subsystem. From the nearly
spherical shape of the halo of globular clusters, Lindblad (1927) guessed that
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this must be a non-rotating subsystem in which gravity is balanced by random
motions. At any particular instant of time, a globular cluster may be falling
towards the galactic centre. Eventually, however, this globular cluster will come
out on the other side of the Galaxy because of the kinetic energy it gains in
falling towards the galactic centre. Although some individual globular clusters
may be falling towards the galactic centre and the others may be moving away,
the overall statistical appearance of the system of globular clusters should not
change with time.

The Sun, in its orbit around the galactic centre, would circle around the
non-rotating subsystem of globular clusters. The line of sight component of the
relative velocity of the Sun with respect to a globular cluster can be determined
by measuring the Doppler shifts of lines in the spectra of stars in this cluster.
From the statistical analysis of such measurements for many globular clusters, it
is possible to estimate the speed with which the Sun is going around the galactic
centre, if we assume that the system of globular clusters has zero net rotation
around the galactic centre. The best value for the speed of the Sun around the
galactic centre, usually denoted by �0, is about �0 = 220 km s−1. If the Sun is
located at a distance of R0 = 8 kpc from the galactic centre, then the period of
revolution of the Sun around the galactic centre is

Prev = 2πR0

�0
≈ 2 × 108 yr. (6.9)

Since the age of the Galaxy is believed to be of order 1010 yr (as we shall see
in §9.3), the Sun had time to make not more than 50 rounds about the galactic
centre. The approximate mass M of the Galaxy inside the solar orbit can be
estimated by balancing the gravitational and centrifugal forces:

GM

R2
0

≈ �2
0

R0
.

The gravitational field would have been given by GM/R2
0 exactly if the mass

inside the solar orbit were distributed in a spherically symmetric manner. On
substituting the estimated values of R0 and �0 in the above approximate equa-
tion, we find M to be of order 1011 M�.

As the gravitational field of the Galaxy is expected to fall off with distance,
stars further out in the disk will have to move around the galactic centre with
slower speeds. In other words, the disk of the Galaxy should have differential
rotation. Oort (1927) carried out a classic analysis to show how this can be
demonstrated by studying the motions of stars in the solar neighbourhood. We
now present this analysis, based on the simplifying assumption that all stars
move in exactly circular orbits. This assumption, of course, is not strictly true
and §6.3 is devoted to looking at the consequences of small departures from
exactly circular orbits.
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Fig. 6.4 A sketch indicating the Sun and a star going around the galactic centre.

Figure 6.4 shows the Sun at a distance R0 from the galactic centre moving
with speed �0 in a circular orbit. We consider a star at a distance d from the Sun
at galactic longitude l. As indicated in Figure 6.4, this star is at a distance R from
the galactic centre moving with circular speed �. Let us consider the triangle
made up by the lines R0, R and d. If α is the angle made by the direction of the
star’s velocity � with d, then it follows from Figure 6.4 that the angle opposite
to R0 in our triangle is 90◦ + α. From the standard trigonometric properties of
a triangle, we have

R

sin l
= R0

cos α
(6.10)

and

R0 cos l = d + R sin α. (6.11)

The relative radial velocity of the star (along the line of sight) with respect to
the Sun is

vR = � cos α − �0 sin l =
(

�

R
R0 − �0

)
sin l

on making use of (6.10). Writing the angular velocities of the star and the
Sun as

ω = �

R
, ω0 = �0

R0
, (6.12)

we get

vR = (ω − ω0)R0 sin l. (6.13)
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The tangential velocity of the star with respect to the Sun is

vT = � sin α − �0 cos l = �
R0 cos l − d

R
− �0 cos l

on substituting for sin α from (6.11). On making use of (6.12), this gives

vT = (ω − ω0)R0 cos l − ωd. (6.14)

The very important expressions (6.13) and (6.14) give general expressions of
radial and tangential velocities of stars in the galactic disk moving in circular
orbits around the galactic centre. They can even be applied to stars far away
from the Sun.

We now consider stars in the solar neighbourhood for which d � R0. For
such stars, we approximately have

R0 − R = d cos l. (6.15)

We also can write

(ω − ω0) =
(

dω

dR

)
R0

(R − R0) =
[

1

R0

(
d�

dR

)
R0

− �0

R2
0

]
(R − R0)

on substituting from (6.12) for ω. Using (6.15), we get

(ω − ω0) =
[

�0

R0
−
(

d�

dR

)
R0

]
d

R0
cos l. (6.16)

Substituting (6.16), we get from (6.13) that

vR = 1

2

[
�0

R0
−
(

d�

dR

)
R0

]
d sin 2l, (6.17)

whereas (6.14) gives

vT =
[

�0

R0
−
(

d�

dR

)
R0

]
d cos2 l − �

R
d.

Since cos2 l = 1
2(cos 2l + 1), we get

vT = 1

2

[
�0

R0
−
(

d�

dR

)
R0

]
d cos 2l − 1

2

[
�0

R0
+
(

d�

dR

)
R0

]
d. (6.18)
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We can finally write (6.17) and (6.18) in the form

vR = Ad sin 2l, (6.19)

vT = Ad cos 2l + B d, (6.20)

where

A = 1

2

[
�0

R0
−
(

d�

dR

)
R0

]
= −1

2
R0

(
dω

d R

)
R0

(6.21)

and

B = −1

2

[
�0

R0
+
(

d�

dR

)
R0

]
(6.22)

are known as Oort constants.
The radial velocity vR of a star can be easily determined from the Doppler

shifts of spectral lines. Suppose we measure vR of many stars located at approx-
imately the same distance d in the galactic plane. From (6.19), we expect vR to
vary as sin 2l with the galactic longitude of the star. Joy (1939) was one of the
first astronomers to carry out such an analysis. Figure 6.5 from Joy (1939) shows
radial velocities of four groups of Cepheid variables of which distances could
be estimated from periods, the members of each group lying at a fixed distance
d . We clearly see a sinusoidal variation in vR with the galactic longitude. Data
points not lying exactly on the fitted curves indicate that stars do not move in
precise circular orbits. Since the amplitude of the oscillation is Ad , we can find
the Oort constant A if we know d. To determine the other Oort constant B,
we need to find the tangential velocity vT of many nearby stars with respect to
some non-rotating frame (such as the frame provided by extragalactic objects).
The determination of B is more difficult than the determination of A and has
been discussed by Mihalas and Binney (1981). Before quoting the best modern
values of A and B, let us discuss the unit in which we should be expressing
A and B. It should be clear from (6.19) and (6.20) that both A and B are
obtained by dividing velocities by distances. Since stellar velocities are usually
expressed in km s−1, whereas galactic distances are expressed in kpc, it has
been the convention to express A and B in units of km s−1 kpc−1. Even though
we could use a conversion factor between kpc and km to express A and B in
s−1 (the dimensions of A and B are of inverse time), we follow the standard
convention. The most reliable modern values of the Oort constants are obtained
from the proper motion measurements by the Hipparcos astronomy satellite (our
Figure 3.5 showing the HR diagram of nearby stars is also based on data from
this satellite). They are
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Fig. 6.5 Radial velocities of four groups of Cepheid variables located at four different

distances. Note that the galactic coordinates indicated refer to the old system and not the

presently used system (in which the galactic centre is taken as zero). From Joy (1939).

( c©American Astronomical Society. Reproduced with permission from Astrophysical

Journal.)

A = 14.8 ± 0.8 km s−1kpc−1, (6.23)

B = −12.4 ± 0.6 km s−1kpc−1 (6.24)

as given by Feast and Whitelock (1997).
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6.3 Nearly circular orbits of stars

We assumed in §6.2 that all stars in the galactic disk move exactly in circular
orbits. In reality, however, we do not expect most stars to move in exactly
circular orbits, just as planets in the solar system do not move in exactly
circular orbits. We know that a planet moves in an ellipse, which is the orbit
in a gravitational field falling as the inverse square of distance from the central
mass. Since the mass of the Galaxy is not concentrated in a central region but
distributed all over the Galaxy, we expect that the gravitational field will not
follow a simple inverse-square law and the orbits in the galactic disk will not be
simple ellipses. We now want to find out the orbit of a star by assuming that the
departure from a circular orbit is small.

Let �circ(r) be the speed which a star will need to move in a circular orbit
at a distance r from the galactic centre. If fr is the gravitational force at this
distance r , then we must have

fr = −�2
circ

r
. (6.25)

Let �0 = �circ(R0) be the circular speed where the Sun is located, at a distance
R0 from the galactic centre. We can think of a frame of reference at the Sun’s
position moving with speed �0 in a circular orbit around the galactic centre.
This frame of reference is known as the local standard of rest (LSR). If a star has
a small velocity with respect to the LSR, then the orbit of the star can be found
by determining its movements with respect to the LSR by using a perturbation
technique.

6.3.1 The epicycle theory

We consider a star moving with speed �0 in a circular orbit at distance R0.
Suppose the star is suddenly given a small kick in the radial direction. According
to classical mechanics, its subsequent motion will be governed by the following
equations

r̈ − r θ̇2 = fr ,

r2θ̇ = constant

(see, for example, Goldstein, 1980, §3–2). Since the speed � in the θ direction
is given by � = r θ̇ , the above two equations can be written as

r̈ = �2

r
− �2

circ

r
, (6.26)

r � = R0�0, (6.27)
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using (6.25) to substitute for fr and noting that the angular momentum of the
star remains R0�0, which did not change when we gave the star a radial kick.

We now write

r = R0 + ξ = R0

(
1 + ξ

R0

)
(6.28)

and assume that ξ � R0, since the star will not move too far away from the
circular orbit r = R0 after receiving the small radial kick. We shall neglect the
quadratic and higher powers of ξ in our discussion. Using (6.27), we clearly
have

�2

r
= R2

0�2
0

r3
≈ �2

0

R0

(
1 − 3ξ

R0

)
(6.29)

on making use of (6.28) and keeping only the linear term in ξ . We can write

�circ(r) ≈ �circ(R0) +
(

d�

dr

)
R0

ξ ≈ �0 − (A + B)ξ, (6.30)

where A and B are the Oort constants defined through (6.21) and (6.22). Then
it follows

�2
circ

r
=

�2
0

[
1 − (A+B)

�0
ξ
]2

R0

(
1 + ξ

R0

) ≈ �2
0

R0

[
1 − 2(A + B)

�0
ξ − ξ

R0

]
. (6.31)

On noting that r̈ = ξ̈ and on making use of (6.29) and (6.31), we can write down
(6.26) in the following approximate form

ξ̈ = 2
�0

R0
(A + B)ξ − 2

�2
0

R2
0

ξ.

On substituting

�0

R0
= A − B,

this leads to

ξ̈ = 4B(A − B)ξ,

which can be written as

ξ̈ + κ2ξ = 0, (6.32)

where

κ = √−4B(A − B) (6.33)

is a real quantity because B is negative. It is clear that there will be a simple
harmonic motion of the star in the radial direction with respect to the circular
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orbit r = R0. The radial velocity � = ṙ with respect to the LSR also should
vary in a simple harmonic fashion and can be written as

� = �0 cos κt (6.34)

so that the displacement should be

ξ = �0

κ
sin κt. (6.35)

Now we look at the motion in the θ direction. From the constancy of the
angular momentum r2θ̇ , we have

θ̇ = R0�0

r2
≈ �0

R0

(
1 − 2ξ

R0

)
.

Since the first term �0/R0 corresponds to the motion of the LSR, the part
corresponding to the motion of the star with respect to the LSR is approximately
given by

�θ̇ = −2�0ξ

R2
0

.

This translates into a linear velocity which, in the linear order in ξ , is

�� = (R0 + ξ)�θ̇ = −2�0ξ

R0
= −2�0�0

κ R0
sin κt (6.36)

on substituting from (6.35). The corresponding displacement is

η = 2�0�0

κ2 R0
cos κt.

Since it follows from (6.21), (6.22) and (6.33) that

�0

κ2 R0
= (A − B)

−4B(A − B)
= 1

−4B
,

we get

η = �0

−2B
cos κt. (6.37)

It should be clear from (6.35) and (6.37) that the star moves in an ellipse
with respect to the LSR, while the LSR is revolving around the galactic centre,
as shown in Figure 6.6. The ancient Greek astronomers Hipparchus (2nd century
BC) and Ptolemy (2nd century AD) ascribed motions of a similar kind to
planets in their geocentric theory. Borrowing a term from ancient astronomy,
we call such motions epicyclic. The elliptical path of the star with respect to
the LSR is called an epicycle. It follows from (6.35) and (6.37) that the ratio
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Fig. 6.6 A sketch showing the epicyclic motion of a star around the LSR.

of the semimajor axis (in the θ direction) to the semiminor axis (in the r
direction) is

�0/2|B|
�0/κ

=
√

A − B

|B|
on substituting for κ from (6.33). Putting values of A and B as given by (6.23)
and (6.24), this ratio turns out to be 1.48. So the ellipse is elongated in the
tangential direction. The period of oscillation in the epicycle is related to the
revolution period in the following way

Posc

Prev
= 2π/κ

2π R0/�0
= A − B√−4B(A − B)

= 1

2

√
A − B

−B
. (6.38)

On putting the values of A and B, this ratio of periods is found to be 0.74 for
stars in the solar neighbourhood. Since this ratio is not in general a rational
number for a star at an arbitrary distance from the galactic centre, the orbit of
the star will not close.

6.3.2 The solar motion

A star in the solar neighbourhood would not in general be at rest in the LSR,
but would move in an epicycle with respect to the LSR. Is the Sun at rest in
the LSR? Unless it is an unusual accident, we expect the answer to be ‘no’.
The motion of the Sun with respect to the LSR at the present epoch is called the
solar motion. This motion can be found out by studying the motions of the stars
in the solar neighbourhood and by assuming that these stars do not have any net
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drift in the radial direction or perpendicular to the galactic plane. This implies

〈�〉 = 0, 〈Z〉 = 0. (6.39)

Here Z is the component of velocity perpendicular to the galactic plane and
〈. . .〉 implies averaging over stars in the solar neighbourhood. We have shown
in §6.3.1 that � for a particular star varies sinusoidally. The reader is asked in
Exercise 6.4 to show the same for Z . So it is no wonder that their averages will
be zero.

Let (��, �� − �0, Z�) be the components of solar motion. From the
Doppler shifts of spectral lines, we can find the line of sight velocity of a
star with respect to the Sun, whereas the proper motion gives the velocity
perpendicular to the line of sight. Combining these measurements, one can find
out the components � − �� and Z − Z� of relative velocity, and then their
averages over the stars in the solar neighbourhood. Because of (6.39), we have

〈� − ��〉 = 〈�〉 − �� = −�� (6.40)

and similarly

〈Z − Z�〉 = −Z�. (6.41)

Thus these averages give us the components of solar motion, which are
found to be

�� = −10.0 ± 0.4 km s−1, Z� = 7.2 ± 0.4 km s−1. (6.42)

Since the LSR itself does not have any � or Z velocities, it is relatively easy
to find the components of solar motion with respect to LSR in these directions.
Now let us consider the θ direction. We certainly have

〈� − ��〉 = −(�� − 〈�〉), (6.43)

which can be found out from the measurements of stellar velocities with respect
to the Sun. Now, if 〈�〉 is equal to the velocity �0 = �circ(R0) of the LSR, then
�� − 〈�〉 would give the solar motion with respect to the LSR. But is it true
that 〈�〉 = �0? From the epicycle theory presented in §6.3.1, especially (6.36),
it would seem that a star would simply oscillate forward and backward with
respect to the LSR and 〈�〉 averaged over many stars in the solar neighbourhood
would give �0. However, this result is a consequence of the assumption of
linearity. If we go beyond the linear theory, then we find that the centre of the
epicycle, known as the guiding centre, moves slower than the LSR. The reason
is not difficult to find if we look at Figure 6.6. Because of the curvature of the
path of the guiding centre, the length of the epicycle path on the outside (i.e.
away from the galactic centre) is larger than the length of the epicycle path on
the inside. From (6.27) the velocity � is less when the star is in the outer part
of the epicycle. Hence the star covers a longer path with a slower speed and the
average � of the star should actually be less than �0. We missed this effect in
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§6.3.1, since the curvature of the guiding centre path was not taken into account
in the linear theory. As we shall discuss in §7.6.2, things can be even more
complicated when we consider the fact that the guiding centres of different
stars in the solar neighbourhood may lie at different distances from the galactic
centre. We see from (6.43) that the solar motion in the θ direction is given by

�� − �0 = −〈(� − ��)〉 + 〈�〉 − �0. (6.44)

Thus, apart from 〈(� − ��)〉, which is found from the observations of stellar
motions in the solar neighbourhood, we need to know how 〈�〉 differs from the
velocity of LSR �0 to find out the solar motion in the θ direction. We shall
see in §7.6.2 how 〈�〉 − �0 can be found. Here let us only quote the final
result that

�� − �0 = 5.2 ± 0.6 km s−1 (6.45)

according to the current available data. The values quoted in (6.42) and (6.45)
are from Binney and Merrifield (1998, §10.3.1).

The amplitude of the solar motion is of order 10 km s−1. The typical random
velocity of a star in the solar neighbourhood is also of this order. Then the ampli-
tude of oscillation in the radial direction, which is given by �0/κ according to
(6.35), should be of order 1 kpc on taking �0 to be of order 10 km s−1.

6.3.3 The Schwarzschild velocity ellipsoid

A measurement of the velocities of stars in the solar neighbourhood may give
the impression that the distribution of velocities is random. In reality, however,
most of the stars are moving in their epicyclic orbits. Since the typical amplitude
of radial oscillation is of order 1 kpc, stars with guiding centres lying within
a band of width 1 kpc on either side of R0 (the distance of the Sun from the
galactic centre) can come into the solar neighbourhood during their epicyclic
motions. Let the guiding centre of a star be at a distance r = Rg from the
galactic centre. We now want to apply the theory of §6.3.1 by assuming that
a radial displacement ξ has brought the star into the solar neighbourhood, i.e.

R0 = Rg + ξ

so that

�circ(R0) = �circ(Rg) +
(

d�

dr

)
ξ. (6.46)

In the place of (6.27), we have

R0 �(R0) = Rg �circ(Rg) = (R0 − ξ)�circ(Rg),
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where �(R0) is the tangential speed of the star when it comes near the Sun and
is clearly equal to

�(R0) = �circ(Rg)

(
1 − ξ

R0

)
. (6.47)

The relative tangential speed of the star with respect to the LSR is

�(R0) − �circ(R0) = −
[
�circ(Rg)

R0
+ d�

dr

]
ξ

on substituting from (6.46) and (6.47). To the order in which we ignore terms
quadratic in ξ , the term within the square bracket should be equal to −2B, as
seen from (6.22). Then

�(R0) − �circ(R0) = 2Bξ = 2B

κ
�0 sin κt (6.48)

on making use of (6.35). Since the radial speed of the star is given by �0 cos κt
according to (6.34), we should have

〈|�|〉
〈|��|〉 = κ

−2B
=
√

A − B

−B
(6.49)

on using (6.33).
It was proposed by Schwarzschild (1907) that the stars in the solar neigh-

bourhood would have an ellipsoidal distribution in the velocity space. In other
words, the number of stars with velocity components lying between � and
� + d�, � and � + d�, Z and Z + d Z should be

f (�, �, Z) d� d� d Z = C exp

[
−�2

σ 2
�

− (� − �0)
2

σ 2
�

− Z2

σ 2
Z

]
d� d� d Z .

(6.50)
It should be clear that the random velocities in the r and θ directions are
〈|�|〉 = σ� and 〈|��|〉 = σ�. It then follows from (6.49) that

σ�

σ�

=
√

A − B

−B
,

which has the numerical value 1.48. We thus have the beautiful result that
even the ellipticity of the Schwarzschild velocity ellipsoid depends on the Oort
constants. Figure 6.7 shows the random velocities in different directions for
stars of different colours in the solar neighbourhood. It is seen that redder stars
tend to have more random velocities. However, the ratio of σ� to σ� turns out
to be not very different from 1.48 for stars of any colour.
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Fig. 6.7 The velocity dispersions for stars of different colours in the solar neighbour-

hood. From Dehnen and Binney (1998). ( c©Royal Astronomical Society. Reproduced

with permission from Monthly Notices of Royal Astronomical Society.)

6.4 Stellar populations

We have already pointed out in §6.2 that our Galaxy contains two subsystems.
One subsystem consists of stars in the disk which revolve around the galac-
tic centre in nearly circular orbits. We shall see in §6.5 that the interstellar
matter also revolves around the galactic centre with these stars and belongs
to this subsystem. The other subsystem contains the globular clusters which
have no systematic rotation around the galactic centre. Apart from globular
clusters, the spheroidal component of our Galaxy (i.e. the bulge around the
galactic centre seen in Figure 6.1) belongs to this subsystem. For stars in the
spheroidal component also, gravity is balanced by random motions, since these
stars have very little systematic rotation. Additionally, the Galaxy has a non-
rotating halo of stars. Although the density of stars in the halo is much less
than the density of stars in the disk, even in the solar neighbourhood we see a
handful of stars with high random velocities which presumably belong to the
halo (we shall discuss this in more detail in §7.7). There are several distinct
differences between the physical characteristics of these two subsystems. The
stars in the non-rotating subsystem consisting mainly of the globular clusters
and the spheroidal component are mainly very old stars. The bright O and B
stars, which are short-lived, are not found in this subsystem, where formation
of new stars does not take place. While discussing HR diagrams of globular
clusters in §3.6.2, we already pointed out that these are very old systems in
which the main sequence does not go all the way to very luminous stars. On
the other hand, star formation out of interstellar matter continuously takes place
in the rotating subsystem comprising stars and interstellar matter in the galactic
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disk. We see O and B stars in this subsystem. Finally, the stars in the non-
rotating subsystem are deficient in ‘metals’ (i.e. elements heavier than He such
as C, N and O, which are called ‘metals’ by astronomers) compared to stars in
the galactic disk belonging to the rotating subsystem. We pointed out in §4.3
and §4.7 that the heavier elements are produced inside stars and get strewn in
the interstellar matter when massive stars undergo supernova explosions. With
more and more supernova explosions, the interstellar matter of the Galaxy is
presumably getting more enriched with these heavier elements. The old stars
of the non-rotating subsystem must have formed from a primordial interstellar
matter which was not yet rich in metals. The stars in the other rotating subsystem
are younger and formed out of interstellar matter after it became enriched with
metals.

Based on these considerations, Baade (1944) introduced the idea of two
stellar populations. The Population I stellar systems are relatively metal-rich,
contain interstellar matter and very bright O/B stars, and revolve around the
galactic centre to balance the pull of gravity. The Population II stellar systems
are comparatively metal-poor, contain no interstellar matter or O/B stars, and
counteract the gravitational field of the Galaxy by having random motions. The
galactic disk is the prime example of a Population I system, whereas the globular
clusters along with the spheroidal bulge and the halo belong to Population II.
Since we believe that all stars form out of interstellar matter, even Population II
systems must have contained interstellar matter at some early stage out of which
they formed, even though now they do not have much interstellar matter any
more. Presumably, all the interstellar matter has been used up in forming stars.
Even though a classification into two distinct stellar populations may be an
over-simplification of a complex situation, the concept of stellar populations
has proved extremely useful and is still widely used by astronomers.

6.5 In search of the interstellar gas

We have seen in §6.1.3 that the existence of interstellar matter was established
from the extinction and reddening of starlight produced by the interstellar dust.
There was evidence that the interstellar space contained much more matter in
the form of gas rather than in the form of dust. For example, evidence for
the gas came from narrow absorption lines observed in the spectra of some
stars. A spectral line gets broadened due to the random thermal motions of the
atoms in the material which produces the spectral line (this is known as thermal
broadening). An absorption line produced in a stellar atmosphere is expected
to have a broadening appropriate for the temperature of the atmosphere. A
narrow absorption line in a stellar spectrum indicates that the line must be
produced by some considerably cooler gas, possibly distributed along the line
of sight between the star and us. However, much of this gas (outside some
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limited regions as discussed in §6.6) emits no visible light. We shall discuss
in §7.6.1 an important limit on the density of interstellar matter known as the
Oort limit (Oort, 1932). It appeared that the mass in the interstellar matter may
be comparable to the mass contained in the stars in the solar neighbourhood.
Astronomers faced a peculiar problem in the 1930s and 1940s: even though
they became aware of the existence of a considerable amount of gas in the
interstellar space, they did not know how to study it systematically because
they were unable to detect any radiation coming from the gas.

After the advent of radio astronomy, van de Hulst (1945) finally suggested
a way out of the impasse when he predicted that the interstellar hydrogen gas
would emit radiation at the radio wavelength of 21 cm. The proton and the
electron in the hydrogen atom can have their spins either parallel or antiparallel.
The state with parallel spins has slightly higher energy than the state with
antiparallel spins. When transition from the higher state to the lower state
takes place, radiation with wavelength 21 cm is expected to be emitted. This is,
however, a ‘forbidden’ atomic line and it is not easy to see this line in laboratory
experiments. Since interstellar space has a huge amount of hydrogen with very
low density such that an atom in the higher state is unlikely to de-excite due to
collisions, van de Hulst (1945) suggested that it should be possible to receive
emission from interstellar hydrogen at this spectral line. Within a few years
of this remarkable prediction, emission from interstellar gas at this wavelength
was detected independently by Ewen and Purcell (1951) and by Muller and Oort
(1951). The 21-cm line soon proved to be a very powerful tool for studying the
distribution of the interstellar gas.

If the emitting gas has any radial velocity along the line of sight, that would
cause the wavelength to shift from 21 cm. Since the intrinsic width of the 21-cm
line from a cold gas would be narrow, it is ideally suited to measure the wave-
length shift which gives the radial velocity. Suppose in the direction of galactic
coordinates (l, b) we find the intensity I (l, b, λ) as a function of wavelength.
Since the wavelength shift gives the radial velocity vR of the emitting gas, we
can write the intensity as I (l, b, vR). Of particular interest is the intensity in
various directions of the galactic plane for which b = 0◦. Figure 6.8 shows
I (l, b = 0◦, vR) plotted in the l–vR plane. The distribution of the interstellar
gas has to be found out from plots like this.

We consider a line of sight in the galactic plane as shown in Figure 6.9.
We assume the interstellar gas to revolve around the galactic centre exactly in
circular orbits. Then the radial velocity vR at different points along the line of
sight is given by (6.13). It is clear that |vR| should be maximum when |ω − ω0|
is maximum. Suppose ω increases as we go closer to the galactic centre (which
is true except in a small region near the centre). Then |vR| should be maximum at
point 1 where the line of sight is tangent to the innermost circular orbit touched
by the path of light. We see in Figure 6.8 that, for a given l, the intensity drops
to zero beyond a certain value of |vR|. This maximum |vR| should correspond
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Fig. 6.8 The intensity I (l, b = 0◦, vR) of the 21-cm line shown by grey scale in the

l–vR plane. As given by Binney and Merrifield (1998), based on the data provided by

D. Hartmann. See Hartmann and Burton (1997) for details. Courtesy: D. Hartmann and

M. Merrifield.

Fig. 6.9 A schematic line of sight

through the Galaxy, along which

we receive 21-cm emissions from

interstellar clouds.

to that point along the light path where it is tangential to an orbit (like point 1
in Figure 6.9). On applying (6.13), we then find out ω at a distance r = R0 sin l
from the galactic centre, since it is the circular orbit at this distance to which the
line of sight is a tangent. It is possible to find ω as a function of r till the solar
orbit at r = R0. This method does not apply for determining ω beyond R0, for
which we require other methods.

The interstellar gas is found to be quite clumpy. The clumps of interstellar
gas are referred to as clouds by astronomers. The clumpiness of the interstellar
gas can be easily inferred from the non-smooth distribution of the intensity
I (l, b = 0◦, vR) seen in Figure 6.8. Wherever there is a local peak of intensity
in the l–vR plane, we conclude that there must be a cloud in the l direction
moving with radial velocity vR. Clouds located at points 2 and 3 in Figure 6.9
should have the same vR, which follows from (6.13). Hence, if we see a peak
in the intensity at this vR, we infer the existence of a cloud at 2 or 3. To
determine whether the cloud is at 2 or 3, we can look at the angular size of the
cloud perpendicular to the galactic plane. If this size is large, then we expect
the cloud to be located at the nearer point. Proceeding in this way, we can
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Fig. 6.10 The distribution of neutral hydrogen in the galactic plane, as found by Oort,

Kerr and Westerhout (1958) from 21-cm observations. ( c©Royal Astronomical Society.

Reproduced with permission from Monthly Notices of Royal Astronomical Society.)

reconstruct the gas distribution in the galactic plane from Figure 6.8. We show in
Figure 6.10 the famous reconstruction due to Oort, Kerr and Westerhout (1958).
It is clear that the distribution of neutral hydrogen gas in the Galaxy is highly
non-homogeneous. We also notice that this distribution traces out the spiral arms
of the Galaxy.

During the last few decades, it has been established that the interstellar
medium (usually abbreviated as ISM) is an extremely complex system con-
taining several distinct phases. We now discuss the phases of the interstellar
medium and point out how we get information about them.

6.6 Phases of the ISM and the diagnostic tools

In §2.7 we discussed how one can analyse a spectral line which is formed by the
passage of radiation through an absorbing medium. However, when we analyse
radiation that has been emitted by the ISM or that has passed through the ISM,
we need to keep in mind that the ISM is far from thermodynamic equilibrium.
Hence usually the radiation present in the interstellar space would not be in
equilibrium with matter, and Kirchhoff’s law (2.26) may not hold. While the
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results derived in §2.7 should hold for visible light passing through the ISM, it
is often necessary to study the radiative transfer through the ISM from a more
microscopic point of view than what we adopted in Chapter 2.

Let us consider two energy levels of some atom. The transitions between
these levels are accompanied by emission or absorption of photons with energy
hν0 equal to the energy difference between the levels. We shall use the sub-
scripts u and l to denote the upper and lower levels. Let the atomic number
densities in the upper and lower levels be nu and nl . It is useful to develop
our discussion from the well-known Einstein coefficients of radiative transition
treated in many textbooks (see, for example, Richtmeyer, Kennard and Cooper,
1969, §13.12). Let Aul be the coefficient of spontaneous transition, whereas Bul

and Blu are the coefficients of induced transition. The number of spontaneous
transitions per unit volume per unit time is nu Aul and the energy emitted in
these transitions is hν0nu Aul . The energy emitted per unit volume per unit time
per unit solid angle is given by dividing this by 4π . This should be equal to the
emission coefficient jν integrated over the spectral line, i.e.∫

jνdν = hν0nu Aul

4π
.

Let φ(�ν) be the normalized line profile where �ν is the departure of the
frequency from the line centre at ν0 and

∫
φ(�ν)dν = 1. Then jν should be

of the form

jν = hν0nu Aul

4π
φ(�ν). (6.51)

In the presence of a radiation field with energy density Uν given by (2.5), the
number of induced upward transitions per unit volume per unit time is nl BluUν ,
whereas the corresponding number of downward transitions is nu BulUν . The
net energy absorbed per unit volume per unit time must be

Eabs = hν0

c
(nl Blu − nu Bul)

∫
Iν d
 (6.52)

on making use of (2.5). The energy absorbed from the beam Iν in unit volume
in unit time is αν Iν . The energy absorbed from radiation coming from all direc-
tions is obtained by integrating this over all solid angles. So another expression
of Eabs is given by again integrating this over the absorption line (presumably
αν is non-zero only for frequencies at which absorption takes place), i.e.

Eabs =
∫

dν

∫
αν Iν d
. (6.53)

Comparing the above two expressions of Eabs and assuming for simplicity that
the absorption coefficient αν also has the same profile φ(�ν), we conclude

αν = hν0

c
(nl Blu − nu Bul) φ(�ν). (6.54)
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From (6.51) and (6.54), we see that the source function is given by

Sν = jν
αν

= c

4π

nu Aul

nl Blu − nu Bul
. (6.55)

The Einstein transition coefficients satisfy the following important relations
amongst themselves

Aul = 8πhν3

c3
Bul, gu Bul = gl Blu, (6.56)

where gu and gl are the statistical weights of the upper and lower states. Since
the relations (6.56) follow from the fundamental transitions of the atom, they
should not depend on whether there is thermodynamic equilibrium around or
not. We, therefore, expect (6.56) to be valid even when our system is not in
thermodynamic equilibrium. However, only if the system is in thermodynamic
equilibrium, should we have the Boltzmann relation

nu

nl
= gu

gl
exp

(
− hν0

κBT

)
. (6.57)

On using (6.56) and (6.57), it easily follows from (6.55) that the source function
Sν should be equal to the Planck function Bν(T ) as given by (2.6). This is the
case only when the system is in thermodynamic equilibrium. If the system is
out of thermodynamic equilibrium, then (6.57) may not hold and consequently
the source function (6.55) may not be equal to Bν(T ).

For a system not in thermodynamic equilibrium, we have to determine the
population ni for a level i by solving microscopic rate equations. If Ri j is
the transition probability from level i to level j , then ni

∑
j Ri j gives the rate

of transitions out of level i . In the steady state, this has to equal the rate of
transitions into level i from all other levels j given by

∑
j n j R ji . We thus have

ni

∑
j

Ri j −
∑

j

n j R ji = 0. (6.58)

We have one such equation for each atomic level i . If we can figure out the
transition rates Ri j between various levels from fundamental physics, then we
can solve these simultaneous equations to determine the populations in the
various levels.

Let us consider the simplest case of two levels u and l as an illustration. In
addition to the spontaneous emission and induced emission already discussed,
there can be a transition from the upper level to the lower level by inelastic
collisions with electrons present in the system. We expect the transition rate
due to collisional de-excitation to be proportional to both the electron number
density ne and the number density nu of atoms in the upper level. So we
can write this transition rate as γulnune. Similarly, there would be collisional
excitation of atoms from the lower to the upper level, in addition to transitions
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induced by radiation. Since the transition rates for u → l and l → u have to
balance in the steady state, we have

nu(Aul + BulUν + γulne) = nl(BluUν + γlune). (6.59)

The collisional transition rates should be independent of whether the radiation
field is in equilibrium with matter. Hence, if we can derive any relation amongst
them under the assumption of full thermodynamic equilibrium, then that rela-
tion should hold even when we do not have radiation in equilibrium with matter.
The relations amongst the Einstein transition coefficients are always given by
(6.56). Under the condition of thermodynamic equilibrium, Uν follows from
(2.6) and the Boltzmann relation (6.57) holds. On making use of them, we find
that (6.59) holds only if

glγlu = guγul exp

(
− hν0

κBT

)
. (6.60)

This should be valid even when no radiation field is present.
In the interstellar medium, we often have atoms excited to a higher level

collisionally. Then the excited atoms return to the lower level either through
collisions or through the spontaneous emission of photons. If the energy density
of radiation is negligible, then we can put Uν = 0 in (6.59) and obtain

nu

nl
= γlune

Aul + γulne
.

On making use of (6.60), this becomes

nu

nl
= gu

gl
exp

(
− hν0

κBT

)
.

1

1 + (Aul/γulne)
. (6.61)

It is clear that we would get back the Boltzmann distribution (6.57) if spon-
taneous emission is absent (i.e. if Aul = 0). The spontaneous emission makes
some atoms de-excite from the upper level and thereby decreases the population
of the upper level compared to what we have got from the Boltzmann distribu-
tion (6.57).

In this simple example of an atom with two levels, we find that the upper
level gets de-populated. However, this is not a generic result. If there is at
least one more level of the atom to which transitions from the lower level
are preferred, then it is possible for the upper level to be over-populated (see
Exercise 6.6).

We now list the different phases of the interstellar medium and point out
how we get information about them.

6.6.1 HI clouds

The neutral atomic hydrogen in the interstellar space is often referred to as HI.
We see in Figure 6.10 that the distribution of HI inside the Galaxy is highly
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non-uniform. The clouds of HI concentration typically have densities of order
106–108 particles m−3 and temperatures of order 80 K. Although they may
occupy only 5% of the volume of the interstellar space, they contribute nearly
40% of the mass of the interstellar matter. In the direction perpendicular to the
galactic plane in the solar neighbourhood, HI clouds are found mostly within
a distance of about 100 pc from the mid-plane. The 21-cm line is the most
important diagnostic tool for studying HI clouds. However, they can also be
studied by analysing the narrow absorption lines in the visible and UV parts
of the stellar spectra, caused by the absorption of starlight by the interstellar
gas at certain definite wavelengths. The low temperature of the gas ensures
that the thermal broadening of the lines is much less than what would have
been the case if they were formed in the stellar atmosphere. As discussed in
§2.7, the composition of the interstellar gas can be determined from an analysis
of these narrow absorption lines. It is found that elements like carbon, oxygen
and nitrogen are much less abundant in the interstellar gas clouds compared
to what we believe to be the cosmic composition. The usual reason given for
this is that these elements are locked up in the dust grains (discussed in §6.1.3)
which are present within the clouds. We still do not have a very good idea about
the composition of the dust grains. However, as we pointed out in §6.1.3, a
perusal of the extinction curve by dust grains suggests that carbon in the form
of graphite should be an important component.

Much of the information about the neutral hydrogen gas in interstellar
space comes from the 21-cm line. As we pointed out in §6.5, along the line of
sight, there would be clouds moving with different radial velocities due to the
differential rotation of the Galaxy. These clouds would emit at slightly different
wavelengths. To focus on the basic physics, let us consider the simple situation
of one optically thin cloud in the line of sight. It will produce a narrow emission
line at a wavelength close to 21 cm. If there is a background radio source with a
continuum spectrum, we also expect to see an absorption line at this wavelength.
Let us now consider how we can extract important information about interstellar
hydrogen from the emission and absorption lines.

In the upper level of the 21-cm transition, the spin of the electron and
the proton are parallel, giving a combined spin of 1. It is a standard result of
quantum mechanics that this level should have the statistical weight gu = 3,
whereas the lower state with antiparallel spins should have the statistical weight
gl = 1. For T = 80 K, the difference of energy hν0 between these levels is small
compared to κBT and the exponential factor in (6.57) is close to 1, such that
nu/nl = 3. If nH is the number density of hydrogen atoms, then

nu = 3

4
nH, nl = 1

4
nH (6.62)

are the number densities of hydrogen atoms in the upper and lower levels. For an
optically thin source, it easily follows from the radiative transfer equation (2.12)



182 Our Galaxy and its interstellar matter

that the specific intensity is given by
∫

jν ds, and the total intensity of emission
in the spectral line is

I =
∫

ds
∫

jν dν.

On substituting from (6.51) and (6.62), this becomes

I = 3

16π
hν0 Aul

∫
nH ds. (6.63)

It is known that Aul = 2.85 × 10−15 s−1 for the 21-cm transition, which means
that an atom in the upper level is expected to make a downward transition once
in 107 yr. It is no wonder that the 21-cm emission is difficult to produce in a
laboratory setup, since a collisional downward transition would be much more
likely. It follows from (6.63) that a measurement of I gives us the value of∫

nH ds, since all the other things are known. If we have an idea of the path
length through the cloud, we get an estimate of nH.

We now consider the absorption line. For an optically thin obstacle, it would
follow from (2.20) that the intensity after passing through the obstacle would be

Iν(τν) = Iν(0)e−τν , (6.64)

where Iν(0) is the intensity of the background source. Hence the depth of the
spectral line depends on the optical depth τν = ∫ αν ds, which we now estimate.
On making use of (6.56) and (6.57), the expression (6.54) for the absorption
coefficient becomes

αν = hν0

c
nl Blu

[
1 − exp

(
− hν0

κBT

)]
φ(�ν). (6.65)

Since hν0 � κBT for the 21-cm line, we get

αν = hν0

c
nl Blu

hν0

κBT
φ(�ν).

Making use of (6.56) and (6.62), this becomes

αν = 3

32π
nH Aul

hc2

ν0κBT
φ(�ν).

Hence the optical depth is given by

τν = 3

32π
Aul

hc2

ν0κB
φ(�ν)

∫
nH

T
ds. (6.66)

It follows from (6.64) that the 21-cm absorption line gives us the integral∫
nH

T
ds

along the line of sight, whereas the 21-cm emission line gives the integral∫
nHds, as we saw in (6.63). By combining the information obtained from the
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emission and the absorption lines, we can estimate the temperature of the neutral
hydrogen gas.

It may be noted that we used the opposite limit hν0 � κBT in §2.7,
where we considered visible light passing through HI regions. In that limit,
the exponential term in (6.65) would be negligible so that we had a different
expression (2.87) for the optical depth. We had used the oscillator strength f
in our discussion in §2.7, whereas we are now using the Einstein coefficients.
These are obviously related quantities (Exercise 6.5).

6.6.2 Warm intercloud medium

Let us now consider what happens to the emission and the absorption lines at
21 cm if the hydrogen gas is warmer. Certainly the line profile φ(�ν) should get
broader due to thermal broadening. However, the total intensity at the emission
line, as given by (6.63) should not change. On the other hand, the absorption line
should become much weaker because the optical depth, as given by (6.66), is
inversely proportional to temperature. Suppose, along our line of sight, we have
both a cold cloud and some warm gas. What kinds of emission and absorption
lines should we get? Since the warm gas would not absorb much because of
its higher temperature, the absorption line will be a narrow line due to the
absorption by the cloud. On the other hand, there will be both narrow-line
emission from the cloud and broad-line emission from the warm gas. Thus the
emission line should look like a narrow line above a broad shoulder. Hence, if
neutral hydrogen gas in two phases with differing temperatures is present along
the line of sight, it is in principle possible to isolate the two phases from a careful
study of the emission and absorption lines at 21 cm.

Figure 6.11 shows the 21-cm emission line from the ISM close to a back-
ground radio source (top) as well as the 21-cm absorption line produced by
the ISM in the spectrum of the background radio source (bottom). A careful
look makes it clear that the emission line has a broader shoulder at the base,
whereas the absorption line is narrow. Thus it appears that the 21-cm emission
and absorption lines actually support the view that interstellar space contains
neutral hydrogen in two distinct phases. We have already discussed the cloud
phase. The space between clouds (as much as 40% of the interstellar space)
appears filled with much warmer neutral hydrogen gas, with a temperature of
about 8000 K and density in the range of 105–106 particles m−3. This is the
second important phase of the ISM with a much lower density compared to the
clouds.

6.6.3 Molecular clouds

The ISM is known to contain varieties of molecules including some reasonably
complex organic molecules. Usually these molecules are found in the cool
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Fig. 6.11 The 21-cm emission line from the ISM close to the background radio source

3C 353 (top panel) and the 21-cm absorption line produced by the ISM in the spectrum

of 3C 353 (bottom panel). From Radhakrishnan et al. (1972). ( c©American Astronomi-

cal Society. Reproduced with permission from Astrophysical Journal.)

dense regions of the ISM. These molecular clouds have densities more than 109

particles m−3 and temperatures in the range 10–30 K. Even though these clouds
occupy less than 1% of interstellar space, they may contribute significantly to
the mass of the ISM (as much as 40%). One important question is how the
complex molecules form in these clouds. The subject of interstellar chemistry
is still in its infancy. Many molecules are supposed to have been synthesized on
the surfaces of dust grains.

Most molecules in the ISM are studied through the molecular radio lines.
The hydrogen molecule H2 is believed to be the most abundant molecule. Since
this molecule does not have any radio lines, its presence is inferred from the
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absorption lines in the UV spectra of background sources. Perhaps the most
extensively studied interstellar molecule is carbon monoxide CO, since it has
very convenient radio lines arising from transitions between various rotational
levels. A standard result of molecular physics is that frequencies in the rotational
spectra should be equally spaced and be multiples of a fundamental frequency
(see Exercise 6.7). The fundamental frequency for CO is 115 GHz, correspond-
ing to a wavelength of 2.6 mm. The next higher frequencies are at 230 GHz,
345 GHz, and so on. The distribution of CO in the Galaxy has been studied
quite extensively and is found to be somewhat different from the distribution of
neutral hydrogen HI. Not much CO is found beyond 10 kpc from the galactic
centre, whereas HI can be found at much greater distances.

A very big surprise was to find that the intensity of some sources in specific
molecular lines (such as OH lines) was abnormally high. If the sources were
assumed to be optically thick in the spectral lines and the specific intensity was
equated to the Planck function Bν(T ), then temperatures as high as 109 K were
inferred! The favoured explanation is that this high intensity is not caused by
abnormally high temperatures, but by maser action. In our discussion of the
two-level atom leading to (6.61), we saw an example in which the upper level
is de-populated compared to what we expect in thermodynamic equilibrium.
In more complex situations involving more levels, the upper level can become
over-populated (see Exercise 6.6). If nu/nl > gu/gl , then it is easy to see from
(6.54) that the absorption coefficient αν should be negative. In such a situation,
a beam of radiation keeps getting stronger while passing through the material
rather than being attenuated.

Molecular clouds, which are often of gigantic size, are of great interest to
astrophysicists as birthplaces of stars. Many molecular clouds are believed to
be contracting slowly under self-gravity and stars would eventually form in the
central regions. Figure 6.12 shows such a molecular cloud from which stellar
‘eggs’ seem to be emerging. We shall discuss more about star formation in §6.8
and in §8.3.

6.6.4 HII regions

A UV photon with wavelength shorter than 912 Å can ionize a hydrogen atom
by knocking off the electron from the ground level n = 1. The O and B stars,
which have high surface temperatures, emit copious amounts of UV photons.
Since these stars are short-lived (see §3.4), they are found in regions where
star formation has recently taken place. We pointed out above that the cores of
molecular clouds collapse to produce stars. Once the stars have been formed, the
UV photons from the O and B stars ionize the ISM around them. Such regions
of ionized hydrogen are called HII regions. The typical temperatures of such
regions are of order 6000 K.
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Fig. 6.12 The molecular cloud in M16, within which new stars are being born. Photo-

graphed with the Hubble Space Telescope. Courtesy: NASA, ESA, Space Telescope

Science Institute, J. Hester and P. Scowen.

The HII regions are often found to be approximately spherical in shape and
are known as Strömgren spheres. It is not difficult to estimate the Strömgren
radius RS of such a sphere (Strömgren, 1939). In a steady state, the number
of ionizations in a unit volume within the Strömgren sphere has to balance the
number of recombinations. Since the recombination rate should be proportional
to the number of protons np and the number of electrons ne, we can write the
number of recombinations in unit volume in unit time as αnpne, where α is the
recombination coefficient. This has to equal the number of ionizations in unit
volume in unit time. Hence the total number of ionizations within the Strömgren
sphere must be (4π/3)R3

Sαnpne. If the central star emits Nγ UV photons per
unit time with wavelength shorter than 912 Å, then we must have

Nγ = 4

3
π R3

Sαnpne. (6.67)
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This is the relation which determines the sizes of Strömgren spheres.
If the recombination process involves a free electron jumping to the ground

level n = 1, then a UV photon would be emitted. However, if the free electron is
first captured in the n = 2 level and then it only makes a transition to the n = 1
level, then we would get two photons, one of which will be within the visible
range. Very often an electron cascades through several energy levels, thereby
emitting many photons. The HII region is one phase of the ISM which can be
studied by the visible light emitted by it. When an electron makes a transition
between two relatively high levels (say from n = 100 to n = 99), a radio photon
is emitted, and even such radio emissions from HII regions have been detected.
Additionally, the hot gas in the HII regions also emits bremsstrahlung (see
§8.12) with a continuous spectrum in the radio range.

Apart from hydrogen emission lines, the HII regions radiate in emission
lines from partially ionized atoms of elements like carbon, nitrogen and oxygen.
Many of these emission lines, lying often in the visible part of the spectrum,
correspond to ‘forbidden’ transitions with very slow transition rates. These lines
are difficult to observe under laboratory conditions where the excited atoms are
more likely to de-excite collisionally rather than by emitting a photon. Under
the low-density conditions of interstellar space where collisions are much rarer,
the excited atoms get a chance to de-excite by emitting a photon, even though
this corresponds to a very slow transition. For any particular spectral line, there
is a critical density beyond which the collisional de-excitation takes over and
the emission line is quenched.

6.6.5 Hot coronal gas

A supernova explosion spews out hot gas in the interstellar space. Many super-
nova remnants are observationally known. It is thought that hot gases from very
old supernovae ultimately fill up the interstellar spaces not occupied by the other
phases (McKee and Ostriker, 1976). The coronal gas may have temperatures
of the order of 106 K, but very low densities of about only 103 particles m−3.
This gas may occupy as much as 50% of the interstellar space, even though it
contributes very little to the mass of the ISM. We shall see in §8.12 that hot
gases emit radiation by the process of bremsstrahlung. The hot coronal gas in
the Galaxy emits soft X-rays, which is the chief diagnostic tool for studying this
phase.

6.7 The galactic magnetic field and cosmic rays

There is a large-scale magnetic field in the interstellar space of our Galaxy.
This was first inferred when Hiltner (1954) was measuring the polarization
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of starlight and found that the light from most stars is slightly polarized. It is
believed that interstellar grains are generally non-spherical and can be aligned
by the galactic magnetic field, making the ISM act like a polarizing medium in
the presence of a magnetic field. It should be mentioned that the alignment
of grains involves some subtle physics and is not exactly analogous to the
alignment of a compass needle by a magnetic field. Here we shall not get into
the physics of grain alignment and light polarization, which was investigated by
Davis and Greenstein (1951). A reader interested in knowing more about this
subject should consult Chapter 8 of Spitzer (1978).

The nature of starlight polarization depends on the direction in which the
star is seen. Figure 6.13 shows light polarizations of stars located in different
galactic coordinates, the lengths of the small line segments indicating the
magnitudes of polarization and their inclinations indicating the directions of
polarization. In the direction of the galactic magnetic field, we do not expect to
see any systematic polarization. This happens approximately in the directions
l ≈ 60◦ and l ≈ 240◦ in Figure 6.13. These longitudes roughly correspond to
the spiral arm in the solar neighbourhood. When we look at right angles with
respect to these directions (i.e. with respect to the magnetic field), we see the
maximum polarization, as expected from common sense. The polarization of
starlight thus establishes that our Galaxy has a magnetic field running along the
spiral arm. However, to estimate the amplitude of the magnetic field, we need a
theory of grain alignment, which involves many uncertainties.

Signals from pulsars (introduced in §5.5) provide a method for estimating
the galactic magnetic field. Not only are pulsars interesting objects by them-
selves, the signal from a pulsar gives us important information about the inter-
stellar medium lying between the pulsar and us. We know that electromagnetic
waves travelling in empty space are non-dispersive. However, we shall see in
§8.13 that the speed of an electromagnetic wave passing through a plasma
varies with the frequency of the wave. Since there are some free electrons in
the interstellar space, the ISM can act like a plasma. Radio waves of lower
frequency travel more slowly through the interstellar plasma. The effect on
much higher-frequency visible light is practically negligible. When we analyse
the pulse received from a pulsar, we find that higher-frequency waves arrive
slightly before lower-frequency waves. The usual interpretation is that the pulsar
emitted waves at all the frequencies simultaneously, but the lower-frequency
waves got delayed while passing through the ISM. The reader is asked at the
end of Chapter 8 Exercise 8.8 to show that the variation of arrival time with
frequency is given by

dTa

dω
= − e2

ε0mec ω3

∫
ne ds, (6.68)

where ne is the electron number density in interstellar space and the integral
is over the path from the pulsar to us. Since ne in the solar neighbourhood is
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around 105 m−3, a knowledge of
∫

ne ds from the time dispersion measurement
can give an estimate of the distance of the pulsar. The signals from pulsars are
also polarized. It can be shown that the magnetic field present in the plasma
can make the plane of polarization rotate, the rotation being more for lower
frequencies. A theoretical derivation of this phenomenon, known as Faraday
rotation, can be found in §12.5 and §12.6 of Choudhuri (1998). The variation
of the plane of polarization with frequency can be shown to be

dθ

dω
= − e3

ε0m2
ec ω3

∫
ne B‖ ds, (6.69)

where B‖ is the component of the magnetic field parallel to the line of sight.
Thus the time dispersion gives the integral

∫
ne ds, whereas the angular dis-

persion gives the integral
∫

ne B‖ ds. An estimate of the magnetic field can be
found from the ratio ∫

ne B‖ ds∫
ne ds

between these two integrals. From the measurements of time dispersions and
angular dispersions of many pulsars, the galactic magnetic field is estimated to
have the value (2–3) × 10−10 T. As we already pointed out, the mean magnetic
field is believed to run along the spiral arm of the Galaxy, although the fluctua-
tions around the mean are probably as large as the mean.

Associated with the galactic magnetic field, there are highly energetic
charged particles spiralling around the field lines. It was discovered by Hess
(1912) that the Earth is continuously bombarded by cosmic rays coming from
above the Earth’s atmosphere. We shall discuss in §8.10 that the energetic
charged particles of the cosmic rays are believed to be accelerated in supernova
blast waves. Then they spiral around the galactic magnetic field and fill up
the Galaxy. It will be shown in §8.11 that relativistically moving charged
particles spiralling around a magnetic field give out a kind of radiation known as
synchrotron radiation. For cosmic rays spiralling around the galactic magnetic
field, the synchrotron spectrum lies mainly in the radio regime. Radio telescopes
have detected synchrotron radiation not only from our Galaxy but also from
other similar galaxies, making it clear that other similar galaxies also have
magnetic fields and cosmic rays.

The energy density B2/2μ0 associated with the galactic magnetic field is
of order 10−14 J m−3. It is found that HI clouds have typical random turbulent
velocities of order 10 km s−1 (just like stars as pointed out in §6.3). One can
easily check that the kinetic energy density ρv2/2 associated with interstellar
turbulence is of the same order as the energy density of the magnetic field.
The energy density associated with cosmic ray particles is also estimated to
be comparable. There thus appears to be a remarkable equipartition of energy
amongst the gas, the magnetic field and the cosmic rays. Where does the galactic
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magnetic field come from and why do we have this remarkable equipartition?
In §8.7 we shall give an introduction to the dynamo theory – a theory which
explains how turbulent motions in a plasma can generate magnetic fields under
certain circumstances. Since the turbulent motions of the interstellar gas are
responsible for the galactic magnetic field and the magnetic field is then respon-
sible for the acceleration and confinement of cosmic rays within the Galaxy,
perhaps an equipartition of the kind we find is not totally surprising. However,
it is difficult to go beyond such hand-waving arguments and give very rigorous
justifications.

6.8 Thermal and dynamical considerations

It should be clear to any reader by now that the ISM is an immensely complex
system. Why does the ISM have several different phases in different regions of
space instead of being a more uniformly spread gas? We, of course, know that
the ISM is continuously disturbed by external sources. Supernova explosions
keep adding more hot coronal gas to the ISM. Newly born O and B stars keep
ionizing portions of the ISM to create HII regions. However, these external
disturbances alone cannot explain why the neutral gas is found in such distinct
phases as HI clouds and the warm intercloud medium. Why don’t we see a more
continuous distribution of densities and temperatures of the neutral gas?

Any phase of the ISM is giving out energy in the form of radiation. In §6.6
we have discussed the kinds of radiation emitted by the different phases. Let �

be the rate at which energy is lost from unit volume in unit time. Often � is
referred to as the cooling function. If the system is to remain in a steady state,
then an equal amount of energy has to be supplied. The energy gained by the
ISM per unit volume per unit time is called the heating function and is denoted
by �. The energy dumped by the supernova explosions into the ISM and the UV
photons from very hot stars absorbed in the ISM certainly make contributions to
the heating function �. Another important contribution comes from cosmic rays.
An energetic charged particle passing through matter can ionize some atoms and
can lose some energy to the surrounding medium in this process. One important
contribution to � comes from the ionization losses of cosmic ray particles.

Certainly

L = � − � = 0 (6.70)

is a necessary condition for the thermal equilibrium of any phase of the ISM.
However, it is not a sufficient condition. It was argued by Field (1965) that such
a thermal equilibrium can exist only if (∂L/∂T ) > 0. Even without a detailed
analysis, we can see how such a condition may arise. Let us think what would
happen if the opposite (∂L/∂T ) < 0 were to hold. Suppose a system is in
equilibrium with L = 0. Some disturbance causes its temperature to decrease
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Fig. 6.14 A schematic sketch of L as a function of T for a system which has two

possible stable equilibrium configurations.

slightly. This will increase L if (∂L/∂T ) < 0 holds. Since L is the net energy
loss rate, an increase in L would mean that the system would start losing energy
at a faster rate, leading to a further decrease in temperature. This causes a
runaway situation and the system goes on becoming colder. Thus, once the
equilibrium is disturbed, the system moves further away from equilibrium.

Suppose L as a function of T looks as sketched in Figure 6.14. Then A
and B are the two possible regions of stable equilibrium where (∂L/∂T ) > 0.
Thus the system can be in stable equilibrium corresponding to the temperatures
at A and B, with the intermediate temperatures ruled out. Field, Goldsmith and
Habing (1969) proposed that the HI clouds and the warm intercloud medium
correspond to the two distinct thermal equilibrium states of the neutral gas.

Apart from the thermal balance, there has to be a force balance also in the
ISM to ensure that no large-scale motions are driven by unbalanced forces. As
we shall see in §8.2, a fluid system like the ISM basically can have two impor-
tant kinds of forces, arising from pressure gradients and gravitational fields
respectively. Let us first consider the pressure gradient forces. A large variation
of pressure within the ISM would lead to gas flows from regions of high pressure
to regions of low pressure. In spite of the very different physical conditions
within the various phases of ISM, their pressures are comparable. This is seen in
Figure 6.15, which plots the temperature T against the particle number density
n. The different phases of the ISM correspond to different regions in this figure.
The pressure nκBT would be constant along the straight lines. The HI clouds
and the intercloud medium are clearly in pressure equilibrium, with the other
phases also having pressures not differing widely.
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Fig. 6.15 Different phases of the ISM indicated in a temperature T versus number

density n plot. The pressure would be constant along the dashed straight lines in this

figure.

We at last come to the balance of gravitational forces. The ISM moves in
circular orbits around the galactic centre such that the centrifugal force balances
the dominant radial component of gravity. In the direction perpendicular to the
galactic plane, the gravitational field is directed towards the mid-plane of the
Galaxy. The hydrostatic equilibrium has to be maintained in this direction.
The pressure of the neutral gas, in conjunction with the pressure of the magnetic
field and cosmic rays, ensures that the ISM occupies a layer of thickness
about 200 pc around the mid-plane of the Galaxy.

For a complicated system like the ISM, considering the force balance alone
is not sufficient to determine the equilibrium. One needs to check if the equi-
librium is stable. We shall show in §8.3 that, if a sufficiently large region of the
ISM becomes over-dense, then the enhanced gravity of that region may cause
the gas of that region to collapse further. This is the celebrated Jeans instability
(Jeans, 1902), which triggers the process of star formation. We believe that the
cores of some molecular clouds are such collapsing regions where stars are
ultimately born. However, the Jeans instability allows us to understand only how
the collapse is initiated. The subsequent progress of the collapse is an extremely
complex process and is still poorly understood. For example, a simple estimate
shows that the mass of a collapsing over-dense region has to be much more than
the masses of individual stars (see §8.3). Obviously the collapsing cloud has to
fragment into individual stars at some stage of the collapse. The distribution of
masses amongst the newly forming stars was studied by Salpeter (1955) from
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observational data. If ξ(M) d M is the number of stars born with masses between
M and M + dM , then the Salpeter initial mass function is

ξ(M) dM ∝ M−2.35 dM. (6.71)

We still do not have a proper theoretical explanation of this initial mass function.
Star formation is one of the important theoretically ill-understood problems

of modern astrophysics. Observationally also this is a process impossible to
study directly, since the dust particles present in a molecular cloud make the
core region inaccessible in visible light. However, as the cloud collapses and
becomes hotter, the dust particles emit in the infrared. The infrared observations
have revealed a very complicated scenario. The cores of the clouds do not
collapse in a spherically symmetric fashion. The angular momentum present
in a typical gas cloud (due to the rotation of the Galaxy) makes the collapsing
core take the shape of a disk. One of the most striking discoveries of infrared
astronomy is that there are often bipolar outflows from the polar regions of these
collapsing disks. The Doppler shifts of molecular lines give the speeds of such
outflows, which can sometimes be as large as 100 km s−1.

Exercises

6.1 We have presented a very elementary discussion of star count analysis in

§6.1.1 by assuming that all stars have the same absolute magnitude M and

there is no absorption in interstellar space. Now assume that a fraction of

stars �(M) dM have absolute magnitudes between M and M + dM , whereas

a(r) is the change in magnitude of a star at a distance r due to absorption.

Suppose A(m) dm is the number of stars within a solid angle ω having apparent

magnitude between m and m + dm. If D(r) is the number density of stars at a

distance r , show that

A(m) = ω

∫ ∞

0
�[m + 5 − 5 log10 r − a(r)] D(r) r2dr.

Show that this expression reduces to the form (6.3) if all stars have the same

absolute magnitude with no absorption and are uniformly distributed.

6.2 The interstellar medium in the galactic disk diminishes the luminosity of

stars by about 1.5 magnitude (i.e. increases the magnitude by 1.5) per kpc.

Show that this implies that the brightnesses of stars fall off with distance r in

the galactic disk as

e−αr

r2
.

Find the value of α.
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6.3 Suppose the gravitational field is falling as r−2 in a region of the Galaxy.

Find the A and B constants, as defined by (6.21) and (6.22), for such a region.

Show that the frequency of the epicyclic motion is going to be equal to the

angular velocity. What is the physical significance of this?

6.4 Make a simplified model of the galactic disk by assuming it to be an

infinite sheet of constant thickness with constant density inside. Show that

a star displaced from the mid-plane of the Galaxy in the vertical direction

undergoes simple harmonic oscillations around the mid-plane (assuming that

the star always remains within the region of constant density). Taking the

density in the mid-plane to correspond to about 5 × 106 hydrogen atoms m−3,

estimate the period of oscillation. How does it compare with the period of

revolution of a star in the solar neighbourhood around the galactic centre?

6.5 Let Blu be the Einstein coefficient for transition from the lower level l of

an atom to its upper level u, separated by energy hν0. The oscillator strength

f for this transition as introduced in §2.7 satisfies

e2

4ε0me
f = hν0 Blu .

Show that this relation makes the discussions in §2.7 and §6.6 consistent with

each other.

6.6 Consider an atom with three levels denoted by 1, 2 and 3 in order of

increasing energy. Suppose no transitions take place between the upper two

levels 2 and 3. Writing balance equations of the type (6.59) and assuming

that the radiation present is not strong enough to make radiative transitions

important, show that

n3

n2
= g3(1 + A21/neγ21)

g2(1 + A31/neγ31)
e−E23/κBT .

Here all the symbols have obvious meanings. It is clear that we shall have

the Boltzmann distribution law when ne is large. Discuss the conditions which

would lead to population inversion. If there is no transition between the upper

two levels, then this population inversion may not give rise to maser action.

But this simple example of a three-level system should give some idea of how

population inversions can arise.

6.7 We have pointed out in §6.6.3 that CO molecules in molecular clouds emit

at frequencies which are integral multiples of 115 GHz. If I is the moment of
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inertia of the molecule around an axis perpendicular to the axis of the molecule,

then show that the energy levels of the molecule are given by

E J = �
2

2I
J (J + 1),

where J can have integral values. If the selection rule �J = −1 has to be

obeyed for emission, then show that the emission spectrum should be as seen.

Make an estimate of the distance between the carbon and the oxygen atoms in

the molecule.
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Elements of stellar dynamics

7.1 Introduction

Since gravity is a long-range attractive force, any star in a galaxy attracts all the
other stars in the galaxy all the time. For simplicity, we can regard the stars as
point particles. Then a galaxy or a star cluster can be regarded as a collection of
particles in which all the particles are attracting each other through an inverse
square law of force. The aim of stellar dynamics is to study the dynamics of such
a system of self-gravitating particles. We, of course, know that there is also gas
between the stars in a galaxy, which can add extra complications. However, it
is generally believed that stellar dynamics holds the key to understanding the
structure of galaxies or star clusters.

We have discussed our Galaxy in Chapter 6 and shall discuss external
galaxies in Chapter 9. Although some galaxies are irregular in appearance, we
shall see in §9.2 that most galaxies have very regular shapes. The fundamental
question of stellar dynamics is: why do collections of self-gravitating mass
particles tend to take certain particular configurations in preference to many
other possible configurations? A fully satisfactory answer to this question is still
not known. Hence the subject of galactic structure is on a much less firm footing
compared to the subject of stellar structure. We know that the gravitational
attraction of the stars has to be balanced by their motions, to ensure that the
stars do not all fall towards the centre of the stellar system together due to their
mutual gravitational attraction. The considerations involved here are analogous
to the considerations of why the gas particles in an atmosphere do not all settle
at the bottom, even though they are pulled by gravity downwards. It is basically
the random motions of the gas particles which prevent this from happening.
We shall see in §7.2 that the motions (they need not necessarily be random) of
stars can ‘balance’ the gravity in such a way that the system remains in a steady
state. We shall obtain a relation connecting the total kinetic energy with the
total gravitational energy. However, going beyond this to calculate the detailed
structure of a galaxy or a star cluster is not easy.

197
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If the mass and the chemical composition of a star are given, we saw in
Chapter 3 how the structure of the star can be theoretically calculated. We do
not have to know the details of the initial conditions, such as the nature of the
gas cloud from which the star formed. In the case of a galaxy, is it even in
principle possible to calculate its structure from a knowledge of, say, the mass
distribution of the stars which make up the galaxy and the total kinetic energy?
Or do the details of the initial conditions in the formation stage of the galaxy
determine what the galaxy is going to be like?

Let us consider the particles of a gas in a container. We know that the
velocity distribution of the particles would obey a universal law: the Maxwellian
velocity distribution given in (2.27). It can be shown from the principles of
statistical mechanics that this distribution corresponds to a configuration of
maximum probability. That is why the gas is likely to be found in this config-
uration. Suppose we do something to make the velocity distribution of the gas
very different from a Maxwellian. If the gas is again left to itself, the velocity
distribution will relax to a Maxwellian after a few collisions. In a typical system
of stars, the probability of an actual physical collision between two stars is
very low. A star usually moves in a smooth gravitational field produced by all
the stars around it. However, when two stars come sufficiently close to each
other, their trajectories are deflected by mutual gravitational interaction. In a
stellar system, such encounters between stars play the role of collisions and
tend to relax the velocity distribution of the stars. We shall discuss in §7.3
how the collisional relaxation time in a stellar system can be estimated. Simple
estimates show that the relaxation time of a typical galaxy is much longer than
the age of the Universe and galaxies must be unrelaxed system. On the other
hand, the relaxation time of globular clusters is less and they are expected to
be systems in which collisional relaxation is important. The subject of stellar
dynamics is usually divided into two parts. Collisional stellar dynamics deals
with stellar systems in which collisional relaxation has been important, whereas
collisionless stellar dynamics deals with stellar systems in which we can ignore
collisions.

One may naively expect that collisional relaxation would lead to an equilib-
rium configuration with the stars obeying the Maxwellian distribution. We shall
show in §7.4 that this naive expectation leads to inconsistencies, since self-
gravity is not compatible with thermodynamic equilibrium. Hence collisional
stellar dynamics is a much more complex subject than what one may expect.
Other than showing that a simple thermodynamic equilibrium is not possible,
we shall not be able to go into the details of this subject. An elementary
introduction to collisionless stellar dynamics will be presented in §7.5 and
§7.6. Although we cannot calculate the detailed structures of collisionless stellar
systems from first principles, we shall see that various aspects of stellar motions
in galaxies are inter-related and can be understood from a stellar dynamical
analysis.
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It should be emphasized that the aim of this chapter is only to give the read-
ers a feeling of what the subject of stellar dynamics is like. For a full treatment
of stellar dynamics, which is beyond the scope of this elementary book, the
readers should consult books like Binney and Tremaine (1987). Even topics of
considerable astrophysical interest are left out because their stellar dynamical
analysis involves rather advanced theoretical techniques. An example of such
a topic is the theory of spiral structures in galaxies. We shall see in §9.2 that
many galaxies have spiral structures. The most successful effort in explaining
the spiral structures theoretically is the density wave theory of Lin and Shu
(1964), which we shall not be able to discuss because of its complexity. For an
excellent non-technical account of the subject, the readers are urged to look up
Shu (1982, pp. 275–281).

7.2 Virial theorem in stellar dynamics

Since the inward pull of gravity inside a star is balanced by thermal energy, we
saw in §3.2.2 that there is a relation between the gravitational potential energy
and the total thermal energy, as given by (3.10), which is known as the virial
theorem. We now consider a collection of particles attracting each other through
gravity. If this collection is in a steady state (i.e. if its overall size is neither
increasing nor decreasing), then it is the motions of the particles in the collection
which must balance the inward gravitational pull. We thus expect a relation
between the total gravitational potential energy and the total kinetic energy of
the system, which must be analogous to (3.10). We now derive such a relation,
which is valid for both collisionally relaxed and unrelaxed systems.

Let the position and the velocity of the i-th particle at an instant of time be
xi and vi respectively. The momentum of the particle is pi = mi vi . We have

d

dt
(pi .xi ) = dpi

dt
.xi + pi .

dxi

dt
= Fi .xi + 2Ti , (7.1)

where Fi is the force acting on the i-th particle and Ti is its kinetic energy. We
now integrate (7.1) over a sufficiently long time τ and divide all the terms by τ .
This gives

1

τ
δ(pi .xi ) = Fi .xi + 2Ti , (7.2)

where the overline indicates averaging over this time interval τ , while δ(pi .xi )

is the difference between the values of pi .xi at the beginning and the end of
the interval. We can write an equation like (7.2) for each of the particles in the
collection. On summing them up, we have

1

τ
δ

(∑
i

pi .xi

)
=
∑

i

Fi .xi + 2T , (7.3)
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where T =∑i Ti is the total kinetic energy of the system. For a system with
size not changing in time, we do not expect the value of

∑
i pi .xi to change with

time. Hence the left-hand side of (7.3) must be zero, leading to∑
i

Fi .xi + 2T = 0. (7.4)

Now the force on the i-th particle due to all the other particles is

Fi =
∑
j �=i

Gmi
mj

|x j − xi |3 (x j − xi )

so that ∑
i

Fi .xi =
∑

i

∑
j �=i

Gmi mj

|x j − xi |3 (x j − xi ).xi . (7.5)

It is to be noted that the double summation on the right-hand side implies a
summation over all possible pairs of particles. For a particular pair of particles
i and j , it is obvious that the summation will have two terms

Gmi mj

|x j − xi |3 [(x j − xi ).xi + (xi − x j ).x j ] = − Gmi mj

|x j − xi | .

Then, from (7.4) and (7.5), we have

2T −
∑

all pairs

Gmi mj

|x j − xi | = 0. (7.6)

We can write this equation as

2T + V = 0, (7.7)

where

V = −
∑

all pairs

Gmi mj

|x j − xi | (7.8)

is the total gravitational potential energy. The virial theorem for stellar dynam-
ics, as given by (7.7), has the same form as the virial theorem (3.10) for stellar
structure. We have the thermal energy instead of the kinetic energy in the virial
theorem for stellar structure. However, since the thermal energy is nothing but
the kinetic energy of the gas particles in the stellar interior, the basic physics
is the same in both the cases.

Suppose we have a cluster of N stars each having mass m. There are
N (N − 1)/2 ≈ N 2/2 pairs in the system and the gravitational potential energy
of a typical pair is

Gm2

〈R〉 ,
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where 〈R〉 is the average distance between the stars in the pair, which must be
of the same order as the radius of the star cluster. Noting that 2T = Nm〈v2〉,
we have from (7.6) that

Nm〈v2〉 ≈ N 2

2

Gm2

〈R〉 ,

from which

〈v2〉 ≈ GM

〈R〉 , (7.9)

where M = Nm is the mass of the star cluster. Astronomers use (7.9) quite
regularly to estimate masses of star clusters. One can estimate the velocity
dispersion 〈v2〉1/2 from Doppler measurements of spectral lines of the stars in
the cluster. If the distance to the cluster is known, then we can get 〈R〉 from the
apparent size of the cluster. The only remaining quantity in (7.9) is the cluster
mass M , which can then be calculated.

Suppose the velocity dispersion in a star cluster of mass M and radius R is
less than what would be expected from (7.9). Then gravity cannot be balanced
by the motions of stars and the cluster has to shrink in size. In this process, the
gravitational potential energy will decrease. This gravitational potential energy
has to go into the kinetic energy of the stars, making the velocity dispersion
larger. Eventually, if the velocity dispersion becomes large enough to satisfy
(7.9), the cluster will stop shrinking in size any further. While applying the
virial theorem (7.9), one should ensure that the system is gravitationally bound
and is virialized. Otherwise, the application of the virial theorem may lead to
erroneous results.

7.3 Collisional relaxation

After establishing the virial theorem which should be valid for any gravitation-
ally bound stellar system in steady state (i.e. which is not growing or shrinking
in size), irrespective of whether the system is collisionally relaxed or not, we
now come to the important question of estimating the collisional relaxation time
of a stellar system.

Let us consider a galaxy or a cluster with stars of mass m. Suppose a star is
moving with speed v. If no other star is very close, then this star will move in
a smooth gravitational field collectively produced by all the stars in the system.
On the other hand, if another star happens to be close by, then the trajectory of
this star may get deflected by the gravitational attraction of the other star, and
we would refer to this as a collision. This statement may appear vague. How
close do the two stars have to be in order for their interaction to be called a
collision? We give a working definition. If the deflection of the trajectory of the
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Fig. 7.1 A sketch of a collision between two stars.

star involves a change in momentum at least as large as the original momentum
of the star, then we would regard it as a collision. Using this working definition,
we now determine the distance b from the trajectory of the star within which
another star has to be in order for their interaction to qualify as a collision.
Figure 7.1 shows a star initially moving in a straight line with speed v. Another
star is at a distance b from the trajectory. If this is a limiting collision, then
the change in momentum of the moving star should be equal to its original
momentum mv. Now, when the two stars are close, the force of gravity between
them is of order Gm2/b2. The two stars are close to each other for an interval of
time of order b/v during which this gravitational force acts. Hence the change
of momentum of the moving star (which should be in a direction perpendicular
to its original momentum) is of order

�p ≈ Gm2

b2

b

v
.

Equating this to mv, the limiting distance b for a collision is given by

b ≈ Gm

v2
. (7.10)

In unit time the moving star sweeps out a volume πb2v within which another
star has to lie for a collision to take place. If n is the number density of stars,
then the number of collisions per unit time is given by πb2vn. The typical time
between collisions is the inverse of this. Since this collision time is the time in
which the memory of any initial velocity distribution is effectively erased, we
call it the relaxation time Trel. This is given by

Trel ≈ (πb2vn)−1 ≈ v3

πnG2m2
(7.11)

on substituting for b from (7.10). If v is in km s−1 and n is the number per pc3,
then this becomes

Trel ≈ 1010 v3

n
yr (7.12)

if we take m ≈ M�. A more rigorous treatment of collisional relaxation would
involve an integration over the effects of stars at different distances. See pp.
187–190 of Binney and Tremaine (1987) for a rigorous treatment. The simple
estimate given above gives the correct order of magnitude of the relaxation
time Trel.
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Table 7.1 Relaxation times for different stellar systems.

v (in km s−1) n (in pc−3) Trel (in yr)

Galaxy 100 0.1 1017

Open cluster 0.5 1 109

Globular cluster 10 103 1010

Table 7.1 gives the typical stellar velocity v, stellar number density n and
collisional relaxation time Trel (calculated by using (7.12)) for different stellar
systems. The age of the Universe is of order 1010 yr. It is clear that a galaxy
would not have sufficient time for collisional relaxation. On the other hand, a
cluster of stars may at least be partially relaxed.

Since the collisional relaxation time in a galaxy is so enormous, one
may tend to think that the stellar velocity distribution in a galaxy would be
completely unrelaxed and would have the signature of some initial primordial
velocity distribution. This is not entirely correct. We saw in §6.3.3 that there is
an ellipsoidal distribution of velocity amongst stars in our neighbourhood. If a
galaxy forms by contracting from a larger volume, then the gravitational field at
a point inside the galaxy will keep changing drastically during the contraction
time. It can be shown that a rapidly changing gravitational field has some effects
analogous to the effects of collision (Lynden-Bell, 1967). This is called violent
relaxation.

We end this discussion of collisional relaxation by pointing out an interest-
ing relation. A star moving with speed v inside a stellar system of size R takes
time of order R/v to cross the system. Hence

Trel

Tcross
≈ v4

πnG2m2 R
(7.13)

on substituting from (7.11). If the system is in virial equilibrium, then v2 should
be equal to GNm/R by (7.9), where N is the total number of stars in the system.
Then from (7.13) we have

Trel

Tcross
≈ (GNm/R)2

πnG2m2 R
≈ N 2

πnR3
≈ N , (7.14)

since N ≈ πn R3. Hence, if a stellar system of N stars is in virial equilibrium,
then the collisional relaxation time is N times the crossing time for a typical
star in the system.



204 Elements of stellar dynamics

7.4 Incompatibility of thermodynamic equilibrium
and self-gravity

If a stellar system has lasted for enough time for collisional relaxation to take
place, what should it relax to? This is a question much more difficult to answer
than what would appear at the first sight. We know the answer to the similar
question for a gas in a container. No matter what initial velocity distribution
we create for the gas particles, collisions would make the velocity distribution
relax to a Maxwellian, which is the distribution appropriate for thermodynamic
equilibrium of the system. We may naively expect a similar thermodynamic
equilibrium to be established in the relaxed stellar system. Suppose we consider
a stellar system made of stars of the same mass, which we take as the unit of
mass. The energy of a star at position x moving with velocity v is given by

E(x, v) = 1

2
v2 + �(x), (7.15)

where �(x) is the gravitational potential at the point x. In thermodynamic
equilibrium, we would expect the distribution function for the stars to be

f (x, v) = Ae−βE(x,v) = Ae−β[ 1
2 v2 + �(x)], (7.16)

where A is a normalization constant and we use the standard convention that
f (x, v) d3x d3v is the number of stars within volume d3x having the ends of
their velocity vectors lying within the volume d3v in the velocity space. If we
consider a region of the Earth’s atmosphere over which temperature does not
vary much, then we would find air molecules to obey a distribution function
like (7.16), where �(x) would be the potential due to the Earth’s gravitational
field. In a stellar system, however, we have an additional requirement of self-
consistency that the gravitational potential has to be due to stars in the stellar
system itself. We shall now show that, if we demand self-consistency, then the
distribution function (7.16) would lead to absurd conclusions.

Let us begin by explaining the meaning of self-consistency a little bit
more. Suppose we have a distribution function like (7.16) depending on the
gravitational potential �(x) and we are somehow able to guess or know the
gravitational potential �(x). Then we know the spatial dependence of the dis-
tribution function from (7.16) and can find out the density of stars in various
regions of space. On using Poisson’s equation for gravitation, a knowledge of
density would lead to a determination of gravitational potential �(x). If this
�(x) turns out to be the same �(x) we began with and used in the distribution
function while calculating density, then our solution is self-consistent.

We now try to impose this condition of self-consistency mathematically on
the distribution function (7.16). The density at the position x is given by

ρ(x) =
∫

f (x, v) d3v = C

4πG
e−β�(x) (7.17)
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on using (7.16) and writing∫ ∞

0
Ae−βv2/2 4πv2 dv = C

4πG
.

On substituting (7.17) in Poisson’s equation

∇2� = 4πGρ,

we get

∇2� = Ce−β�. (7.18)

Self-consistency essentially requires that �(x) should satisfy (7.18). If we are
able to solve (7.18) to obtain �(x) and use that in the distribution function
(7.16), then everything will turn out to be consistent.

For simplicity, let us assume the stellar system to be spherically symmetric
and try to solve (7.18) in that situation. Then �(x) becomes a function of r
only and we need to keep only the radial derivatives in the expression of the
Laplacian. In this situation, (7.18) reduces to

1

r2

d

dr

(
r2 d�

dr

)
= Ce−β�(r). (7.19)

It follows from (7.17) that

�(r) = − 1

β
ln

4πGρ(r)

C
.

Substituting this in (7.19), we get an equation for ρ(r) as follows

1

r2

d

dr

(
r2 d

dr
ln ρ

)
= −4πGβρ. (7.20)

This equation has to be solved with the boundary condition that there should be
no cusp at the origin, i.e.

dρ

dr
= 0 at r = 0.

Instead of trying to find the full solution of (7.20) (which is not difficult to do
numerically), let us figure out the asymptotic form of the solution for large r .
Let us see if a solution of the form

ρ(r → ∞) = ρ0

rb

works at large r . On substituting this in (7.19), we get

− b

r2
= −4πGβ

ρ0

rb
.
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This can be satisfied only if b = 2, leading to the conclusion that density has to
fall off as

ρ(r → ∞) ∝ 1

r2

to meet the requirement of self-consistency. It is trivial to show that the total
mass would diverge to infinity for such a density distribution. Thus, if we begin
with the thermodynamic distribution (7.16), the requirement of self-consistency
forces us to the absurd conclusion that the total mass of the system has to be
infinite! A stellar system of finite mass (i.e. finite number of stars) cannot relax
to the thermodynamic distribution given by (7.16).

It is possible to construct well-behaved self-consistent solutions of spheri-
cally symmetric stellar systems if the distribution function f (x, v) is assumed
to depend on energy E(x, v) in certain particular ways, i.e. different from
the exponential dependence assumed in (7.16). The reader may look up §4.4
of Binney and Tremaine (1987) for some such solutions. Such solutions are
of great mathematical interest as examples of self-consistent solutions for
stellar systems. However, there is no physical reason why the distribution
function should have the form necessary for obtaining these self-consistent
solutions. The fact that the distribution function corresponding to thermo-
dynamic equilibrium leads to unphysical results merely shows that thermo-
dynamic equilibrium is not possible for a self-gravitating system (i.e. a system
in which the gravitational attraction of one part on another is important). If
the stellar system does not have an end state of thermodynamic equilibrium,
what then is the outcome of collisional relaxation in a stellar system? Pre-
sumably such systems keep on evolving, usually leading to the formation
of black holes in the central regions. Many galaxies and star clusters are
indeed believed to have black holes in their centres. Chapter 8 of Binney and
Tremaine (1987) gives an introduction to the collisional evolution of stellar
systems.

Although a detailed discussion of the collisional evolution of stellar systems
is beyond the scope of the present book, we point out one important effect. For
stars to fall into the deep potential well at the centre of the stellar system, it
is necessary for them to lose some kinetic energy through a frictional process.
Since stars do not physically collide with each other, it may seem at the first
sight that there is no friction in the system. However, Chandrasekhar (1943)
derived the famous result that a star moving through a stellar system should
encounter a drag opposing its motion, giving rise to a frictional term in the
evolution equation. Let us qualitatively explain why this should be so. Suppose
a star has moved from point P to point Q as shown in Figure 7.2. While passing
from P to Q, the star attracted the surrounding stars towards itself. Hence we
expect the number density of stars around PQ to be slightly larger than that
ahead of Q. The star at Q, therefore, experiences a net gravitational attraction
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Fig. 7.2 The illustration of dynamical fric-

tion. A star has moved from P to Q creating

a region of enhanced density of surrounding

stars behind it.

in the backward direction (i.e. in the direction of QP). This important effect is
known as dynamical friction.

7.5 Boltzmann equation for collisionless systems

After discussing the difficulty of obtaining realistic solutions of collisional
stellar systems, let us now look at collisionless stellar systems. Since different
initial conditions may produce different types of collisionless stellar systems,
we would not expect to obtain unique models of such systems from basic
principles alone. Since the probability of two stars coming sufficiently close
to each other (such that their trajectories are appreciably deflected) would be
fairly low in a collisionless system, a typical star would move in the smooth
gravitational field produced by all the other stars in the system collectively. As
all stars move in this way, the distribution function of stars f (x, v) may change
with time. We now derive the equation which describes how the distribution
function would change with time. This equation, known as the collisionless
Boltzmann equation, is a special form of an equation first derived by Boltzmann
(1872) while studying the dynamics of gas particles and is the fundamental
equation in collisionless stellar dynamics.

Let us consider the six-dimensional phase space made up of three compo-
nents of the position vector x and three components of the velocity vector v.
All stars are assumed to be identical particles with the same mass. A star at
position x with velocity v is represented by a point in this phase space. Hence
a stellar system of N stars would correspond to N points in this phase space.
The distribution function f (x, v) is nothing but the density of points at (x, v) in
this phase space. As the position and the velocity of a star change with time, the
point in the phase space corresponding to this star will trace out a trajectory in
the phase space. Since all the points in the phase space keep moving, the density
of points f (x, v) may in general be expected to change in time. One can prove a
very important result known as Liouville’s theorem if the particles in the system
obey Hamiltonian dynamics, i.e. if the dynamics of the particles can be obtained
from a Hamiltonian of the form H(x, v). Liouville’s theorem is a fundamental
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result in statistical mechanics and is proved in many standard textbooks (see,
for example, Landau and Lifshitz, 1980, §3; Pathria, 1996, §2.2; Choudhuri,
1998, §1.4). We therefore quote it without proof. Let us consider the trajectory
of a point in the phase space. If we keep on considering the distribution function
f (x, v) along the trajectory as the trajectory is being traced out in time, then we
would find that the distribution function does not change (provided, of course,
the dynamics is Hamiltonian). Mathematically it can be represented as

df

dt
= 0, (7.21)

where d/dt represents the time derivative as we move along the trajectory.
A point in the phase space located at (x, v) at time t will get shifted to

(x + ẋ δt, v + v̇ δt) at time t + δt , as the point moves along the trajectory.
Hence

d f

dt
= lim

δt→0

f (x + ẋ δt, v + v̇ δt, t + δt) − f (x, v, t)

δt
. (7.22)

Expansion in a Taylor series to linear terms in δt gives

f (x + ẋ δt, v + v̇ δt, t + δt) = f (x, v, t)

+
∑

i

δt ẋi
∂ f

∂xi
+
∑

i

δt v̇i
∂ f

∂vi
+ δt

∂ f

∂t
.

Substituting the above expression in (7.22), we have

d f

dt
= ∂ f

∂t
+
∑

i

ẋi
∂ f

∂xi
+
∑

i

v̇i
∂ f

∂vi
.

It thus follows from (7.21) that

∂ f

∂t
+
∑

i

ẋi
∂ f

∂xi
+
∑

i

v̇i
∂ f

∂vi
= 0, (7.23)

which is the collisionless Boltzmann equation. As we already pointed out, this
equation holds only if the dynamics in the phase space can be obtained from
a Hamiltonian of the form H(x, v). This is the case if all the stars move in a
smooth gravitational field. However, if two stars collide, then the gravitational
potential will have to be a function of the positions of both the stars and a
Hamiltonian of the form H(x, v) will not be able to describe the collision. Thus
(7.23) is valid only in the absence of collisions. When collisions are important,
the right-hand side of (7.23) ceases to be zero (see, for example, Choudhuri,
1998, §2.2).

While considering a stellar system, it is often convenient to use cylindrical
coordinates (r, θ, z) instead of Cartesian coordinates. Writing the components
of velocity in cylindrical coordinates as � = ṙ , � = r θ̇ , Z = Ż , it is easily seen
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that the collisionless Boltzmann equation takes the form

∂ f

∂t
+ �

∂ f

∂r
+ �

r

∂ f

∂θ
+ Z

∂ f

∂z
+ �̇

∂ f

∂�
+ �̇

∂ f

∂�
+ Ż

∂ f

∂ Z
= 0. (7.24)

If we take the mass of particles to be equal to unity, then the Lagrangian of a
particle (or a star) is given by

L = 1

2
(ṙ2 + r2θ̇2 + ż2) − �(r, θ, z).

On substituting this in Lagrange’s equation (see, for example, Goldstein, 1980),
the three components of the equation of motion are found to be

r̈ − r θ̇2 = −∂�

∂r
,

d

dt
(r2θ̇ ) = −∂�

∂θ
,

z̈ = −∂�

∂z
.

These three equations can be written as

�̇ = �2

r
− ∂�

∂r
,

�� + r�̇ = −∂�

∂θ
,

Ż = −∂�

∂z
.

On making use of these equations, (7.24) can be written as

∂ f

∂t
+ �

∂ f

∂r
+ �

r

∂ f

∂θ
+ Z

∂ f

∂z
+
(

�2

r
− ∂�

∂r

)
∂ f

∂�

−
(

��

r
+ 1

r

∂�

∂θ

)
∂ f

∂�
− ∂�

∂z

∂ f

∂ Z
= 0, (7.25)

which is the form of the collisionless Boltzmann equation used extensively in
stellar dynamics.

If we are somehow able to determine the complete distribution function
f (r, θ, z, �, �, Z , t), then we would have full information about the dynamics
of the stellar system. As we would not expect to determine the dynamics of
an unrelaxed system without a knowledge of the initial conditions, it should
be clear that we cannot obtain a full solution of the distribution function on
the basis of (7.25) alone. What information does (7.25) provide then? It is the
same equation as (7.21), which tells us that the distribution function should
not change along a trajectory in phase space. Suppose I1, I2, . . . are some
constants of motion which do change along a trajectory. If the distribution
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function is a function of these constants of motion alone, i.e. if we can write
it as f (I1, I2, . . .), then it can be easily shown that this distribution function
should satisfy (7.21). For an axisymmetric stellar system, the total energy E and
the angular momentum component Lz should be constants of motion. Hence a
distribution function of the form f (E, Lz) should satisfy (7.25). The early years
of stellar dynamics research were marked by a search for a third integral of
motion. If the gravitational potential � is provided by the stars themselves, then
we have to impose the condition of self-consistency as we saw in §7.4. Any
arbitrary function of E and Lz that satisfies the self-consistency requirement
is an admissible solution of the collisionless Boltzmann equation (7.25). This
equation, therefore, does not give us a unique solution in a particular situation.

7.6 Jeans equations and their applications

Although the collisionless Boltzmann equation (7.25) alone does not provide
a complete solution to the dynamics of a stellar system, we shall now show
that this equation can be used to derive several important conclusions regarding
stellar motions in our Galaxy.

We consider a galaxy which is axisymmetric and is in a steady state. Then
the derivatives with respect to θ and t can be set to zero, so that (7.25) becomes

�
∂ f

∂r
+ Z

∂ f

∂z
+
(

�2

r
− ∂�

∂r

)
∂ f

∂�
− ��

r

∂ f

∂�
− ∂�

∂z

∂ f

∂ Z
= 0. (7.26)

Let us consider some dynamical variable q(r, θ, z, �, �, Z), which would have
a particular value at each point of the phase space. The energy as given by
(7.15) is an example of such a dynamical variable. Now think of all stars in a
unit volume of physical space. These stars would have different velocities and
would in general have different values of q . The average value of q for stars in
this unit volume, indicated by 〈q〉, would be given by

n〈q〉 =
∫∫∫

q f d� d� d Z , (7.27)

where we carry out the integration over all possible velocities and n is the
number density given by

n =
∫∫∫

f d� d� d Z . (7.28)

We now derive a very useful equation by multiplying (7.26) by � and then
integrating over all velocities. Since integration over velocities commutes with
differentiation with respect to r or z, the first two terms give

∂

∂r
(n〈�2〉) + ∂

∂z
(n〈�Z〉),
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where the averages 〈�2〉 and 〈�Z〉 are defined through (7.27). The third term
gives ∫∫ (

�2

r
− ∂�

∂r

)
d� dZ

∫
�

∂ f

∂�
d� = −n

r
〈�2〉 + n

∂�

∂r

on noting that ∫
�

∂ f

∂�
d� = � f |+∞−∞ −

∫
f d� = −

∫
f d�.

The next (fourth) term gives

−
∫∫

�2

r
d� d Z

∫
�

∂ f

∂�
d� = n

〈�2〉
r

in exactly the same way. Combining all these together and noting that the
contribution of the last term in (7.26) would be zero, we obtain

∂

∂r
(n〈�2〉) + ∂

∂z
(n〈�Z〉) − n

r

[
〈�2〉 − 〈�2〉

]
= −n

∂�

∂r
. (7.29)

Let us now multiply (7.26) by Z and integrate over all velocities. By proceeding
in exactly the same way, we obtain the following equation

∂

∂r
(n〈�Z〉) + ∂

∂z
(n〈Z2〉) + n〈�Z〉

r
= −n

∂�

∂z
. (7.30)

As we shall show below, equations (7.29) and (7.30) are of great help in
analysing stellar motions near the solar neighbourhood. These equations are
known as the Jeans equations, after Jeans (1922) who first obtained them.

The quantity 〈�Z〉 appears in both the Jeans equations (7.29) and (7.30).
Let us discuss how one can evaluate it. We pointed out in §6.3.3 that velocities of
stars in the solar neighbourhood have an ellipsoidal distribution. Let us consider
a point P away from the central plane of the Galaxy, as shown in Figure 7.3.
We expect the velocity ellipsoid at this point to have its major axis elongated
towards the galactic centre. Then the velocity distribution should be elliptical in
�′ and Z ′, the components of velocity along the major and minor axes of the
ellipsoid at P , i.e.

f (�′, Z ′) = C exp

(
−�′2

σ 2
�′

− Z ′2

σ 2
Z ′

)
. (7.31)

If the velocity ellipsoid at P is inclined to the galactic plane by an angle α, then

� = �′ cos α − Z ′ sin α

and
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Fig. 7.3 A sketch showing the velocity ellipsoid at a point P away from the mid-plane

of our Galaxy.

Z = Z ′ cos α + �′ sin α

so that

�Z = (�′2 − Z ′2) sin α cos α + �′Z ′(cos2 α − sin2 α). (7.32)

We now have to take the average of this as defined by (7.27). It is trivial to see
that 〈�′Z ′〉 = 0 if the distribution function is given by (7.31). Keeping in mind
that sin α ≈ z/r and cos α ≈ 1 for small α, (7.32) gives

〈�Z〉 ≈ z

r

[
〈�′2〉 − 〈Z ′2〉

]
.

If α is small, then 〈�′2〉 ≈ 〈�2〉 and 〈Z ′2〉 ≈ 〈Z2〉 so that

〈�Z〉 ≈ z

r

[
〈�2〉 − 〈Z2〉

]
. (7.33)

We now consider some applications of the Jeans equations to make sense of
the observational data of stellar motions in the solar neighbourhood.

7.6.1 Oort limit

The distance of the solar neighbourhood from the galactic centre is much
larger than the thickness of the Galaxy, so that a vertical gradient in the solar
neighbourhood should be much stronger than a radial gradient. It should be easy
to see that the vertical gradient term on the left-hand side of (7.30) should be
the dominant term so that (7.30) would reduce to

d

dz

(
n〈Z2〉
)

= ngz, (7.34)

where gz = −∂�/∂z is the vertical gravitational field.
Oort (1932) used (7.34) to find the average matter density near the solar

neighbourhood of our Galaxy. Even if there is some matter in the solar neigh-
bourhood which does not emit light and is not detected in direct observations, it
will produce a gravitational field and hence will affect the motions of visible
stars. Therefore, by analysing the motions of visible stars, it is possible to
estimate the total amount of matter in the solar neighbourhood. If the number
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density n and vertical velocity dispersion 〈Z2〉 for a particular type of stars
are known at different distances from the galactic plane, then it is possible to
calculate gz with the help of (7.34). K giants are very bright stars which can be
observed to sufficiently large distances from the galactic plane and for which
sufficiently good data existed in Oort’s time about their number density and
line-of-sight velocity at different heights from the galactic plane. Oort (1932)
used the statistics of K giant stars to obtain the gravitational field at different
heights from the galactic plane. Once gz is obtained as a function of z, one can
calculate the matter density producing this gravitational field from the Poisson
equation for gravity, ∇.g = −4πGρmatter, which here becomes

dgz

dz
= −4 πGρmatter. (7.35)

When the total matter density in the solar neighbourhood is estimated in this
fashion, it turns out to be around

ρmatter ≈ 10 × 10−21 kg m−3. (7.36)

On the other hand, if we calculate the density by estimating the amount of matter
in the visible stars, then we find

ρstar ≈ 4 × 10−21 kg m−3. (7.37)

Thus there must be unseen matter present in the solar neighbourhood in addition
to the visible stars. This was a very important conclusion in 1932 when not
much was known about the interstellar matter. This analysis also provides an
upper limit for the amount of interstellar matter, since its density cannot exceed
(ρmatter − ρstar). This is known as the Oort limit.

7.6.2 Asymmetric drift

Let us consider a group of stars in the solar neighbourhood with an average
value of � given by 〈�〉. For an individual star, the value of � would differ
from this average by an amount ϑ , i.e.

� = 〈�〉 + ϑ. (7.38)

On squaring and averaging this (keeping in mind 〈ϑ〉 = 0), it follows that

〈�2〉 = 〈�〉2 + 〈ϑ2〉. (7.39)

Using the notation of §6.3, we know that, if all the stars in our group had � =
�circ, then they would all move in exactly circular orbits. Our aim now is to find
out the physical effects which may make 〈�〉 different from �circ. We have

〈�〉2 − �2
circ = 2�circ(〈�〉 − �circ) (7.40)
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on writing 〈�〉 + �circ = 2�circ because 〈�〉 is expected to be close to �circ.
Since �circ = (A − B)R0 where A and B are the Oort constants introduced
through (6.21) and (6.22), we have from (7.39) and (7.40) that

2(A − B)R0(〈�〉 − �circ) = 〈�2〉 − �2
circ − 〈ϑ2〉. (7.41)

We now need to adapt (7.29) for our group of stars in the solar neighbour-
hood. Using the fact that

−∂�

∂r
= −�2

circ

r

and substituting for 〈�Z〉 from (7.33), we can rewrite (7.29) in the form

〈�2〉 − �2
circ = r

n

∂

∂r
(n〈�2〉) + r

n

∂

∂z

[
n

z

r
(〈�2〉 − 〈Z2〉)

]
+ 〈�2〉. (7.42)

In the term involving differentiation with respect to z, the main contribution
would come from the variation in z so that we can write that term as

r

n

∂

∂z

[
n

z

r
(〈�2〉 − 〈Z2〉)

]
≈ 〈�2〉 − 〈Z2〉.

From (7.41) and (7.42), we then have

〈�〉 − �circ = 〈�2〉
2R0(A − B)

[
∂ ln n

∂ ln r
+ ∂ ln〈�2〉

∂ ln r

+
(

1 − 〈ϑ2〉
〈�2〉
)

+
(

1 − 〈Z2〉
〈�2〉
)]

. (7.43)

This is an extremely important equation which tells us what would make 〈�〉
for a group of stars to be different from �circ.

Let us try to understand the physical significance of (7.43). First of all, if
there were no random motions in the radial direction, i.e. if 〈�2〉 = 0, then the
right-hand side of (7.43) has to be zero and 〈�〉 has to equal �circ. In other
words, in the absence of random motions, stars have to move in circular orbits
with speed �circ in order to be in a steady state. Only when some amount of
random motion is present in a group of stars, is it possible for the group to go
around the galactic centre with an average speed 〈�〉 different from �circ. Now,
amongst the terms within the square bracket in the right-hand side of (7.43),
the term ∂ ln n/∂ ln r typically turns out to be the dominant term. Since stellar
density n decreases with radius, this term is negative. This implies that 〈�〉 has
to be less than �circ, i.e. a typical group of stars in the solar neighbourhood
would lag behind the LSR (defined in §6.3). If the other terms on the right-hand
side of (7.43) are unimportant compared to ∂ ln n/∂ ln r , it should be evident
from (7.43) that whether a group of stars would lag behind the LSR or not will
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be determined by whether n decreases with radius or not. Why should this be
the case? We have seen in §6.3.1 that stars moving with respect to the LSR
do not actually move ‘randomly’. Rather they follow epicycles. In the solar
neighbourhood, there would be stars with their centres of epicycle lying both
slightly inward (i.e. at r < R0) and slightly outward (i.e. at r > R0). It follows
from conservation of angular momentum that stars having centres of epicycle
inward would have � less than �circ when they are at R0, whereas stars having
centres of epicycle outward would have � more than �circ. Since n decreases
with r , the number of stars coming from the inward side is larger. Since these
stars lag behind the LSR when they are at R0, it is expected that 〈�〉 averaged
over all stars would be less than �circ.

On the basis of (7.43), we expect an approximate relation

(�circ − 〈�〉) = α〈�2〉, (7.44)

where α is a constant of proportionality. To determine whether such a relation
actually exists, we need to study the kinematics of stars in the solar neighbour-
hood belonging to different spectral classes. It is found that stars with larger
B − V (i.e. stars which are more reddish in colour) have larger dispersions
〈�2〉. Their average velocities 〈v〉 in the negative θ direction with respect to
the Sun (i.e. �� − 〈�〉) are also observationally found to increase with B − V .
We expect from (7.44) that

〈v〉 = �� − 〈�〉 = �� − �circ + α〈�2〉. (7.45)

This relation was first found empirically by Strömberg (1924). Figure 7.4
is a modern plot of 〈v〉 against 〈�2〉 for stars of different spectral types,
B − V increasing towards the right side of the figure. It is clearly seen that
a linear relation between 〈v〉 and 〈�2〉, as expressed by (7.45), is a rea-
sonable fit to the observational data. From the point where the straight line
cuts the vertical axis, we conclude that �� − �circ has to be close to about
5.2 km s−1. This result was quoted in §6.3.2 without explaining there how it was
obtained.

Stars with higher B − V , which are more reddish and are found to have
larger velocity dispersions, have longer lifetimes (as pointed out in Chapter 3)
and would statistically be older than lower B − V stars. Why do older stars have
larger velocity dispersions? A theoretical explanation was provided by Spitzer
and Schwarzschild (1951). As we have seen, our Galaxy is a collisionless
system and close interactions between stars can be neglected. However, the
gravitational attraction of interstellar gas clouds tends to perturb stellar orbits.
As a star grows older, it is expected to have more interactions with gas clouds, of
which the effects accumulate. This explains why older stars have more velocity
dispersions, as can be seen in Figure 6.7.
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Fig. 7.4 A plot of 〈v〉 (i.e. the average velocity in the negative θ direction with respect

to the Sun) against the velocity dispersion 〈�2〉, for stars of different spectral types

in the solar neighbourhood. From Dehnen and Binney (1998). ( c©Royal Astronomical

Society. Reproduced with permission from Monthly Notices of Royal Astronomical

Society.)

7.7 Stars in the solar neighbourhood belonging
to two subsystems

As we pointed out in §6.2 and §6.4, our Galaxy has two subsystems. Objects in
the first subsystem revolve around the galactic centre in nearly circular orbits,
whereas objects in the second subsystem have very low general rotation and
are principally balanced against gravity by random motions. Most of the stars
in the solar neighbourhood belong to the first subsystem. However, we expect
a few stars belonging to the second subsystem also to be present in the solar
neighbourhood. Oort (1928) carried out a beautiful analysis to establish this
from stellar kinematics. Figure 7.5 is a famous figure taken from Oort (1928),
plotting � and � for stars found in the solar neighbourhood. The dashed
large circle corresponds to

√
�2 + �2 = 365 km s−1, which is presumably the

escape velocity from the Galaxy so that stars with larger velocities are not
found. The Sun is represented by the dot at the centre of a small circle of
which the radius corresponds to 20 km s−1. Stars within this small circle are
not plotted because of uncertainties in selection effects. One clearly sees that
many stars make up an ellipsoidal distribution near the Sun, with the major axis
of the ellipse in the direction of �. This is the Schwarzschild velocity ellipsoid
introduced in §6.3.3. The stars making up this ellipsoid certainly belong to the
first subsystem of the Galaxy. These stars move in nearly circular orbits, with the
small departures from circular orbits giving rise to epicyclic motions responsible
for the ellipsoidal velocity dispersion (see §6.3.3). The majority of these stars lie
within a circle shown in Figure 7.5 of which the radius corresponds to a velocity
of 65 km s−1 with respect to the LSR. Some of the stars having velocities much
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Fig. 7.5 A plot showing the values of � and � for stars in the solar neighbourhood.

From Oort (1928).

larger than 65 km s−1 clearly do not belong to the ellipsoid and should be
members of the second subsystem of our Galaxy, which does not have much
systematic rotation.

Exercises

7.1 Suppose K (x, v) is a constant of motion as a star moves around within a

stellar system (it can be energy or angular momentum). Show that a distribu-

tion function of the form f (K (x, v)) will give a time-independent solution

of the collisionless Boltzmann equation. This result is known as the Jeans

theorem.

7.2 Write down the collisionless Boltzmann equation in the cylindrical coordi-

nates. Without any assumptions (i.e. without assuming axisymmetry or steady

state), integrate over the velocity space and show that

∂n

∂t
+ ∂

∂r
(n〈�〉) + 1

r

∂

∂θ
(n〈�〉) + ∂

∂z
(n〈Z〉) + n〈�〉

r
= 0.
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7.3 Consider the collisionless Boltzmann equation in the Cartesian co-

ordinates

∂ f

∂t
+ vi

∂ f

∂xi
+ Fi

m

∂ f

∂vi
= 0, (1)

where Fi is the force acting on a particle of mass m at the point xi . (Note that

we are using the summation convention that an index like i repeated twice in a

term implies summation over i .) Integrating over the velocity space, show that

∂

∂t
(nm) + ∂

∂xi
(nm〈vi 〉) = 0, (2)

where n is the number density. Now multiply (1) by mvj and integrate over the

velocity space to obtain

∂

∂t
(nm〈vj 〉) + ∂

∂xi
(nm〈vivj 〉) − nFj = 0. (3)

Define the pressure tensor

Pi j = nm〈(vi − 〈vi 〉)(vj − 〈vj 〉)〉 (4)

and show that (3) can be put in the form

nm

(
∂

∂t
〈vj 〉 + 〈vi 〉 ∂

∂xi
〈vj 〉
)

= − ∂ Pji

∂xi
+ nFj . (5)

Do the equations (2) and (5) resemble the basic fluid equations which we shall

discuss in detail in the next chapter?

7.4 Suppose a collection of self-gravitating particles has a distribution func-

tion somewhat different from (7.16), given by

f (x, v) =
{

A[e−βE(x,v) − 1] if E(x, v) < 0,

0 if E(x, v) > 0,

where E(x, v) is given by (7.15), with the gravitational potential �(x) defined

in such a way that it tends to zero at infinity. Find the expression of the density

ρ(r) (note that the expression will involve the error function). Then write

down the equation you will have in the place of (7.19). Solve that equation

numerically for the values −β �(r = 0) = 12, 9, 6, 3. Plot the density ρ(r) to

show that it falls to zero at finite radius, indicating that the total mass is finite,

unlike what happens for the distribution function (7.16). This stellar dynamical

model is known as the King model (King, 1966).
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Elements of plasma astrophysics

8.1 Introduction

A plasma is a gas in which at least some atoms have been broken into positively
charged ions and negatively charged electrons. Most of the matter in the Uni-
verse exists in the plasma state. The gases inside stars are ionized because of
the high temperature, as can be shown easily with the help of the Saha equation
(2.29). We have seen in §6.6.4 that HII regions in the interstellar medium are
fully ionized due to energetic photons from very hot stars. Even the HI regions
are partially ionized, with some free electrons present in them. Our aim in
this chapter is to give an introduction to some dynamical principles as well
as some radiation processes involving plasmas, which are of great relevance to
astrophysics.

The reader may wonder why this introductory chapter on plasma astro-
physics is put exactly in this place of the book. We could, of course, introduce
the subject much earlier. However, since we shall illustrate the dynamical
principles by applications to stars and the interstellar medium, I felt that a
prior acquaintance with these systems will put you in a better position to
appreciate the relevance of plasma processes in astrophysics. There is also some
justification for introducing this subject before a discussion of extragalactic
astronomy. In Chapter 9 we shall discuss some extragalactic systems such as
active galaxies in which plasma processes are extremely important. So it will be
helpful to have some knowledge of plasma astrophysics before we launch into
a study of extragalactic astronomy.

Because of the electrical attraction between opposite charges, the positively
and the negatively charged particles in a plasma remain well mixed. In other
words, if you consider a small volume element of a plasma which has suffi-
ciently large number of charged particles, the positive and negative charges in
that volume would very nearly balance each other. So the volume element would
be nearly charge-neutral. Does it then follow that all the physical properties of
this volume element will be identical with those of a volume element of an

219
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ordinary neutral gas? Certainly not! A neutral gas like the air is generally a
poor conductor of electricity. On the other hand, if you put an electric field
in a plasma, the positively charged ions would move in the direction of the
field and the electrons would move in the opposite direction, giving rise to an
electrical current. In other words, a plasma is an extremely good conductor
of electricity. Currents in a plasma naturally give rise to magnetic fields, and
there are lots of intriguing phenomena connected with magnetic fields. For
example, we have discussed in §6.7 that our Galaxy is filled with cosmic ray
particles, which are charged particles accelerated to very high energies. We
shall see in §8.10 that magnetic fields play the key role in the acceleration
of cosmic ray particles. Such accelerated particles spiralling around magnetic
field lines give rise to a kind of radiation called synchrotron radiation. Since
many astrophysical systems have accelerated charged particles in them and
emit synchrotron radiation, the emission of such radiation (to be discussed in
§8.11) is a very important radiation process in astrophysics. The detection and
analysis of synchrotron radiation is crucial in understanding the nature of many
astrophysical systems.

Although water is made up of molecules, we can study the flow of water at
a macroscopic level by considering water as a continuum governed by a set of
macroscopic equations. In exactly the same way, many (but not all!) phenomena
involving plasmas can be studied by treating the plasma as a continuous fluid
which is a good conductor of electricity. The branch of plasma physics in
which the plasma is treated as a continuum is known as magnetohydrodynamics,
abbreviated as MHD. The first few sections of this chapter will develop the
continuum model. Only when electromagnetic phenomena are present, will a
plasma behave differently from an ordinary neutral fluid. In the absence of
electromagnetic phenomena, the plasma behaves exactly like a neutral fluid,
which is governed by equations simpler than the equations of MHD. We first
develop fluid mechanics appropriate for neutral fluids in §8.2 and §8.3. Then
we discuss MHD in §8.4–8.9. We shall consider several important astrophysical
topics while developing fluid mechanics and plasma physics. Then §8.10 and
§8.11 are devoted to particle acceleration and synchrotron radiation respec-
tively, which require a more microscopic treatment of the plasma. Finally,
the last two sections deal with some other radiation processes important in
astrophysics.

8.2 Basic equations of fluid mechanics

Our aim is to develop a dynamical theory of fluids, with which we can study
how a fluid configuration evolves with time. Any dynamical theory has two
requirements. Firstly, we need some means by which we can mathematically
prescribe the state of the system at any particular instant of time. Secondly, we
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need some equations which will tell us how the state changes with time. Let us
begin with a discussion of how the state of a fluid, treated as a continuum,
can be prescribed mathematically at an instant of time. We know that the
thermodynamic state of a gas in a cylinder can be prescribed with the help
of two thermodynamic parameters, such as density and temperature. Inside a
fluid, the density and temperature would in general vary from point to point.
However, if we consider a small volume of the fluid within which we can
neglect the variations of physical parameters, then the thermodynamic state of
that small volume is given by the density ρ(x, t) and temperature T (x, t) within
that volume. Additionally, if there are motions inside the fluid, then we need
to know the velocity v(x, t) of the volume with respect to some inertial frame.
The state of a neutral fluid at a particular time t is completely prescribed by the
values of ρ(x, t), T (x, t) and v(x, t) at all points inside the fluid at that time t .
For a plasma which is a good conductor of electricity, we need something more
to prescribe the state, as we shall see in §8.4.

To develop a dynamical theory, we have to derive equations which will
describe how the dynamical variables ρ(x, t), T (x, t) and v(x, t) evolve with
time. Let us begin by drawing attention to the two different kinds of time
derivatives: Eulerian and Lagrangian. The Eulerian derivative denoted by ∂/∂t
implies differentiation with respect to time at a fixed point. On the other hand,
one can think of moving with a fluid element with the fluid velocity v and
time-differentiating some quantity associated with this moving fluid element.
This type of time derivative is called Lagrangian and is denoted by d/dt . If x
and x + v δt are the positions of a fluid element at times t and t + δt , then the
Lagrangian time derivative of some quantity Q(x, t) is given by

dQ

dt
= lim

δt→0

Q(x + v δt, t + δt) − Q(x, t)

δt
. (8.1)

Keeping the first-order terms in the Taylor expansion, we have

Q(x + v δt, t + δt) = Q(x, t) + δt
∂Q

∂t
+ δt v.∇Q.

Putting this in (8.1), we have the very useful relation between the Lagrangian
and the Eulerian derivatives:

dQ

dt
= ∂Q

∂t
+ v.∇Q. (8.2)

We now derive the first fluid dynamical equation giving the time derivative
of ρ(x, t). The mass

∫
ρ dV inside a volume can change only due to the motion

of matter across the surface bounding this volume. Since the mass flux across
an element of surface dS is ρv.dS, we must have

∂

∂t

∫
ρ dV = −

∮
ρv.dS,
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where the minus sign implies that a mass flux out of the volume reduces the
mass inside the volume. Transforming the right-hand side of the above equation
by Gauss’s theorem, we have∫ [

∂ρ

∂t
+ ∇.(ρv)

]
dV = 0.

Since this equation must be valid for any arbitrary volume dV , we must have

∂ρ

∂t
+ ∇.(ρv) = 0. (8.3)

This is known as the equation of continuity.
To find the equation of motion for the fluid velocity, we consider a fluid ele-

ment of volume δV . The mass of this fluid element is ρ δV and its acceleration
is given by the Lagrangian derivative (dv/dt). Hence it follows from Newton’s
second law of motion that

ρ δV
dv
dt

= δFbody + δFsurface, (8.4)

where we have split the force acting on the fluid element into two parts: the
body force δFbody and the surface force δFsurface. A body force is something
which acts at all points within the body of a fluid. Gravity is an example of such
a force. It is customary to denote the body force per unit mass as F so that

δFbody = ρ δV F. (8.5)

The surface force on a fluid element is the force acting on it across the surface
bounding the fluid element. Let dS be an element of area on the bounding
surface. If the fluid is at rest, then we know that the force across this element of
area is normal to it and is given by

dFsurface = −P dS, (8.6)

where P is the pressure and we put the minus sign because we want to consider
the force acting on the fluid element inside the bounding surface. We shall
assume that (8.6), which is strictly valid for a fluid at rest, holds even when the
fluid is moving. This is known as the ideal fluid approximation. In reality, how-
ever, when layers of fluid on the two sides of a surface move differently, there is
a tangential stress across the surface. This stress tries to damp out the differential
motion on the two sides of the surface and gives rise to the phenomenon of
viscosity. In our elementary treatment, we shall neglect viscosity and treat the
fluid as ideal. The total surface force acting across the whole bounding surface
is then given by a surface integral

Fsurface = −
∮

P dS.
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The right-hand side can be transformed into the volume integral − ∫ ∇P dV .
For the small volume δV , we can write

δFsurface = −∇P δV . (8.7)

Substituting (8.5) and (8.7) into (8.4), we finally have

ρ
dv
dt

= ρF − ∇P. (8.8)

If we use (8.2) to change from the Lagrangian derivative to the Eulerian deriva-
tive, then we get

∂v
∂t

+ (v.∇)v = − 1

ρ
∇P + F. (8.9)

This is known as the Euler equation (Euler, 1755, 1759). If viscosity is included,
then, in the place of the Euler equation, we have a more complicated equation
known as the Navier–Stokes equation, which will not be discussed in this book.

To complete our discussion of basic equations, we need an energy equation,
which may tell us how the temperature evolves with time. Instead of getting into
a general discussion, we shall consider here only the case of a perfect gas under
adiabatic conditions, i.e. we shall neglect heat conduction between an element
of the gas and its surroundings. If an element of the gas moves under adiabatic
conditions, a well-known perfect gas relation implies that P/ργ will remain
invariant for this element, where γ is the adiabatic index. Mathematically this
can be expressed as

d

dt

(
P

ργ

)
= 0. (8.10)

For a perfect gas, it may be more convenient to treat the pressure as the
primary dynamical variable rather than the temperature. If we know the force
F acting on the system, then the equations (8.3), (8.9) and (8.10) together
provide a complete dynamical theory of a perfect gas, describing how the state
of the gas, given by ρ(x, t), P(x, t) and v(x, t), evolves with time. We shall
now consider a very important astrophysical application to illustrate how these
equations are used.

8.3 Jeans instability

We believe that stars form out of the interstellar medium. Star formation is an
extremely complex and still ill-understood phenomenon. It is initiated by a fluid
dynamical process known as the Jeans instability, which breaks the initially
uniform interstellar medium into clumps.

Suppose we initially have a uniformly distributed gas and some disturbance
has compressed it in a certain region. The excess pressure in this compressed
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region would give rise to acoustic waves which spread out the compression
in surrounding regions so that the gas can again come back to its initial uni-
form state. The compressed region, however, has also enhanced gravitational
attraction and this tends to pull more gas into the compressed region. How
the system will evolve depends on whether the acoustic waves or the enhanced
gravity will win over. If the region of compression is small, then it can be shown
that the enhanced gravity is not so important and the acoustic waves take over.
On the other hand, if the region of compression is larger than a critical size, then
the enhanced gravity in the region of compression may overpower the acoustic
waves, pulling more material into the region and triggering an instability. Since
Jeans (1902) was the first person to demonstrate the existence of this instability,
it is called the Jeans instability in his honour.

To analyse a fluid dynamical instability mathematically, we have to consider
some perturbations around an equilibrium configuration. If these perturbations
grow in time, then we expect that disturbances present in the system would make
it move away from the equilibrium. On the other hand, if the perturbations die
out or oscillate with time, then the system is stable. Let us consider the gas to
be in an initial static equilibrium configuration with density ρ0 and pressure P0.
We assume that some perturbations have caused the density and the pressure
to be ρ0 + ρ1 and P0 + P1 respectively. The subscript 0 should refer to the
unperturbed equilibrium configuration and 1 to perturbations. Since there can
be motions induced in the perturbed gas, we also have to consider the velocity,
which can be written as v1 because it has no unperturbed part. Apart from
these fluid dynamical variables, we also introduce the gravitational potential
� = �0 + �1 broken into unperturbed and perturbed parts. The force F in (8.9)
should then be given by

F = −∇�. (8.11)

To consider perturbations around an equilibrium configuration, we first have
to make sure that the unperturbed variables ρ0, P0 and �0 satisfy the require-
ments of static equilibrium. Out of the three basic fluid dynamics equations
(8.3), (8.9) and (8.10), it is easily seen that (8.3) and (8.10) trivially have all
terms zero in a static equilibrium situation. The only non-trivial equation (8.9)
gives us

∇P0 = −ρ0 ∇�0 (8.12)

on making use of (8.11). In addition to the fluid dynamical equations, we also
need to satisfy the Poisson equation for gravity, which gives

∇2�0 = 4πGρ0. (8.13)

It is trivial to show that a uniform infinite gas does not satisfy the two equations
(8.12) and (8.13). From (8.12), a constant P0 would imply a constant �0. When
a constant �0 is substituted in (8.13), we are driven to the conclusion that
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the unperturbed density ρ0 has to be zero everywhere! For a proper stability
analysis, one should first find a proper equilibrium solution and then consider
perturbations around that solution. Jeans (1902), however, proceeded to perform
a perturbation analysis on the uniform infinite gas as if the unperturbed configu-
ration satisfied the equilibrium equations (8.12) and (8.13)! Hence this approach
is often referred to as the Jeans swindle. We reproduce here the analysis based
on the Jeans swindle because of its historical importance and simplicity. It is
possible to carry out proper stability analyses for realistic density distributions
without recourse to the Jeans swindle. For example, if we consider a slab of gas
in static equilibrium under its own gravity, then we can carry out a proper stabil-
ity analysis. See Spitzer (1978, pp. 283–285) for a discussion of this problem.
As it happens, the correct (and much more complicated!) analysis yields results
which are qualitatively similar to those we get from the perturbation analysis of
the uniform infinite gas with the help of the Jeans swindle.

We shall now use the fluid dynamical equations along with the Poisson
equation for gravity to find out how the perturbations ρ1(x, t), P1(x, t), v1(x, t)
and �1(x, t) will evolve with time. We shall assume that the perturbed quantities
are small (i.e. ρ1 � ρ0, P1 � P0, |�1| � |�0|) and the quadratic terms of these
quantities will be neglected. The technique of keeping only the linear terms in
perturbed quantities and neglecting the higher terms is called the linearization
of the perturbation equations. From (8.10), it follows that

P0 + P1

P0
=
(

ρ0 + ρ1

ρ0

)γ

.

Neglecting terms higher than linear in ρ1, we get

P1 = c2
s ρ1, (8.14)

where

cs =
√

γ P0

ρ0
. (8.15)

The perturbed quantities substituted in the equation of continuity (8.3) give

∂ρ1

∂t
+ ∇.[(ρ0 + ρ1)v1] = 0.

To linearize this perturbation equation, we neglect the term involving ρ1v1

which is quadratic in small quantities, so that we are left with

∂ρ1

∂t
+ ρ0 ∇.v1 = 0. (8.16)

We now have to linearize the Euler equation (8.9), which becomes

(ρ0 + ρ1)

[
∂v1

∂t
+ (v1.∇)v1

]
= −∇(P0 + P1) − (ρ0 + ρ1)∇(�0 + �1).
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Using (8.12) to cancel two terms on the right-hand side and keeping only the
linear terms in perturbed quantities, we get

ρ0
∂v1

∂t
= −∇P1 − ρ0∇�1.

Using (8.14) to substitute for P1, we have

ρ0
∂v1

∂t
= −c2

s ∇ρ1 − ρ0∇�1. (8.17)

Finally, subtracting (8.13) from the full equation ∇2� = 4πGρ, we get

∇2�1 = 4πGρ1. (8.18)

We now have three equations (8.16)–(8.18) satisfied by the three perturbation
variables ρ1, v1 and �1. These have to be solved to find out how the perturba-
tions will evolve in time.

Before proceeding to solve the full equations, let us consider the special
case in which the enhanced gravity is negligible. For example, in the case of
ordinary sound waves in the atmosphere, the enhanced gravity in the regions of
compression is utterly insignificant. In such a situation, the last term in (8.17)
can be omitted. Then we can take the divergence of (8.17) and use (8.16) to
substitute for ∇.v. This gives(

∂2

∂t2
− c2

s ∇2
)

ρ1 = 0, (8.19)

which is the equation for acoustic waves, and cs as given by (8.15) is the sound
speed.

To solve the equations (8.16)–(8.18), we note that any arbitrary perturbation
may be represented as a superposition of Fourier components and that each
Fourier component will evolve independently of the others because these equa-
tions are linear. For a particular Fourier component, let us take all our variables
to vary as exp[i(k.x − ωt)]. Then (8.16)–(8.18) give

−ωρ1 + ρ0k.v1 = 0,

−ρ0ωv1 = −c2
s kρ1 − ρ0k�1,

−k2�1 = 4πGρ1.

Combining these three equations, we readily find that

ω2 = c2
s (k

2 − k2
J ), (8.20)

where

k2
J = 4πGρ0

c2
s

. (8.21)
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When k < kJ, we see from (8.20) that ω has to be imaginary and can be
written as

ω = ±iα, (8.22)

where α is a real positive quantity given by

α = +cs

√
k2

J − k2.

Since all Fourier components grow as exp(−iωt), it follows from (8.22) that
one mode should grow as exp(+αt). Thus, any perturbation in which such a
mode is present should lead to a runaway situation enhancing the perturbation
and leading to an instability. If k > kJ, it should be easy to check that the
perturbation will be oscillatory and will not grow in a runaway fashion.

We thus come to the conclusion that a perturbation would be unstable if its
wavenumber k is less than kJ as given by (8.21). In other words, if the size of
the perturbation is larger than some critical wavelength of order λJ = 2π/kJ,
then the enhanced self-gravity can overpower the acoustic waves so that the
perturbation grows. The corresponding critical mass

MJ = 4

3
πλ3

Jρ0

is often referred to as the Jeans mass. Substituting from (8.21) and using (8.15)
for cs with γ taken as 1 for large-wavelength slowly evolving perturbations
(which can be regarded as isothermal), we get

MJ = 4

3
π5/2
(

κBT

Gm

)3/2 1

ρ
1/2
0

, (8.23)

where m is the mass of the gas particles. If a perturbation in a uniform gas
involves a mass larger than the Jeans mass, then we expect the gas in the
perturbed region to keep contracting due to the enhanced gravity. Thus an
initially uniform distribution of gas may eventually fragment into pieces due
to the Jeans instability.

Jeans instability is the basic reason why the matter in the Universe is not
spread uniformly. Stars and galaxies are believed to be the end-products of
perturbations which initially started growing due to the Jeans instability. We
can estimate the Jeans mass for the interstellar matter by assuming it to have
106 hydrogen atoms per m3 at temperature 100 K. Then (8.23) gives a Jeans
mass of about 8 × 1035 kg. This is several orders of magnitude larger than the
typical mass of a star (about 1030 kg). Presumably the interstellar matter first
breaks into large chunks with masses corresponding to clusters of stars rather
than individual stars. Then somehow these contracting chunks of gas have to
break further to produce stars. The presence of angular momentum or magnetic
fields can make the process quite complicated. See Spitzer (1978, §13.3) for an
introduction to the complex subject of star formation.
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8.4 Basic equations of MHD

After familiarizing ourselves with the basic equations of fluid mechanics, let
us now consider how these equations have to be generalized to MHD, which
essentially treats fluids which are good conductors of electricity. We pointed
out at the beginning of §8.2 that the state of a neutral fluid can be prescribed
by two thermodynamic variables plus the velocity field v(x, t). Since a plasma
or an electrically conducting fluid responds to electromagnetic interactions, it
may at first seem that we have to additionally specify the electric and magnetic
fields E(x, t) and B(x, t) to complete the prescription of a state of the system.
However, actually only the magnetic field B(x, t) is needed for the prescription
of the state, since the positive and negative charges in the plasma remain well
mixed, as we pointed out in §8.1, and the electric field cannot be too large.
We shall soon show that even the weak electric field can be found from a
knowledge of v(x, t) and B(x, t). The electric field is, therefore, not an addi-
tional dynamical variable. It may be noted that, when dealing with a plasma,
it does not make sense to distinguish between E and D or B and H. These
distinctions are useful only when we can distinguish between charges and cur-
rents in the conductors versus charges and currents induced in the surrounding
medium.

According to Ohm’s law, the current density j in the plasma should be
given by

j = σE,

where σ is the electrical conductivity. However, if the plasma moves with
velocity v in a magnetic field B, then the forces on charged particles in the
plasma are given by q(E + v × B) rather than qE. Hence, Ohm’s law also
should be modified to

j = σ(E + v × B). (8.24)

The currents in the plasma give rise to magnetic fields. We know that this is
described by one of Maxwell’s equations:

∇ × B = μ0j + ε0μ0
∂E
∂t

,

where the last term is the displacement current discovered by Maxwell (1865)
himself. As we know, this is the crucial term in deriving the equation of
electromagnetic waves. However, when we consider plasma motions at speeds
small compared to c, this term is unimportant for studying the dynamics of the
plasma. Hence we take

∇ × B = μ0j. (8.25)
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By combining (8.24) and (8.25), we can write the electric field as

E = ∇ × B
μ0σ

− v × B. (8.26)

It should be clear from this that E is not an independent dynamical variable in
MHD, since it can be found from v and B.

Since the magnetic field B is the important additional dynamical variable in
MHD, we would need an equation for the time evolution of B to complete our
dynamical theory. For this, we turn to one of Maxwell’s equations:

∂B
∂t

= −∇ × E,

which is the mathematical expression of Faraday’s law of electromagnetic
induction. On substituting for E from (8.26) into this equation, we get

∂B
∂t

= ∇ × (v × B) + η∇2B, (8.27)

where

η = 1

μ0σ
(8.28)

and we have assumed that σ does not vary with position. The equation (8.27) is
known as the induction equation.

The induction equation is the central equation of MHD. In order to have
a complete dynamical theory, we also need time derivative equations for the
other dynamical variables – two thermodynamic quantities and v. For a neutral
gas, these are given by (8.3), (8.9) and (8.10). We now need to figure out if
these equations get modified in MHD. Since the equation of continuity (8.3)
follows simply from mass conservation, it has to remain unchanged. We shall
not discuss here how the presence of the magnetic field modifies the energy
equation. Let us only consider how the Euler equation (8.9) has to be modified.
When there is a magnetic field in the plasma, there can be a magnetic force in
addition to the other forces. We know that the magnetic force per unit volume
is given by j × B (see, for example, Panofsky and Phillips, 1962, §7–6), and the
magnetic force per unit mass is obtained by dividing this by ρ. We add this extra
term on the right-hand side of (8.9) and use (8.25) to eliminate j, which gives

∂v
∂t

+ (v.∇)v = F − 1

ρ
∇P + 1

μ0ρ
(∇ × B) × B. (8.29)

Using the vector identity

(∇ × B) × B = (B.∇)B − ∇
(

B2

2

)
,
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we can write (8.29) as

∂v
∂t

+ (v.∇)v = F − 1

ρ
∇
(

P + B2

2μ0

)
+ (B.∇)B

μ0ρ
. (8.30)

It is clear from this that the magnetic field introduces a pressure B2/2μ0.
The other magnetic term (B.∇)B/μ0 is of the nature of a tension force along
magnetic field lines.

We thus see that the MHD equations have two main complications with
respect to the fluid dynamical equations. Firstly, the Euler equation gets
modified by the addition of magnetic pressure and magnetic tension, as we
see in (8.30). Secondly, we have an additional equation (8.27) to describe the
evolution of the magnetic field – the induction equation. We now discuss a very
important consequence of the induction equation.

8.5 Alfvén’s theorem of flux freezing

Suppose the magnetic field inside the plasma has the typical value B and the
velocity field has the typical value V , whereas L is the typical length scale
over which the magnetic or velocity fields vary significantly. Then the term
∇ × (v × B) in the induction equation (8.27) should be of order VB/L , while
the other term η∇2B in (8.27) should be of order ηB/L2. The ratio of these two
terms is a dimensionless number known as the magnetic Reynolds number and
is given by

RM ≈ VB/L

ηB/L2
≈ VL

η
. (8.31)

The important point to note here is that RM goes as L , which is much larger
for an astrophysical system than what it is for a laboratory plasma. In fact,
it turns out that RM is usually much smaller than 1 for laboratory plasmas
and much larger than 1 for astrophysical systems. This means that η∇2B is
the dominant term on the right-hand side of (8.27) when we are dealing with
laboratory plasmas and ∇ × (v × B) is the dominant term when we are dealing
with astrophysical plasmas. For laboratory plasmas, we can often write

Laboratory:
∂B
∂t

≈ η∇2B. (8.32)

This equation is not difficult to interpret. We see from (8.28) that η is essentially
the inverse of conductivity σ , which means that η goes as the resistivity of the
plasma. We know that the resistivity of a system makes currents in the system
decay and thereby magnetic fields produced by those currents also decay. The
significance of (8.32) is that the magnetic field in the plasma diffuses away
with time due to the resistivity, with the resistivity η appearing as the diffusion
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coefficient. On the other hand, magnetic fields in astrophysical plasmas often
evolve primarily due to the other term in (8.27), i.e. we can write

Astrophysics:
∂B
∂t

≈ ∇ × (v × B).

We now discuss the significance of this equation.
If the magnetic Reynolds number RM of an astrophysical system is

extremely large, then it is often justified to replace the approximation sign in
the last equation by an equality sign, i.e.

∂B
∂t

= ∇ × (v × B). (8.33)

When the magnetic field in the plasma evolves according to this equation, we
can prove a very remarkable theorem called Alfvén’s theorem of flux freez-
ing (Alfvén, 1942a). A very similar theorem involving vorticity ω = ∇ × v
was, however, known to fluid dynamicists for a long time (see, for example,
Choudhuri, 1998, §4.6). We first state the theorem of flux freezing before
proving it.

Consider a surface S1 inside a plasma at time t1. The flux of magnetic field
linked with this surface is

∫
S1

B.dS. At some future time t2, the parcels of plasma
which made up the surface S1 at time t1 will move away and will make up a
different surface S2. The magnetic flux linked with this surface S2 at time t2
will be

∫
S2

B.dS. The theorem of flux freezing states that∫
S1

B.dS =
∫

S2

B.dS

if B evolves according to (8.33). We write this more compactly in the form

d

dt

∫
S

B.dS = 0, (8.34)

where the Lagrangian derivative d/dt implies that we are considering the
variation of the magnetic flux

∫
S B.dS linked with the surface S as we follow

the surface S with the motion of the plasma parcels constituting it.
To proceed with the proof now, we note that the flux

∫
S B.dS linked with

the surface S can change with time due to two reasons: (i) intrinsic variation in
B, and (ii) motion of the surface S. Mathematically we write

d

dt

∫
S

B.dS =
∫

S

∂B
∂t

.dS +
∫

S
B.

d

dt
(dS). (8.35)

Figure 8.1 shows an element of area which has changed from dS at time t to dS′
at time t ′ = t + δt . We see that dS and dS′ make up the two ends of a cylinder.
The vector area of a side strip of this cylinder is −δt v × δl, where δl is a length
element from the curve encircling the surface dS as shown in Figure 8.1. Since
the vector area

∮
dS for a closed surface is zero, the surfaces of this cylinder
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Fig. 8.1 Displacement of a surface ele-

ment due to motions in the plasma.

satisfy the equation

dS′ − dS − δt
∮

v × δl = 0,

where the line integral is taken around the surface element dS. It then
follows that

d

dt
(dS) = lim

δt→0

dS′ − dS
δt

=
∮

v × δl.

The last term of (8.35) now becomes∫
S

B.
d

dt
(dS) =

∫ ∮
B.(v × δl) =

∫ ∮
(B × v).δl.

Here the double integral
∫ ∮

means that we first take a line integral around
surface elements like dS and then sum up such line integrals for the many
surface elements which would make up the surface S. It is easy to see that this
ultimately gives a line integral along the curve C encircling the whole surface S,
because the contributions from the line integrals in the interior cancel out when
we sum over all surface elements. Hence we have∫

S
B.

d

dt
(dS) =

∮
C
(B × v).δl =

∫
S
[∇ × (B × v)].dS

by Stokes’s theorem. We then have from (8.35) that

d

dt

∫
S

B.dS =
∫

S
dS.

[
∂B
∂t

− ∇ × (v × B)

]
. (8.36)

We now see that (8.34) follows from (8.33) and (8.36). This completes our
proof.

In astrophysical systems with high RM, we can imagine the magnetic flux
to be frozen in the plasma and to move with the plasma flows. Suppose we
have straight magnetic field lines going through a plasma column as shown in
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Fig. 8.2 Illustration of flux freezing. (a) A straight column of magnetic field.

(b) Magnetic configuration after bending the column. (c) Magnetic configuration after

twisting the column.

Figure 8.2(a). If the plasma column is bent, then, in the high RM limit, the
magnetic field lines are also bent with it as shown in Figure 8.2(b). On the
other hand, if one end of the plasma column is twisted, then the magnetic field
lines are also twisted as in Figure 8.2(c). As a result of the theorem of flux
freezing, the magnetic field in an astrophysical system can almost be regarded as
a plastic material which can be bent, twisted or distorted by making the plasma
move appropriately. This view of a magnetic field is radically different from that
which we encounter in laboratory situations, where the magnetic field appears
as something rather passive which we can switch on or off by sending a current
through a coil. In the astrophysical setting, the magnetic field appears to acquire
a life of its own.

We thus see that magnetic fields behave very differently in laboratory and
astrophysical settings, due to the fact that the magnetic field evolves respec-
tively according to the two different equations (8.32) and (8.33) in these two
situations. Alfvén coined the name cosmical electrodynamics to distinguish
electrodynamics at cosmic scales from ordinary laboratory electrodynamics,
although we start from the same Maxwell’s equations and Ohm’s law in both
the cases. In the astrophysical setting, if we know the initial configuration of the
magnetic field and the nature of plasma flows, we can almost guess on the basis
of the flux-freezing theorem what the subsequent magnetic field configuration
is going to be (as we saw in Figure 8.2). The human mind is more attuned
to thinking geometrically rather than thinking analytically. We may be able to
solve an equation describing a process, but only when we are able to make a
mental picture of how the process proceeds, do we feel that we have understood
the process. The beauty of cosmical electrodynamics is that the flux-freezing
theorem allows us to make a mental picture of how the magnetic field evolves
in an astrophysical plasma.
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When an astronomical object shrinks due to gravitational attraction, its
magnetic field is expected to become stronger. If a is the equatorial cross-section
of the body through which a magnetic field of order B is passing, then the
magnetic flux linked with the equatorial plane is of order Ba2. If the magnetic
field is perfectly frozen, then this flux should remain an invariant during the
contraction of the object. Some neutron stars are believed to have magnetic
fields as high as 108 T, as pointed out in §5.5.2. Let us see if we can explain
this magnetic field by assuming that the neutron star formed due to the collapse
of an ordinary star of which the magnetic field got compressed. A star like the
Sun has a radius of order 109 m, and the magnetic field near its pole is about
10−3 T. Since the radius of a typical neutron star is about 104 m, the equatorial
area would decrease by a factor of 1010 if an ordinary star were to collapse
to become the neutron star. If the magnetic flux remained frozen during this
collapse, then the initial field of 10−3 T would finally become 107 T, which is
of the same order of magnitude as the magnetic fields of neutron stars.

8.6 Sunspots and magnetic buoyancy

We have summarized some properties of sunspots in §4.8. Now we shall discuss
how these properties can be explained with the basic principles of MHD.

First of all, a sunspot is a region of concentrated magnetic field (of order
0.3 T) with very little magnetic field in the surrounding region. Why does
the magnetic field get bundled up in a limited region which appears darker
compared to its surroundings? We have pointed out in §4.4 that energy is
transported by convection in the layers immediately below the solar surface.
A sunspot is, therefore, a bundle of magnetic flux sitting in a region where
convection is taking place. To understand the formation of sunspots, we need
to know how convection is affected by the presence of a magnetic field. This
subject is known as magnetoconvection, of which the foundations were laid
down by Chandrasekhar (1952). We have seen in (8.30) that a magnetic field has
a tension force associated with it, which would oppose gas motions connected
with convection. If magnetic fields are present in a region of convection, they
tend to get swept in confined regions within which convection is inhibited by
magnetic tension, but the remaining regions are free from magnetic fields where
convection can take place freely. This is clearly seen in numerical simulations
of magnetoconvection (Weiss, 1981). Sunspots are then merely regions within
which magnetic fields are kept bundled up by convection. Since magnetic ten-
sion inhibits convection within a sunspot, heat transport is less efficient within
a sunspot, leading to a cooler surface temperature there. That is why a sunspot
appears darker than the surroundings.

We also pointed out in §4.8 that often two sunspots appear side by side at
nearly the same latitude with opposite polarities. The most obvious explanation
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Fig. 8.3 Magnetic buoyancy of a flux tube. (a) A nearly horizontal flux tube under the

solar surface. (b) The flux tube after its upper part has risen through the solar surface.

for this is that there must have been a strand of magnetic field underneath the
solar surface aligned in the toroidal direction, of which a part has come out
through the solar surface as shown in Figure 8.3(b). If the two sunspots are
merely the two locations where this strand of magnetic field intersects the solar
surface, then we readily see that one sunspot must have magnetic field lines
coming out and the other must have field lines going in. We now address the
question how such a magnetic configuration may come about. As we already
discussed, magnetic fields in a region of convection may be expected to remain
concentrated within localized regions. Let us consider a nearly horizontal cylin-
drical region within which some magnetic field is concentrated, as sketched
in Figure 8.3(a). Such a region of concentrated magnetic field with very little
magnetic field outside is often called a magnetic flux tube. Parker (1955a)
pointed out that a horizontal flux tube may become buoyant. The argument is
quite straightforward. Let Pi be the gas pressure inside the magnetic flux tube
and Pe be the external pressure. We have seen in (8.30) that a magnetic field
causes a pressure B2/2μ0 wherever it exists. In order to have a pressure balance
across the bounding surface of the flux tube, we must have

Pe = Pi + B2

2μ0
. (8.37)

It readily follows that

Pi < Pe. (8.38)

This usually, though not always, implies that the internal density ρi is also less
than the external density ρe. In the particular case when the temperature inside
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and outside are both T , (8.37) leads to

RρeT = Rρi T + B2

2μ0
,

from which we obtain

ρe − ρi

ρe
= B2

2μ0 Pe
. (8.39)

We thus see that the fluid in the interior of the flux tube is lighter and must be
buoyant. In the limit of high RM, the magnetic field is frozen in this lighter
fluid. As a result, the flux tube as an entity becomes buoyant and rises against
the gravitational field. This very important effect, discovered by Parker (1955a),
is known as magnetic buoyancy. Since (8.38) does not always imply that the
interior of a flux tube is lighter, it is possible that one part of a flux tube becomes
buoyant and not the other parts. Here we shall not get into a discussion as
to how this may come about. Suppose only the middle part of the flux tube
shown in Figure 8.3(a) has become buoyant. Then this middle part is expected
to rise, eventually piercing through the surface and creating the configuration
of Figure 8.3(b). With the help of this idea of magnetic buoyancy, one can
thus explain how a bipolar magnetic region arises. We have the photograph
of a freshly emerged bipolar magnetic region in Figure 4.16. The granules of
convection lying between the two large sunspots seem somewhat distorted and
elongated. Looking at the photograph carefully, one almost gets the feeling that
something has recently come up through the solar surface between the two large
sunspots.

We have pointed out in §4.8 that the Sun does not rotate like a solid body.
The regions near the equator rotate with a higher angular velocity compared to
regions near the poles. Let us consider a magnetic field line passing through
the solar interior as shown in Figure 8.4(a). Since the magnetic field line must
be nearly frozen in the plasma due to the high RM, we expect that the varying
angular velocity, which is called differential rotation, should stretch out this field
line as shown in Figure 8.4(b). Thus the differential rotation has a tendency to
produce strong magnetic fields in the toroidal direction (i.e. in the φ-direction
in spherical coordinates), and the magnetic fields in the interior of the Sun are
believed to be predominantly toroidal. Parts of the toroidal field, concentrated
into flux tubes by interaction with convection, may then become buoyant and
produce bipolar sunspots by piercing through the solar surface. It is straightfor-
ward to see from Figure 8.4(b) that the bipolar sunspots in the two hemispheres
would have opposite polarity alignments, as we saw in Figure 4.17. Choudhuri
(1989) was the first person to carry out a three-dimensional simulation to study
the formation of bipolar sunspots by magnetic buoyancy.
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Fig. 8.4 The production of a strong toroidal magnetic field underneath the solar

surface. (a) An initial poloidal field line. (b) A sketch of the field line after it has been

stretched by the faster rotation near the equatorial region.

8.7 A qualitative introduction to dynamo theory

If there is any magnetic field in the solar interior, we saw in §8.6 that one can
combine the ideas of flux freezing, magnetoconvection and magnetic buoyancy
to explain the bipolar sunspots. But why should there be any magnetic field
to begin with? Most stars are believed to have magnetic fields. We pointed
out in §6.7 that our Galaxy has a magnetic field roughly running along the
spiral arms. Magnetic fields are almost ubiquitous in the astrophysical Universe.
Dynamo theory is the basic theory based on MHD which tries to explain how
magnetic fields are generated in astrophysical systems. Magnetic fields of many
astrophysical objects have complicated spatio-temporal variations, an example
of which is the butterfly diagram for the Sun shown in Figure 4.18. An aim of
solar dynamo models is to explain the butterfly diagram. Dynamo theory is a
somewhat complicated subject and it is beyond the scope of this book to treat it
fully. We merely present below some qualitative ideas of dynamo theory.

The component of the magnetic field in the toroidal direction with respect
to the rotation axis of the astrophysical object (i.e. the φ-direction in spherical
coordinates) is called the toroidal magnetic field. On the other hand, the part
of the magnetic field lying in the poloidal plane (i.e. Br êr + Bθ êθ in spherical
coordinates) is called the poloidal magnetic field. We have already shown in
Figure 8.4 that it is possible to generate the toroidal field by the stretching
of poloidal field lines due to differential rotation, in a body like the Sun of
which the equator is rotating faster than the poles. However, if the poloidal field
cannot be sustained, then it will eventually decay away and consequently the
production of the toroidal field will also stop.

In a famous paper, Parker (1955b) gave the crucial idea of how the poloidal
field can be generated. If there are turbulent convective motions inside the
astronomical body, then the upward (or downward) moving plasma blobs stretch
out the toroidal field in the upward (or downward) direction due to flux freezing.
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Fig. 8.5 Different stages

of the dynamo process.

See the text for explana-

tions.

If the convection takes place in a rotating frame of reference, then the upward (or
downward) moving plasma blobs rotate like corkscrews as they rise (or fall). We
see the evidence of such helical motions in cyclones in the Earth’s atmosphere.
Figure 8.5(b) shows that a toroidal field line has been twisted by such helical
turbulent motions in such a way that its projections in the meridional plane are
magnetic loops. Several such magnetic loops produced by the helical turbulent
motions are shown projected in the meridional plane in Figure 8.5(c). One can
show that the helical motions in the two hemispheres have opposite sense,
just as the cyclones in the Earth’s two hemispheres rotate in opposite senses.
If we keep this in mind and also note that Bφ has opposite directions in the
two hemispheres, it then follows that the magnetic loops produced in the two
hemispheres have the same sense. This is indicated in Figure 8.5(b). Although
magnetic fields are partially frozen in the plasma, turbulence associated with
convection makes the magnetic fields mix and diffuse to some extent. As a
result, we eventually expect the magnetic fields of the loops in Figure 8.5(c)
to get smoothened out and give rise to a large-scale magnetic field. Since all
the loops in Figure 8.5(c) have the same sense, their diffusion gives rise to a
global field with the same sense as indicated by the broken field line. Thus we
ultimately end up with a poloidal field in the meridional plane starting from a
toroidal field.

Figure 8.6 summarizes the main points of the argument. The poloidal and
toroidal fields can sustain each other through a cyclic feedback process. The
poloidal field can be stretched by the differential rotation to generate the toroidal
field. The toroidal field, in its turn, can be twisted by the helical turbulence
(associated with convection in a rotating frame) to give back a field in the
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Fig. 8.6 Schematic representation of Parker’s idea of the turbulent dynamo.

poloidal plane. Readers desirous of knowing how this central idea of dynamo
theory is given a mathematical expression should consult Choudhuri (1998,
Chapter 16). The magnetic fields of most astrophysical systems are believed
to be produced by the process encapsulated in Figure 8.6.

8.8 Parker instability

The interstellar medium inside a galaxy is usually found to be distributed rather
non-uniformly. Figure 8.7 shows how the interstellar medium is distributed in
the galaxy M81. In parts of the spiral arms, the interstellar medium seems
to form a succession of clumps like beads on a string. It was Parker (1966)
who first pointed out that a uniform distribution of the interstellar medium
would be unstable. This instability, known as the Parker instability, is related to
magnetic buoyancy and is presumably the cause behind the interstellar medium
fragmenting into clumps.

The magnetic field of the galaxy can be assumed to be frozen in the
interstellar medium. Let us consider an initial configuration with the interstellar
medium distributed uniformly in a layer having straight magnetic field lines
passing through it. Now suppose the system has some small perturbations with
parts of the magnetic field lines bulging upward, as sketched in Figure 8.8(a).
From symmetry, the gravitational field is directed towards the central plane
of the layer. So the gravitational field in the bulging region of magnetic field
lines must be downward. If the magnetic field is frozen in the plasma, then
the plasma can come down vertically in the bulge region only if the magnetic
field lines are also brought down. It is, however, possible for the plasma to flow
down along the magnetic field lines as indicated by the arrows in Figure 8.8(a).
Alfvén’s theorem of flux freezing allows such flows without bringing down the
field lines in the bulge, and hence we expect that the downward gravitational
field in the bulge region would make the plasma flow in this fashion. As a
result of the plasma draining down from the top region of the bulge, this region
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Fig. 8.7 The distribution of interstellar matter in the galaxy M81, as measured by

radio emission from neutral hydrogen atoms. From Rots (1975). ( c©European Southern

Observatory. Reproduced with permission from Astronomy and Astrophysics.)

becomes lighter and more buoyant. We therefore expect this region to rise up
further. In other words, the initial bulge keeps on getting enhanced, leading to
an instability (Parker, 1966). As the magnetic field lines become more bent, the
magnetic tension gets stronger. Eventually the magnetic tension halts the rise
of the upper part of the bulge. This was clearly seen in the detailed numerical
simulations of Parker instability by Mouschovias (1974). Figure 8.8(b) sketches
what the final configuration may look like. The magnetic field lines bulge out of
the galactic plane, whereas the interstellar plasma collects in the valleys of the
magnetic field lines. This is presumably the reason why the interstellar medium
is intermittent and clumpy.
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Fig. 8.8 Sketch of Parker instability. (a) Perturbed magnetic field lines bulging out of

the galactic plane. (b) The final configuration.

8.9 Magnetic reconnection

We have pointed out in §8.5 that the magnetic Reynolds number is very high
in most astrophysical systems and the diffusion term η∇2B in (8.27) can be
neglected, leading to the flux freezing condition. It would appear that the
diffusion of magnetic fields would be a very unimportant and slow process in an
astrophysical system. However, under certain circumstances, it is often found
that a large amount of magnetic energy gets dissipated rather quickly. Within
our solar system, solar flares provide an example of this. These are explosions
taking place in the solar atmosphere above sunspots, where as much energy as
1026 J may get released in a few minutes. We have seen in §8.6 that magnetic
fields in the Sun rise due to magnetic buoyancy and there would be magnetic
loops in the solar atmosphere above sunspots. A solar flare is basically an event
in which a large amount of magnetic energy in the solar atmosphere quickly
gets converted into heat and other forms. If the magnetic Reynolds number is
high, how is it possible to have such a quick dissipation of magnetic energy?
We now turn to this question.

Even if the magnetic diffusion coefficient η is small, it is possible for
the gradient of the magnetic field to be very large in a region so that the
term η∇2B cannot be neglected within that region. Figure 8.9 shows a region
with oppositely directed magnetic fields above and below the line O P . Such
a magnetic configuration implies that there must be a concentrated sheet of
electric current between the oppositely directed magnetic fields. This is called a
current sheet. Since the gradient of magnetic field would be large in the central
region of Figure 8.9, the diffusion term η∇2B may become significant there
and hence the magnetic field would decay away in this central region. Since
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Fig. 8.9 Magnetic reconnection in a current sheet. See the text for explanations.

magnetic fields have the pressure B2/2μ0 associated with them, a decrease in
the magnetic field would cause a pressure decrease in the central region. In
many astrophysical situations, the magnetic pressure may be comparable to or
even greater than the gas pressure. If that is the situation, then the decay of the
magnetic field in the central region of Figure 8.9 would cause an appreciable
depletion of the total pressure there, and we expect that the plasma from above
and below with fresh magnetic fields would be sucked into the central region.
This fresh magnetic field would then decay and more plasma from above and
below would be sucked in to compensate for the pressure decrease due to this
decay. This process, known as magnetic reconnection, may go on as long as
fresh magnetic fields are brought to the central region.

Let us look at Figure 8.9 more carefully to understand the physics of
magnetic reconnection. The field lines ABCD and A′B ′C ′D′ are moving with
inward velocity vi towards the central region. Eventually the central parts BC
and B ′C ′ of these field lines decay away. The part AB is moved to EO and the
part A′B ′ to E ′O . These parts originally belonging to different field lines now
make up one field line EOE ′. Similarly the parts CD and C ′D′ eventually make
up the field line FPF ′. We thus see that the cutting and pasting of field lines
take place in the central region. Since plasmas from the top and the bottom in
Figure 8.9 push against the central region, the plasma in the central region is
eventually squeezed out sideways through the points O and P . The resultant
outward velocity vo carries the reconnected field lines EOE ′ and FPF ′ away
from the reconnection region. Carrying out a full mathematical analysis of
magnetic reconnection is extremely difficult. Several scientists (Parker, 1957;
Sweet, 1958; Petschek, 1964) attempted to calculate theoretically the rate at
which magnetic reconnection may be expected to proceed. Since we cannot
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get into this complex subject here, let us end our discussion of magnetic
reconnection with one comment. Even when the magnetic Reynolds number
of an astrophysical system based on its overall length scale is large, it may be
possible for magnetic reconnection to take place in localized regions, thereby
converting magnetic energy into other forms much more rapidly than what one
might expect.

As a result of magnetic reconnection, magnetic energy gets converted into
other forms like heat. If the plasma has a low density and hence low heat
capacity, then the heat produced by magnetic reconnection in the plasma can
raise the temperature of the plasma significantly. One example is the corona
of the Sun. We have pointed out in §4.6 that regions of corona can have
temperatures of order of millions of degrees, although the solar surface has
a temperature of only about 6000 K. Figure 8.10 is an X-ray image of the
Sun obtained with the spacecraft Solar and Heliospheric Observatory (SOHO).
Since the solar surface at 6000 K does not emit much X-rays, the surface appears
dark. The X-rays mainly seem to come from loop-like regions of the corona.
These loops are essentially magnetic loops above sunspots – like the loop shown
in Figure 8.3(b). It is believed that magnetic reconnections taking place within
these loops raise their temperatures to values of the order of a million degrees,
leading to copious emission of X-rays. What causes magnetic reconnections to
take place in these coronal loops is a complex question which is beyond the
scope of this book.

8.10 Particle acceleration in astrophysics

In the previous few sections, we have considered several important astrophysical
applications of MHD, treating the plasma as a continuum. There are some
astrophysical plasma problems which require a more microscopic point of view
and we have to go beyond MHD. One such problem is to understand why many
astrophysical systems have a small number of charged particles accelerated to
very high energies.

It was established by the balloon flight experiments of Hess (1912) that
the Earth is exposed to some ionizing rays coming from above the Earth’s
atmosphere. It was later ascertained that these cosmic rays are actually not
rays, but highly energetic charged particles – mostly electrons and light nuclei.
A question of fundamental importance was to determine if cosmic rays are
something local existing in the neighbourhood of the Earth and the solar system,
or if they fill up the whole Galaxy or even the whole Universe. We pointed out
in §6.7 the present astrophysical opinion that the cosmic rays are a galactic
phenomenon. These charged particles are accelerated within our Galaxy and
remain confined within it by the galactic magnetic field. There is evidence for
particles with energies as high as 1020 eV. For comparison, remember that the
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Fig. 8.10 An X-ray image of the Sun obtained by the spacecraft SOHO. This image

was taken in 2000, around the time of sunspot maximum. Courtesy: SOHO (ESA and

NASA).

rest mass energy of a nucleon is of the order of 109 eV, implying that most
of these particles must be highly relativistic. We should mention that such
energetic charged particles are believed to exist in other galaxies as well. We
shall show in the next section that relativistic charged particles gyrating around
magnetic fields emit a special kind of radiation known as synchrotron radiation,
which is often (but not always) found in the radio band of the electromagnetic
spectrum. Radio telescopes have discovered synchrotron radiation from many
extragalactic systems, implying that the acceleration of charged particles to very
high energies must be a fairly ubiquitous process in the astrophysical Universe.

Figure 8.11 shows the spectrum of cosmic ray electrons at the top of the
Earth’s atmosphere. From energies of the order of about 103 MeV to energies of
the order of 106 MeV, the spectrum can be fitted quite well with a power law

N (E)dE ∝ E−2.6dE . (8.40)

From the study of the synchrotron radiation coming from extragalactic sources,
it can be inferred that the electrons in many other sources also have power-law
distributions in energy with an index close to 2.5, in fair agreement with what
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Fig. 8.11 The spectrum of cosmic ray electrons at the top of the Earth’s atmosphere.

From Meyer (1969). ( c©Annual Reviews Inc. Reproduced with permission from Annual

Reviews of Astronomy and Astrophysics.)

is observed in cosmic ray measurements. The aim of any particle acceleration
theory is to explain the origin of this power-law spectrum with the observed
index. A very influential theory was proposed in a pioneering paper by Fermi
(1949).

By studying orbits of charged particles in a non-uniform magnetic field,
it can be shown that the particles are reflected from regions of concentrated
magnetic field. We shall not derive this result here, but refer the reader to the
standard literature (see, for example, Jackson, 2001, §12.5; Choudhuri, 1998,
§10.3). Since interstellar clouds are known to carry magnetic fields, the surfaces
of the clouds should act as magnetic mirrors and reflect charged particles. Just
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as a ball picks up energy on being hit by a bat, Fermi (1949) visualized that
charged particles can be accelerated by being hit repeatedly by the moving
magnetic clouds. Although a particle gains energy in a ‘head-on’ collision with
a moving cloud, there can also be ‘trailing’ collisions in which energy is lost.
Hence we have to show that the particle on average gains energy in collisions.
To understand the basic physics, let us consider a simple model of only one-
dimensional motions of clouds and charged particles, so all the collisions can
neatly be divided into head-on and trailing collisions. We present a Newtonian
treatment of the problem here. Since the energetic particles are relativistic, one
should actually use a relativistic treatment. We refer the reader to Longair (1994,
§21.3) for the relativistic treatment along with a clear discussion of several other
aspects of the problem.

Let us consider the clouds to move with velocity U in one dimension, i.e.
half of the clouds are moving in one direction and the other half moving in the
opposite direction. Let a particle of initial velocity u undergo a head-on collision
with a cloud. The initial velocity seen from the rest frame of the cloud is u + U .
If the collision is elastic, it would appear from this frame that the particle also
bounces back in the opposite direction with the same magnitude of velocity
u + U . In the observer’s frame, this reflected velocity appears to be u + 2U .
Hence the energy gain according to the observer is

�E+ = 1

2
m(u + 2U )2 − 1

2
mu2 = 2mU (u + U ). (8.41)

The energy loss in a trailing collision can similarly be shown to be

�E− = −2mU (u − U ). (8.42)

The probability of head-on collisions is proportional to the relative velocity
u + U , whereas the probability of trailing collisions is proportional to the
relative velocity u − U . The average energy gain in a collision is therefore
equal to

�Eave = �E+
u + U

2u
+ �E−

u − U

2u
= 4mU 2 (8.43)

on using (8.41) and (8.42). We now write down the corresponding expression
for the average energy gain in a relativistic treatment derived in Longair (1994,
§21.3). It is

�Eave = 4

(
U

c

)2

E . (8.44)

It is easy to see that (8.44) reduces to (8.43) in the non-relativistic limit on
putting E = mc2. Readers good at special relativity may try to derive (8.44)
themselves.

The main point to note in (8.44) is that the average energy gain is propor-
tional to the energy. Hence the energy of a particle suffering repeated collisions
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is expected to increase, obeying an equation of the form

dE

dt
= αE, (8.45)

where α is a constant. The solution of (8.45) is

E(t) = E0 exp(αt), (8.46)

where E0 is the initial energy. If all particles started with the same initial
energy E0, then a particle acquires energy E after remaining confined in the
acceleration region for time

t = 1

α
ln

(
E

E0

)
. (8.47)

We expect particles to be continuously lost from the acceleration region. If τ is
the mean confinement time, then the probability that the confinement time of a
particle is between t and t + dt is

N (t)dt = exp(−t/τ)

τ
dt. (8.48)

This is exactly like the kinetic theory result of finding the probability that
the time between two collisions for a particle is in the range t to t + dt and
is discussed in any elementary textbook presenting kinetic theory (see, for
example, Reif, 1965, §12.1; Saha and Srivastava, 1965, §3.30). Now a particle
with confinement time between t , t + dt would acquire the energy between E ,
E + dE . Substituting for t from (8.47) and for dt from (8.45), we are led from
(8.48) to

N (E)dE =
exp
[
− 1

ατ
ln
(

E
E0

)]
τ

.
dE

αE
,

from which

N (E) ∝ E
−
(

1+ 1
ατ

)
. (8.49)

We thus end up with a power-law spectrum.
This theory of Fermi (1949), although somewhat heuristic in nature and

based on several ad hoc assumptions, gives us a clue as to how a power-law
spectrum may arise. There are, however, very big gaps in the theory. Since
it is not so straightforward to estimate α and τ , the index of the power law
cannot be calculated easily. Furthermore, there is no indication in the theory
why this index should be close to some universal value in different astrophysical
systems. We also see from (8.44) that the average energy gain is proportional
to (U/c)2. Since the clouds are moving at non-relativistic speeds, this is a very
small number and the acceleration process is quite inefficient. Because of this
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quadratic dependence on U , this process is referred to as the second-order Fermi
acceleration.

If we could somehow arrange that only head-on collisions take place, then
the acceleration process would be much more efficient. For u � U , it follows
from (8.41) that the energy gain will depend linearly on U rather than quadrat-
ically. The acceleration resulting from such a situation is called the first-order
Fermi acceleration. But is it possible for this to happen in Nature? It was pointed
out by several authors in the late 1970s (Axford, Leer and Skadron, 1977;
Krymsky, 1977; Bell, 1978; Blandford and Ostriker, 1978) that shock waves
produced in supernova explosions may provide sites for the first-order Fermi
acceleration. Magnetic irregularities are expected on both sides of the advancing
shock wave. It is possible that a charged particle is trapped at the shock front
and is reflected repeatedly from magnetic irregularities on both sides. Such
collisions are always head-on and lead to much more efficient acceleration com-
pared to Fermi’s original proposal of acceleration by moving interstellar clouds.
We again refer the reader to Longair (1994, §21.4) for a detailed discussion
of this theory. Although many questions are still unanswered, acceleration in
supernova shocks seems at present to be the most promising mechanism for
producing cosmic rays.

8.11 Relativistic beaming and synchrotron radiation

A very famous result of classical electrodynamics is that accelerated charged
particles emit electromagnetic radiation. Whenever the velocity of a charged
particle in a plasma changes, we, therefore, expect radiation to come out. In
this section and the next, we shall discuss two astrophysically important plasma
radiation processes. When relativistic charged particles gyrate around magnetic
fields, we get synchrotron radiation, which is discussed in this section. When
charged particles undergo Coulomb collisions amongst each other, we get a type
of radiation called bremsstrahlung, which will be discussed in §8.12.

To understand synchrotron radiation, we first have to derive a special
relativistic effect known as relativistic beaming, which is important in many
astrophysical problems. We consider an object moving in the x direction with
velocity v. Let S and S′ be the frames of reference attached with us and with
the moving object respectively (both assumed inertial). Now the moving object
ejects a projectile with velocity u′ in its own frame S′ making an angle θ ′ with
the x direction. From our frame, it will appear that the projectile is moving with
u making an angle θ . We want to relate θ and θ ′.

Suppose it is seen from the moving frame S′ that the projectile is at (x ′, y′)
and (x ′ + dx ′, y′ + dy′) at times t ′ and t ′ + dt ′ respectively. From our frame
S, we would record these events at t and t + dt with the projectile at (x, y)
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and (x + dx, y + dy) respectively. From the standard Lorentz transformation
formulae,

dx = γ (dx ′ + v dt ′), (8.50)

dt = γ (dt ′ + v

c2
dx ′), (8.51)

dy = dy′, (8.52)

where γ is the usual Lorentz factor 1/
√

1 − v2/c2. Keeping in mind that ux =
dx/dt , uy = dy/dt , u′

x = dx ′/dt ′ and u′
y = dy′/dt ′, we can divide (8.50) by

(8.51) to obtain

ux = u′
x + v

1 + vu′
x/c2

, (8.53)

whereas the division of (8.52) by (8.51) gives

uy = u′
y

γ (1 + vu′
x/c2)

. (8.54)

The angle θ which the projectile motion makes with respect to the x direction
in our frame S is obviously given by

tan θ = uy

ux
= u′

y

γ (u′
x + v)

(8.55)

from (8.53) and (8.54). Since u′
x = u′ cos θ ′ and u′

y = u′ sin θ ′, we finally have

tan θ = u′ sin θ ′

γ (u′ cos θ ′ + v)
(8.56)

relating θ and θ ′.
Let us consider the special case in which the projectile is a beam of light

emitted by the moving object so that u′ = c. Substituting this in (8.56), we
obtain

tan θ = sin θ ′

γ (cos θ ′ + v/c)
. (8.57)

It is not difficult to verify that θ will in general be smaller than θ ′. We can
consider the special case in which the moving object emits a light signal
perpendicular to its direction of motion, i.e. θ ′ = π/2. Then (8.57) gives

tan θ = c

γ v
. (8.58)

Suppose the object is moving highly relativistically. Then v ∼ c and γ � 1. It
follows from (8.58) that θ will be a small angle of order 1/γ . In other words,
even if a relativistically moving object emits radiation in different directions
in its own rest frame, it will appear to us that all the radiation is emitted in the
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forward direction of its motion within a cone of angle 1/γ . This is the relativistic
beaming effect, which is very important in many astrophysical situations.

We now have to find out what kind of radiation an observer will receive
from a relativistic charged particle spiralling around a magnetic field. A rigor-
ous treatment of synchrotron radiation is somewhat complicated. So we shall
present a heuristic discussion which captures much of the essential physics.
Since a charged particle moving in a spiral path must be having an acceleration
directed towards the axis of the spiral, such a particle should obviously emit
radiation. The rate of energy loss by a particle moving non-relativistically is
given by an expression derived in any standard electrodynamics textbook (see,
for example, Panofsky and Phillips, 1962, §20-2). For a relativistic particle
spiralling in a magnetic field, we have to consider a relativistic generalization
of this and have to average over charged particles moving at different angles
with respect to the magnetic field. It can be shown that the average energy loss
rate due to radiation for a highly relativistic charged particle of Lorentz factor
γ moving in a uniform magnetic field is

P = 4

3
σTcγ 2UB, (8.59)

where UB = B2/2μ0 is the magnetic energy density and σT is the Thomson
cross-section given by (2.81). See Rybicki and Lightman (1979, §6.1) or
Longair (1994, §18.1) for a derivation of (8.59). It is clear from (2.81) and
(8.59) that P is inversely proportional to m2. Hence electrons emit much more
efficiently than heavier nuclei. Even if different accelerated charged particles
are present in a system, it is the electrons which emit the synchrotron radiation.

If the electron is relativistic, then we do not have to bother about the
direction in which the radiation will be emitted, because the relativistic beaming
effect will make sure that we see the radiation coming out in the direction of
motion within a cone of angle 1/γ , no matter in which direction the radiation
is emitted in the rest frame of the electron. Only if the observer lies within
this cone of angle 1/γ , will the observer see the radiation from the electron.
Figure 8.12 shows an electron moving in a circular orbit. When the electron is at
position A, the observer comes within the cone of radiation and starts receiving
the radiation. When the electron reaches B, the observer goes out of the cone
and ceases to receive any more radiation. We now need to find out the duration
of time during which the observer receives the radiation.

Let L be the distance between A and B, which is also the arc length between
them if θ is small. The electron moving with speed v takes time L/v to travel
from A to B. This is the interval of time between the emissions of the earliest
and latest radiations which are seen by the observer. Keeping in mind that the
radiation from B takes time L/c less to travel to the observer compared to the
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Fig. 8.12 A sketch illustrating how synchrotron radiation arises. The observer receives

the radiation emitted by the charged particle only during its transit from A to B.

radiation from A, it should be clear that the time during which the observer
receives the radiation is

�t = L

v
− L

c
= L

v

(
1 − v

c

)
. (8.60)

The frequency of gyration of an electron of charge e and rest mass me gyrating
in a magnetic field B is Be/γ me (see, for example, Jackson, 2001, §12.2),
which can be written as ωg,nr/γ , where

ωg,nr = Be

me
(8.61)

is the non-relativistic gyration frequency. Since θ ≈ 2/γ , we can write

L

v
= θ

v/r
≈ 2/γ

ωg,nr/γ
≈ 2

ωg,nr
. (8.62)

Also

1 − v

c
= 1 − v2/c2

1 + v/c
≈ 1

2γ 2
(8.63)

if v ≈ c. On making use of (8.62) and (8.63), we get from (8.60) that

�t ≈ 1

γ 2ωg,nr
. (8.64)

Hence, as the electron gyrates around the magnetic field, the observer receives a
radiation pulse of this duration once every gyration period. If we take a Fourier
transform of this signal, the spectrum should peak at a frequency of about
γ 2ωg,nr.

Instead of considering a single electron, we now consider a collection of
electrons having the energy distribution

N (E) d E ∝ E−pd E (8.65)
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all spiralling around a magnetic field. Since ωg,nr = Be/me will be the same
for all these electrons, the frequency at which an electron of energy E will
predominantly emit should be proportional to γ 2 or E2 (because of the special
relativistic relation E = meγ c2). We can write

ν = C E2, (8.66)

where ν is the frequency at which electrons of energy E emit radiation. From
this, we get

d E = dν

2
√

Cν
. (8.67)

In other words, electrons having energy in the range E to E + dE will emit
radiation with frequencies in the range ν to ν + dν, with d E and dν related by
(8.67). Since the number of such electrons is E−pdE according to (8.65) and the
rate of emission is proportional to E2 according to (8.59), the rate of radiation
emitted by these electrons should be proportional to

E2 E−pd E .

On substituting
√

ν/C for E and using (8.67), we conclude that the spectrum
of emitted radiation should be of the form

f (ν) dν ∝ ν−sdν, (8.68)

where

s = p − 1

2
. (8.69)

We thus arrive at an extremely important conclusion: if an astrophysical system
has relativistic electrons obeying a power-law distribution with index p, then
the emitted synchrotron spectrum also should obey a power-law with index s
given by (8.69).

We pointed out in §8.10 that accelerated particles typically tend to have
power-law indices around p = 2.6. According to (8.69), such electrons should
emit synchrotron radiation with index s = 0.8. Many astrophysical systems
indeed emit synchrotron radiation with power-law indices not very different
from this. It can be shown that synchrotron radiation is polarized. Hence
a power-law spectrum with some degree of polarization is a signature of
synchrotron radiation. Whenever we detect synchrotron radiation from an astro-
physical source, we can immediately conclude that the source must have mag-
netic fields and relativistic electrons.
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8.12 Bremsstrahlung

Synchrotron radiation discussed in the previous section is an example of non-
thermal radiation, i.e. a type of radiation arising from a cause other than temper-
ature. The radiation emitted by a body just because of its heat is called thermal
radiation. In §2.2 we have discussed the emission of radiation by matter in local
thermodynamic equilibrium (LTE). We saw that an optically thick source emits
like a blackbody. On the other hand, the spectrum of radiation coming out of
an optically thin source is essentially given by the emission coefficient jν . An
optically thin, moderately hot gas primarily emits at spectral lines. However, if
the gas is a plasma with temperature of the order of millions of degrees, then
all the atoms are broken up and the radiation is produced only when charged
particles in the plasma are accelerated or decelerated due to mutual Coulomb
interactions amongst themselves. Such radiation, called bremsstrahlung, is
observed from many astrophysical systems such as the coronae of stars like
the Sun or hot gas in clusters of galaxies (to be discussed in §9.5). The radi-
ation from such extremely hot plasmas is often seen in the X-ray part of the
spectrum.

Here we shall only quote the main results without the full derivation,
which can be found in Rybicki and Lightman (1979, Ch. 5) or Longair (1992,
§3.4). Since electrons are much lighter than ions, they are accelerated much
more during Coulomb collisions with ions, and it is these electrons which
are primarily responsible for bremsstrahlung. An approximate mathematical
derivation is not difficult. For a Coulomb collision with impact parameter b,
an approximate expression for acceleration can be written down by arguments
similar to the arguments given in §7.3 for gravitational collisions. By taking a
Fourier transform of the acceleration, one can find the acceleration associated
with a frequency ω. Then standard results of electrodynamics give the rate of
radiation emitted at that frequency. Finally, we have to allow for different values
of the impact parameter b and average over different possible velocities of the
electrons (assuming the Maxwellian distribution). The emissivity εν (in W m−3

Hz−1) is found to be given by

εν = 6.8 × 10−51 neni Z2

√
T

e−hν/κBT g(ν, T ), (8.70)

where T is the temperature, ne is the number density of electrons (in m−3),
ni is the number density of ions with charge Ze (in m−3) and g(ν, T ) is a
dimensionless factor of order unity known as the Gaunt factor which depends
on ν and T rather weakly. It should be easy to check that the emission coef-
ficient jν introduced in §2.2.2 is simply obtained by dividing εν by 4π . To
get the total emissivity ε, we simply have to integrate εν over all frequencies.
This gives
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ε = 1.4 × 10−40
√

T neni Z
2g (8.71)

(in W m−3), where g is the averaged Gaunt factor. The formulae (8.70) and
(8.71) are regularly used in the astrophysical literature to calculate radiation
from very hot plasmas.

8.13 Electromagnetic oscillations in cold plasmas

We end this chapter by pointing out how electromagnetic waves are affected by
the presence of plasma. The electric field of the wave accelerates the electrons
in the plasma, which then has an effect on the propagation. Because of the
inertia of the electrons, very high frequency waves cannot move the electrons
much. So we expect the plasma effects to be more important on low-frequency
electromagnetic waves like radio waves, which get affected while propagating
through the interstellar medium or the solar wind. We pointed out in §6.7 how
important inferences can be made about the interstellar medium by analysing
radio signals from pulsars.

We pointed out in §8.4 that the MHD model of the plasma neglects the
displacement current, which is crucial for studying electromagnetic waves.
Hence we have to go beyond MHD and assume the plasma to be a collection
of electrons and ions. Since the ions are much heavier, we can neglect their
motion. They merely provide a background of positive charge to keep the
plasma neutral. We further assume the plasma to be cold – which means that
the electrons have no thermal motions and move only under the influence of the
electric field of the wave. The readers may look at §12.3 and §12.4 of Choudhuri
(1998) to learn about the effects of thermal motions, which make the analysis
more complicated.

Let v, E and B respectively denote the velocity of the electron fluid, the
electric field and the magnetic field. The equation of motion of an electron is
given by

me
∂v
∂t

= −eE. (8.72)

It is easy to show that the magnetic force v × B is much smaller if |v| is small
compared to c. We need to combine (8.72) with the following two Maxwell’s
equations:

∇ × B = −μ0neev + ε0μ0
∂E
∂t

, (8.73)

∇ × E = −∂B
∂t

, (8.74)

where we have written −neev for the current j. Here ne is the number density
of electrons.
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Since we want to consider an electromagnetic wave, let us assume that the
time dependence of all the quantities is of the form exp(−iωt) so that we can
everywhere replace ∂/∂t by −iω. We then get from (8.72)

v = e

iωme
E. (8.75)

On substituting this for v in (8.73), we have

∇ × B = − iω

c2

(
1 − ω2

p

ω2

)
E, (8.76)

where we have written 1/c2 for ε0μ0 and

ωp =
√

nee2

ε0me
(8.77)

is known as the plasma frequency. On taking a time derivative of (8.76) and
using (8.74), we end up with

ω2

c2

(
1 − ω2

p

ω2

)
E = ∇ × (∇ × E). (8.78)

Since the background plasma is homogeneous, we may look for solutions
of the perturbed quantities which are sinusoidal in space. In other words, we
assume all perturbations to be of the form exp(ik.x − iωt). On substituting in
(8.78), we get

k × (k × E) = −ω2

c2

(
1 − ω2

p

ω2

)
E. (8.79)

Without any loss of generality, we can choose our z axis in the direction of the
propagation vector k, i.e. we write k = kez . On substituting this in (8.79), we
obtain the following matrix equation

⎛
⎝ω2 − ω2

p − k2c2 0 0
0 ω2 − ω2

p − k2c2 0
0 0 ω2 − ω2

p

⎞
⎠
⎛
⎝ Ex

Ey

Ez

⎞
⎠ =
⎛
⎝0

0
0

⎞
⎠ . (8.80)

It is clear from (8.80) that the x and y directions are symmetrical, as we expect.
The z direction, being the direction along k, is distinguishable. This indicates
that we may have two physically distinct types of oscillatory modes. They are
discussed below. The existence of these two modes in the plasma was first
recognized by Tonks and Langmuir (1929).
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8.13.1 Plasma oscillations

One solution of the matrix equation (8.80) is

Ex = Ey = 0, ω2 = ω2
p. (8.81)

Here the electric field is completely in the direction of the propagation
vector k, and it follows from (8.72) that all the displacements are also
in the same direction. We also note that the group velocity (∂ω/∂k) is
zero. We therefore have a non-propagating longitudinal oscillation with
its frequency equal to the plasma frequency ωp. Such oscillations are
known as plasma oscillations. They are often called Langmuir oscillations,
after Langmuir who was the pioneer in the study of these oscillations
(Langmuir, 1928; Tonks and Langmuir, 1929).

It is not difficult to understand the physical nature of these oscillations.
Against a background of nearly immobile and hence uniformly distributed ions,
there will be alternate layers of compression and rarefaction of the electron gas
(unless k = 0 so that the wavelength is infinite). The electrostatic forces arising
out of such a charge imbalance drive these oscillations.

8.13.2 Electromagnetic waves

The only other possible solution of the matrix equation (8.80) is

Ez = 0, ω2 = ω2
p + k2c2. (8.82)

This clearly corresponds to a transverse wave. It is actually nothing but the
ordinary electromagnetic wave modified by the presence of the plasma. If
ω � ωp, then we are led to limiting relation ω2 = k2c2, which is the usual
dispersion relation for electromagnetic waves in the vacuum. In other words,
if the frequency of the wave is too high, even the electrons, which are much
more mobile than the ions, are unable to respond sufficiently fast so that the
plasma effects are negligible.

It is also to be noted from (8.82) that if ω < ωp, then k becomes imaginary
so that the wave is evanescent. If an electromagnetic wave of frequency ω is
sent towards a volume of plasma with a plasma frequency ωp greater than ω (if
ω < ωp), then the electromagnetic wave is not able to pass through this plasma
and the only possibility is that it is reflected back.

The plasma frequency of the Earth’s ionosphere is about 30 MHz. Radio
waves from cosmic sources can penetrate through the ionosphere only if the
frequency is higher than 30 MHz (or the wavelength is less than 10 m). Hence
radio telescopes have to be operated at higher frequencies if we are to receive
radio signals from cosmic sources, as pointed out in §1.7. On the other hand, if
we want to communicate with faraway regions of the Earth’s surface, then we



Exercises 257

may want to use radio waves of frequency less than 30 MHz which would be
reflected back from the ionosphere.

Exercises

8.1 Consider a fluid flow pattern independent of time. Starting from the Euler

equation, show that

1

2
v2 +
∫

dp

ρ
+ � = constant

along a line of flow (� is the gravitational potential). This is known as

Bernoulli’s principle (Bernoulli, 1738).

8.2 Consider a constant initial magnetic field B = B0ey in a plasma of zero

resistivity. Suppose a velocity field

v = v0e−y2
ex

is switched on at time t = 0. Find out how the magnetic field evolves in time.
Make a sketch of the magnetic field lines at some time after switching on the

velocity field.

8.3 Consider a cylindrical column of plasma with a current of uniform density

jez flowing through it (the z direction being parallel to the axis of the cylinder).

Find the magnetic field Bθ (r) resulting from this current (r , θ , z being the

cylindrical coordinates). Show from (8.29) that the static equilibrium condition

is given by

d

dr

(
P + B2

θ

2μ0

)
+ B2

θ

μ0r
= 0

and determine how the gas pressure P(r) varies inside the plasma column. It

may be noted that this static equilibrium configuration is violently unstable,

but we shall not get into a discussion of it here.

8.4 Suppose a uniform magnetic field B0 in a plasma with zero resistivity

is perturbed. Assuming that the pressure and gravity forces are negligible

compared to the magnetic force, i.e. writing the equation of motion as

ρ
dv
dt

= (∇ × B) × B
μ0

,

show that the perturbations give rise to wave motions moving along B0 with

velocity given by

vA = B0√
μ0ρ

.
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These waves are called Alfvén waves (Alfvén, 1942b) and vA is called the

Alfvén speed.

8.5 Consider a horizontal magnetic flux tube with magnetic field B and

radius of cross-section a embedded in an isothermal atmosphere of perfect

gas with constant gravity g. Let � = P/ρg, which is a constant throughout

an isothermal atmosphere. The flux tube rising due to magnetic buoyancy at

speed v experiences a drag force per unit length given by

1

2
CDρv2a,

where CD is a constant. Show that the flux tube eventually rises with an

asymptotic speed

vA

(
πa

CD�

)1/2

,

where vA = B/
√

μ0ρ.

8.6 (For those who are good in special relativity.) Consider the one-

dimensional problem of a relativistic particle being reflected from a set of

reflectors moving with speeds either U or −U . Using special relativity, show

that the average energy gained per collision is given by (8.44).

8.7 In the treatment of plasma oscillations given in §8.13, the motions of

ions were neglected. Suppose ions with charge Ze and mass mi also move

in response to the electric field. Assuming the plasma to be a mixture of an

electron fluid with velocity ve and an ion fluid with velocity vi, show that the

frequency of plasma oscillations will be

ω = ωp

√
1 + Zme

mi
,

where ωp is given by (8.77).

8.8 From the dispersion relation (8.82) of electromagnetic waves propagating

through a plasma, show that the group velocity is

vgr = c

√
1 − ω2

p

ω2
.

A radio signal starting from a pulsar and passing through the interstellar

medium will reach an observer at a distance L in time
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Ta =
∫ L

0

ds

vgr
.

Substitute the expression of vgr in this and make a binomial expansion by

assuming ωp � ω. If signals with different frequencies started at the same

time, show that they will be dispersed on reaching the observer, with the

dispersion given by (6.68).
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Extragalactic astronomy

9.1 Introduction

We have pointed out in §6.1 that astronomers in the early twentieth century
thought that our Milky Way Galaxy is the entire Universe! Even a small
telescope shows many nebulous objects in the sky. The great German philoso-
pher Kant already conjectured in the eighteenth century that some of these
nebulae could be island universes outside our Galaxy (Kant, 1755). However,
astronomers at that time knew no way of either establishing or refuting this con-
jecture. In 1920 the National Academy of Sciences of USA arranged a debate
on this subject – Shapley arguing that these nebulae are within our Galaxy
and Curtis arguing that they are extragalactic objects (Shapley, 1921; Curtis,
1921). We discussed in §6.1.2 how the distances of Cepheid variable stars
can be determined. Using the newly commissioned Mount Wilson telescope,
which was much more powerful than any previous telescope, Hubble (1922)
resolved some Cepheid variables in the Andromeda Galaxy M31 and estimated
its distance, clearly showing that it must be lying far outside our Milky Way
Galaxy. Our current best estimate of the distance of M31 is about 740 kpc.
It soon became clear that many of the spiral nebulae are galaxies outside our
Galaxy, heralding the subject of extragalactic astronomy and establishing that
galaxies are the building blocks of the Universe.

9.2 Normal galaxies

Light coming from a typical simple galaxy seems like a composite of light
emitted by a large number of stars. A galaxy of this kind is called a normal
galaxy. We shall discuss the characteristics of such galaxies in this section.
Galaxies with more complex properties will be taken up in §9.4.

261
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Fig. 9.1 The spiral galaxy M51, photographed with the Hubble Space Telescope.

Courtesy: NASA, ESA and Space Telescope Science Institute.

9.2.1 Morphological classification

Galaxies were first classified in the 1920s depending on their appearances
through optical telescopes. Some galaxies appear to have beautiful spiral struc-
tures. They are called spiral galaxies. Figure 9.1 shows the Whirlpool Galaxy
M51, which is a spiral galaxy. On the other hand, many galaxies seem to have
featureless elliptical shapes. They are known as elliptical galaxies. Figure 9.2
is a photograph of such a galaxy. Apart from spiral and elliptical galaxies, there
are some galaxies with irregular shapes which do not fit into either of these
categories. They are simply called irregular galaxies.

Since all spiral galaxies are believed to be intrinsically shaped like circular
disks, the apparent shape of a spiral galaxy in the sky gives an indication of its
inclination with respect to the line of sight. On the other hand, different elliptical
galaxies have different ellipticities, and their intrinsic ellipticities cannot be
deduced easily from apparent shapes. For example, a highly flattened elliptical
galaxy may appear fairly round in the sky if its short axis is turned towards
us. Although the apparent shapes of elliptical galaxies may not be indicative
of their real shapes, still elliptical galaxies are customarily classified according
to their apparent shapes. The circular-looking elliptical galaxies are classified
as E0. Then we go through a sequence of E1, E2, E3 . . . in order of increas-
ing ellipticity, ultimately ending with E7 which are fairly flattened elliptical
galaxies. Hubble (1936) developed a famous scheme of classifying galaxies, in
which E7 elliptical galaxies are taken to be similar to spiral galaxies with very
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Fig. 9.2 The elliptical galaxy NGC 1132, photographed with the Hubble Space

Telescope. Courtesy: NASA and Space Telescope Science Institute.

closely wound spirals. There are some spiral galaxies with bars in the central
regions, such as the galaxy shown in Figure 9.3. Hubble (1936) divided the
spiral galaxies into ordinary spirals and barred spirals. Ordinary and barred
spirals with very closely wound spirals are classified as S0 and SB0. Spiral
galaxies with increasingly looser spiral structures are classified in the sequence
Sa, Sb, Sc. Barred spirals are similarly classified in the sequence SBa, SBb,
SBc. Figure 9.4 gives the famous tuning fork diagram, in which Hubble (1936)
sequentially arranged all these galaxies.

Elliptical galaxies vary widely in luminosity – from very luminous giant
galaxies to dwarf galaxies. The number density of elliptical galaxies with
luminosity in the range L to L + dL is approximately given by Schechter’s law
(Schechter, 1976)

φ(L) dL ≈ N0

(
L

L∗

)α

exp(−L/L∗)
dL

L∗
, (9.1)

where N0 = 1.2 × 10−2h3 Mpc−3, α = −1.25 and L∗ = 1.0 × 1010h−2L�.
Here h appearing in the expressions of N0 and L∗ is obviously not Planck’s
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Fig. 9.3 The barred spiral galaxy NGC 1300, photographed with the Hubble Space

Telescope. Courtesy: NASA and Space Telescope Science Institute.

Fig. 9.4 Hubble’s tuning fork diagram of galaxy classification.

constant but a very important dimensionless parameter in extragalactic astron-
omy, which will be introduced in §9.3. It is easy to see from (9.1) that dwarf
elliptical galaxies greatly outnumber the giants. In contrast to elliptical galaxies,
the spirals do not vary that much in size or luminosity. The typical fractions of
spirals and ellipticals in a population of galaxies depend on the environment
(Dressler, 1980). In the central regions of rich clusters of galaxies, only about
10% of the galaxies may be spirals. In contrast, the spirals may constitute nearly
80% of the bright galaxies in the low-density regions of the Universe.

The surface brightness of a galaxy is naturally the maximum at the centre
and falls off as we go towards the outer edge. In the case of elliptical galaxies,



9.2 Normal galaxies 265

the fall of surface brightness with distance from the centre can be fitted fairly
well by the de Vaucouleurs law (de Vaucouleurs, 1948)

I(r) = Ie exp

{
−7.67

[(
r

re

)0.25

− 1

]}
, (9.2)

where re is called the effective radius within which half of the luminosity is
contained (if the image of the galaxy happens to be circular), whereas Ie =
I (re). For the disk of a spiral galaxy, an exponential law gives a reasonably
good fit for the fall in surface brightness:

I (r) = I0 exp

(
− r

rd

)
. (9.3)

Here rd is the distance at which the intensity falls to 0.37I0 and gives a measure
of the size of the disk.

9.2.2 Physical characteristics and kinematics

Apart from the overall appearances, the physical characteristics of elliptical and
spiral galaxies are also very different. We have introduced the concept of stellar
populations in §6.4. A typical elliptical galaxy is very much like a Population II
object. There is very little interstellar matter in an elliptical galaxy and star
formation no longer takes place. So most of the stars are fairly old, giving a
yellowish colour to the galaxy, in the absence of young bluish stars. Another
property of Population II objects in our Galaxy, as we saw in §6.4, is that
they have very little rotational velocity and are supported against gravity by
random motions. Exactly similar considerations hold for elliptical galaxies as
well. There is usually very little systematic rotation in an elliptical galaxy. The
stars do not all collapse to the centre because of the random motions. The larger
or the more luminous the elliptical galaxy is, the stronger is its gravity and the
stars need to have more random motions in order to maintain a steady state. The
velocity dispersion σ of an elliptical galaxy is related to its intrinsic luminosity
by the Faber–Jackson relation (Faber and Jackson, 1976)

σ ≈ 220

(
L

L∗

)0.25

km s−1, (9.4)

where L∗ is the same luminosity as what appears in (9.1). It is clear from (9.4)
that σ is larger for elliptical galaxies with higher luminosity L . Figure 9.5 shows
velocity dispersions of several elliptical galaxies plotted against their luminosi-
ties. The observational data show a reasonably tight correlation corresponding
to the Faber–Jackson relation, without too much scatter.

In addition to the differences in appearance and morphology, spiral galaxies
differ from elliptical galaxies in the following basic characteristics: (i) spiral
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Fig. 9.5 The velocity dispersion σ of elliptical galaxies plotted against their absolute

magnitudes. Remembering that the absolute magnitude is 2.5 times the logarithm of

luminosity, one obtains the Faber–Jackson relation from this plot. From Oegerle and

Hoessel (1991). ( c©American Astronomical Society. Reproduced with permission from

Astrophysical Journal.)

galaxies contain considerable amounts of interstellar matter (ISM); and (ii) both
stars and the ISM move in roughly circular orbits around the centre of a spiral
galaxy such that the gravitational attraction towards the centre is balanced by
the centrifugal force. Because of the presence of ISM, star formation goes on
inside the disks of spiral galaxies, making them appear bluer than elliptical
galaxies. We also receive synchrotron radiation (see §8.11) from the disks of
spiral galaxies, which shows that spiral galaxies have magnetic fields as well as
cosmic ray particles spiralling around them as in our Galaxy.

We discussed in §6.5 that the emission at the 21-cm line helped in mapping
the distribution and kinematics of the ISM in our Galaxy. The ISMs of external
spiral galaxies can also be studied by analysing the emission at the 21-cm line.
If the galaxy is moving with respect to us, then we will of course find this line
Doppler shifted. Additionally, in the case of a rotating disk, we expect the ISM
to be moving towards us on one side of the galaxy and moving away from us on
the other side (unless the line of sight is exactly perpendicular to the disk). The
Doppler shifts of the 21-cm line should accordingly be different on the opposite
sides of the spiral galaxy. This is indeed seen and one can use this variation
of Doppler shift to determine how the circular speed vc of the ISM varies with
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Fig. 9.6 The contours of constant Doppler shift (given in km s−1) in the 21-cm line

emission superposed on the negative optical image (i.e. the galaxy is shown in black

against a light background) of the galaxy NGC 5033. From Bosma (1978). Courtesy:

A. Bosma.

distance from the centre of the galaxy. Figure 9.6 shows the contours of constant
Doppler shift in a spiral galaxy superposed on the optical image of the galaxy.
The contour lines go well beyond the optical image, since the 21-cm emission
of a typical spiral galaxy usually comes from a region much larger than the
optical image. This implies that a spiral galaxy does not end at the edge of its
optical image (primarily due to stars) and the disk of non-luminous ISM must
be extending well beyond where stars are found.

From a figure like Figure 9.6, one can determine how the rotation speed
vc varies with the distance from the centre inside a galaxy. A plot of the
circular speed vc as a function of the radius of a galaxy is known as a rotation
curve. Before presenting observationally determined rotation curves, let us first
discuss what we expect on theoretical grounds. If vc is the circular speed at a
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radial distance r from the centre, then equating the centrifugal force with the
gravitational force gives

v2
c

r
= GM(r)

r2
, (9.5)

where M(r) is the mass within the radius r . We should point out that (9.5)
is strictly valid only for a spherically symmetric distribution of matter. In the
case of a spiral galaxy, we expect (9.5) to give only an approximate qualitative
idea of how vc varies with r . If we take M(r) ∝ r3 in the central region of the
galaxy, as we would expect in the case of a uniform spherical distribution, then
it follows from (9.5) that

vc ∝ r (9.6)

in the central region of the galaxy. If most of the mass is confined within a
certain region, then the circular speed beyond that region, on the other hand,
must be given by

vc =
√

GMtotal

r
, (9.7)

where Mtotal is the total mass. In other words, we expect vc to fall as r−1/2

in the outer regions of the galaxy. Now we show in Figure 9.7 the rotation

Fig. 9.7 The rotation curves of several galaxies showing how vc varies with radius.

From Rubin, Ford and Thonnard (1978). ( c©American Astronomical Society. Repro-

duced with permission from Astrophysical Journal Letters.)
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curves of several spiral galaxies determined from the Doppler shift of the
21-cm line. It seems that vc rises in the central regions of galaxies roughly as
we expect from (9.6). However, the rotation curves become asymptotically flat
and the values of vc thereafter remain nearly constant with increasing radial
distance. We do not see a fall in vc as suggested by (9.7). This came as a
very big surprise to astronomers when rotation curves of a few spiral galaxies
were determined for the first time (Rubin and Ford, 1970; Huchtmeier, 1975;
Roberts and Whitehurst, 1975; Rubin, Ford and Thonnard, 1978). Since the
21-cm emission is detected from regions of galaxies beyond the visible disk, it
could be ascertained that the ISM keeps on going in circular orbits with constant
vc well beyond the regions emitting visible light in the galaxies.

What stops vc from falling as r−1/2 as suggested in (9.7)? The most plaus-
ible suggestion is that mass distribution continues beyond the visible stellar
disk of the galaxy and even beyond the regions from where we receive 21-cm
emission. That is why (9.7) based on the assumption that we are at the outer
periphery of mass distribution is not applicable. It follows from (9.5) that
M(r) ∝ r in a region where vc is constant. So it is difficult to estimate the total
mass of a galaxy if we are not able to detect the fall-off of vc at larger distances.
It appears that the total mass of a typical spiral galaxy is at least a few times the
total mass of stars emitting light. In other words, most of the matter in a spiral
galaxy does not emit light and is usually referred to as dark matter. Determining
the nature of dark matter is one of the major challenges of modern astronomy.
One important component of dark matter is obviously the ISM which exists in
the form of a disk extending beyond the disk of stars. Since we do not see a
fall-off of vc till the edge of the region where atomic hydrogen (emitting the
21-cm line) is found, it is obvious that there must be matter even beyond this
region and this matter is not atomic hydrogen. We have no information about
the nature of this matter or its distribution. Does this dark matter lie in the disk
beyond the disk of neutral hydrogen or does it form a halo around the galaxy?
We do not know the full answer (see the discussion of gravitational lensing in
§13.3.2).

The asymptotic circular speed vc in the flat portion of the rotation curve
would certainly depend on the mass of the spiral galaxy. We expect a higher vc

for a more massive galaxy. Since a more massive galaxy is expected to be more
luminous as well, we anticipate a correlation between the asymptotic vc and the
intrinsic brightness of a spiral galaxy. Tully and Fisher (1977) discovered such
a correlation. In the infrared 2.2 micron K band, the Tully–Fisher relation can
be written as

vc ≈ 220

(
L

L∗

)0.22

km s−1 (9.8)

(Aaronson et al., 1986), where L∗ is the characteristic galaxy luminosity. This
is reminiscent of the Faber–Jackson relation (9.4) of elliptical galaxies.
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9.2.3 Open questions

We have seen in Chapters 3 and 4 that we have a reasonably complete theoretical
understanding of various observed properties of stars. A similar theoretical
understanding of galaxies has so far eluded astrophysicists. In Chapter 7 we
have given an introduction to the theoretical methods for studying the dynamics
of a collection of self-gravitating stars. Whereas an elliptical galaxy may seem
like a collection of self-gravitating stars, a spiral galaxy is a more complex
system due to the presence of the ISM. But why do these collections of stars take
up only the morphologies which the galaxies seem to have? What rules out other
possible morphologies which an imaginative person should be able to think
of? We have no satisfactory theoretical answer to this question. For example,
we still have no full theory to explain Hubble’s tuning fork diagram. What
determines whether a galaxy will turn out to be a spiral galaxy or an elliptical
galaxy? Do the initial conditions during galaxy formation determine this, or
does it depend on the environment? Our understanding of galaxy formation still
being rather primitive, we do not know much about the initial conditions which
may determine the nature of the galaxy. Since spiral galaxies have more angular
momentum, the amount of angular momentum in the proto-galactic cloud may
have some importance in determining the nature of the galaxy formed. The fact
that the fraction of spiral galaxies is considerably less within dense clusters
of galaxies gives an indication that the environment also must play a role, but
we are not quite sure yet about the exact nature of this role. One possible
explanation for the scarcity of spiral galaxies in rich clusters is that some of
them had been converted into elliptical galaxies. We shall discuss in §9.5 that
there are mechanisms by which a galaxy in a rich cluster may lose its ISM.
However, if a spiral galaxy loses its ISM, is that sufficient to convert it into an
elliptical galaxy? The current evidence points to a tentative answer ‘yes’, but we
certainly do not understand the details of how this happens. We shall also point
out in §9.5 that there are some indications that two colliding spiral galaxies may
result in a large elliptical galaxy.

There are many other properties of galaxies which we understand only at
a very rough qualitative level. For example, we expect the surface brightness
of any galaxy to decrease as we move away from its centre. However, nobody
has succeeded in giving detailed theoretical derivations from first principles to
explain (9.2) or (9.3) quantitatively. Again, we certainly expect larger elliptical
galaxies to have more velocity dispersion and larger spiral galaxies to have
higher asymptotic vc. So relations like the Faber–Jackson relation (9.4) and
the Tully–Fisher relation (9.8) are certainly expected on the basis of broad
qualitative arguments. But we do not have quantitative theoretical explanations
why these relations have the precise mathematical forms which they seem to
have. Since galaxies are often regarded as the building blocks of the Universe, it
is certainly a very unsatisfactory situation that we understand galaxies so little.
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9.3 Expansion of the Universe

Suppose a source emitting sound is moving away from you at speed v and the
speed of sound through air is cs. It is easy to show that the frequency νobs of
the sound wave measured by you as an observer will be related to the frequency
νem at which the sound is emitted by

νobs

νem
= cs

cs + v
(9.9)

(see, for example, Halliday, Resnick and Walker, 2001, §18-8). This is the well-
known Doppler effect. For the case of light, it is a little bit more subtle, since the
speed of light c is the same for all observers and the relative speed v between
a light-emitting source and an observer cannot exceed c. However, if v is small
compared to c, then (9.9) holds approximately for the Doppler effect of light
as well, with c replacing cs (Halliday, Resnick and Walker, 2001, §38-10).
The wavelengths of light in the frames of the emitter and observer are then
related by

λobs

λem
= νem

νobs
= 1 + v

c
. (9.10)

Since λobs > λem for a source moving away from us, a spectral line in the
spectrum of the moving source will appear shifted towards the red side of the
spectrum. Astronomers usually denote the redshift by the symbol z defined as

λobs

λem
= 1 + z. (9.11)

It follows from (9.10) and (9.11) that

v = zc. (9.12)

Thus, measuring the redshifts of spectral lines in the spectrum of a receding
source, one can find the speed of recession v.

From the spectrum of a galaxy, it is easy to measure the redshift (or the
blueshift) of spectral lines which gives the speed at which the galaxy is moving
away from us (or moving towards us). Slipher (1914) noted that the spectra of
most galaxies showed redshift, indicating that they are moving away from us.
After estimating distances of several galaxies by studying the Cepheid variables
in them, Hubble (1929) discovered that more faraway galaxies are receding
from us at higher speeds. Hubble (1929) proposed a linear relationship

v = H0l (9.13)

between the recession velocity v and the distance l. This is now known as Hub-
ble’s law and H0 is known as the Hubble constant, perhaps the most important
quantity in cosmology. As we shall see in the next chapter, it is possible for this
constant of proportionality between v and l to evolve with time. In other words,
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Fig. 9.8 An expanding plane with an observer O .

the Hubble constant is not a constant in time. It relates v and l at a particular
epoch in the evolution of the Universe and is a constant for that epoch. In the
next chapter, we shall use the symbol H to denote the Hubble constant at any
arbitrary epoch, whereas H0 denotes the Hubble constant at the present time.

On hearing about Hubble’s law for the first time, the natural question which
comes to one’s mind is whether our Galaxy is situated in some special central
location of the Universe from which the other galaxies are flying away. A
little reflection shows that this linear law merely implies that the Universe is
undergoing a uniform expansion and a law like Hubble’s law will appear to be
true at any point in the Universe. For simplicity, let us consider a plane surface
which is expanding uniformly with some marks on it (Figure 9.8). Suppose O
is an observer who is watching the two marks at A and B. The distances to A
and B from O are respectively lA and lB such that

lB = α lA. (9.14)

After the plane has expanded uniformly for time dt , the changed distances of A
and B will also satisfy a similar relation

lB + dlB = α(lA + dlA)

by virtue of the uniformity of expansion. Hence

dlB
dt

= α
dlA
dt

.

Since the time derivative of distance is nothing but the recession velocity from
O , we can write this as

vB = α vA. (9.15)

It follows from (9.14) and (9.15) that

vB

vA
= lB

lA
.

Thus various points in the plane will appear to move away from O obeying
Hubble’s law that the recession velocity is proportional to the distance. Since O
is an arbitrary point in the plane, we expect a similar recession law to hold with
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respect to any point in the plane, provided the plane is expanding uniformly.
Hubble’s law, therefore, suggests a uniformly expanding Universe in which all
points are equivalent.

In the example of the uniformly expanding plane, let us now assume that A
and B are not static marks, but represent ants which are moving on the plane
while the plane is expanding. Then the recession velocities of A and B will
consist of two parts: (i) a part due to the expansion of the plane which will satisfy
Hubble’s law; and (ii) a part due to the motions of the ants with respect to the
expanding plane. Exactly the same considerations apply to receding galaxies as
well. If galaxies are moving away from us strictly as a part of the general flow
of the expanding Universe, then Hubble’s law would be exact. On the other
hand, if galaxies also move around with a random velocity with respect to this
general flow of expansion, then their relative velocities with respect to us can
have another part which is random. So we expect the velocity of a galaxy to be
given by

v = H0l + δv, (9.16)

where δv is the random part which can be of order 1000 km s−1, since this is the
typical velocity of a galaxy with respect to the background flow of expansion.
The first term H0l increases with distance, whereas the second term δv is of the
same order for galaxies at different distances. Hence we expect H0l to be the
dominant term for galaxies at large distances for which (9.16) will approach
Hubble’s law (9.13). For nearby galaxies, however, one expects large departures
from Hubble’s law. In fact, the Andromeda Galaxy M31, which is one of our
nearby large galaxies, shows blueshift implying that it is moving towards us. We
shall see in §9.5 that both our Galaxy and the Andromeda Galaxy are part of a
cluster of galaxies known as the Local Group. Typically a cluster of galaxies is
a gravitationally bound system and does not expand with the expansion of the
Universe. One typically has to look at galaxies at distances larger than the size
of a galaxy cluster (a few Mpc) for Hubble’s law to hold.

Determination of the Hubble constant

Determining the Hubble constant accurately is one of the major challenges in
cosmology. The recession velocity v can be found easily from a measurement
of the redshift z. So it is the measurement of the distance l which is the
main source of uncertainty. The distance of a galaxy can be found if, within
that galaxy, we can identify any object of known intrinsic luminosity. Such
objects are often referred to as standard candles in astronomy. As we already
pointed out, Hubble (1922) determined the distances of some nearby galaxies
by studying Cepheid variables in them, which were taken as standard candles.
For galaxies still further away for which Cepheid variables are not discernable,
one can take the brightest stars as standard candles, assuming that the brightest
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stars in all galaxies are of approximately the same luminosity. We pointed out
in §4.7 that Type Ia supernovae always have the same peak intensity. So, if a
Type Ia supernova, which can be much brighter than the brightest stars and can
be observed in very faraway galaxies in which even the brightest stars are not
distinguishable, is observed in a galaxy, that can be used as a standard candle.
Since one cannot always detect a supernova in a galaxy, one can use the Faber–
Jackson relation (9.4) of elliptical galaxies or the Tully–Fisher relation (9.8) for
spiral galaxies to determine the intrinsic luminosity of a galaxy, from which
a measurement of the apparent luminosity gives the distance. All the distance
measurement methods, however, become more and more uncertain as we go
to larger and larger distances. Since an accurate determination of the Hubble
constant requires measurements of both distance and cosmological recession
velocity, we have a problematic situation. For nearby galaxies, the distances
can be measured accurately, but the possible presence of a random component
makes the measurement of cosmological recession velocities uncertain. On the
other hand, recession velocities of distant galaxies may be primarily due to the
cosmological expansion, but their distances are difficult to measure accurately.
For several decades, the Hubble constant remained a quantity which had an
unacceptably high error bar. One of the major aims of the Hubble Space
Telescope was to narrow down this error bar by determining the distances of
galaxies accurately. The project undertaken for this purpose was named the
Hubble Key Project, which finally succeeded in pinning down the value of the
Hubble constant to a great extent.

Before quoting the value of the Hubble constant, let us point out the unit
used for it. Since velocities of galaxies are usually given in km s−1 and distances
given in Mpc, it has become customary to give the value of the Hubble constant
in the unit km s−1 Mpc−1, although it has the dimension of inverse time. Hubble
(1929) had found a rather large value of about 500 in this unit. During much
of the second half of the twentieth century, different groups claimed values in
the range 50 to 100. It became customary to write the Hubble constant in the
following way:

H0 = 100h km s−1 Mpc
−1

, (9.17)

where h was supposed to be a constant of which the value would be fixed by
future measurements. Since many important quantities in cosmology depend on
the Hubble constant, there were obvious advantages of substituting (9.17) for
calculating the values of these quantities. Then one could clearly see how these
quantities were affected by the uncertainties in the determination of H0. For
example, let us consider how we can find the distance l of a galaxy from its
redshift z. From (9.12), (9.13) and (9.17), it follows that

l = 3000zh−1 Mpc. (9.18)
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Once we know the exact value of h, (9.18) would give us the exact distance l. As
another example, let us try to estimate the age of the Universe. If we assume that
a galaxy moving away from us at speed v always moved at this speed v from
the beginning of the Universe (which is not a correct assumption as we shall
see in the next chapter), then the time taken by it to move through a distance
l is l/v = H−1

0 . All the galaxies must have been on top of each other at the
approximate time H−1

0 before the current epoch. This is called the Hubble time
and gives an order of magnitude estimate of the age of the Universe. On using
(9.17) and converting Mpc to km, we find the Hubble time to be

H−1
0 = 9.78 × 109h−1 yr. (9.19)

If h is assumed to lie in the range 0.5 to 1.0 (which was the case a few years ago),
then one can find the uncertainty of the Hubble time from the above expression.

After analysing the various techniques of distance measurement carefully,
the Hubble Key Project team finally announced a value of the Hubble constant
(Freedman et al., 2001):

H0 = 72 ± 8 km s−1 Mpc
−1

. (9.20)

This can be taken as the most reliable value of the Hubble constant that we have
at the present time. Figure 9.9 plots recession velocities of some nearby galaxies
against their Cepheid distances, to give an idea how good Hubble’s law is within
distances for which the distance measurement can be regarded as accurate.

Astronomers are aware of objects having redshift z of order or larger
than 1, where z is calculated from (9.11) by using the observed wavelength

Fig. 9.9 Recession velocities of galaxies plotted against their distances measured from

Cepheid variables. The Cepheid distance can be measured only if the galaxy is not

too far away. The values of the Hubble constant corresponding to the three straight

lines are indicated. From Freedman et al. (2001). ( c©American Astronomical Society.

Reproduced with permission from Astrophysical Journal.)
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of some known spectral line. Certainly (9.10) and (9.12), which hold only in the
approximation |v| � c, cannot be true in such a situation, since (9.12) would
imply a speed larger than c when z > 1. The full special relativistic expression
for the Doppler shift allows for z to be larger than 1 when v approaches c.
However, even this special relativistic interpretation is not very helpful in under-
standing the physics of what is happening when z is larger than 1. We need to
apply general relativity for a proper study of the Universe at large redshift. We
shall discuss the general relativistic interpretation of redshift in §10.3 and shall
derive it in §14.3. This chapter is restricted to a discussion of only that part
of the extragalactic Universe for which z < 1. The later chapters will discuss
objects having z > 1.

9.4 Active galaxies

A normal galaxy is made up of stars and interstellar matter. Sometimes, how-
ever, it is found that a galaxy may additionally have a compact nucleus at its
centre giving out copious amounts of radiation in several bands of electromag-
netic spectrum from the radio to X-rays. Such a galaxy is called an active galaxy
and its nucleus is called an active galactic nucleus, abbreviated as AGN.

9.4.1 The zoo of galactic activity

The study of active galaxies followed a rather chequered path. Objects which
we now recognize to be very similar were often not realized to have anything in
common when they were first discovered. As a result, the nomenclature in this
field is heavily loaded with historical baggage. The names of different types of
active galaxies give no clue as to how these different types of active galaxies
may be related to each other.

This subject began when Seyfert (1943) noted that some spiral galaxies had
unusually bright nuclei. The spectra of these nuclei were found to be totally
different from the spectra of stars and had strong emission lines. So a typical
galactic nucleus of this kind could not simply be a dense collection of stars.
Depending on whether the emission lines were broad or narrow, these galaxies
are now put in two classes. Galaxies with nuclei emitting very broad lines are
called Seyfert 1 galaxies. On the other hand, if the emission lines are narrow,
then the galaxies are called Seyfert 2 galaxies.

The next impetus to this field came from radio astronomy. It was found that
some galaxies emitted radio waves. As resolutions of radio telescopes improved
with the development of interferometric techniques, it became possible to study
the detailed natures of these so-called radio galaxies. Jennison and Das Gupta
(1953) discovered that the radio emission of the galaxy Cygnus A comes from
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two lobes located on two sides of the galaxy lying quite a bit outside the
optical image of the galaxy. It was soon found that this was quite a common
occurrence amongst radio galaxies rather than an oddity. Many radio galaxies
consist of radio-emitting lobes lying outside the galaxy on two sides. The
obvious question which bothered astronomers was: what could be the source
of energy for powering radio emission from these lobes lying so far outside the
galaxies?

At first sight, radio galaxies seemed to have nothing in common with Seyfert
galaxies. Seyfert galaxies are spiral galaxies with bright nuclei. On the other
hand, the radio galaxies, which were mostly found to be elliptical galaxies, have
the radio emissions coming from lobes lying outside the galaxies. The fact that
they could have something in common became apparent only when astronomers
started probing the source of energy in radio galaxies. With improved radio
telescopes, it was found that often oppositely directed radio-emitting jets were
squirted out of the central regions of radio galaxies. These jets, which are
presumably made of plasma flowing out at very high speed, made their ways
by pushing away the intergalactic medium surrounding the galaxies. The lobes
are located where the jets are finally stopped by the intergalactic medium.
Figure 9.10 shows the radio image of Hercules A, which has almost symmetrical
radio jets ending in radio-emitting lobes. It appears that the ultimate source
of energy of a radio galaxy lies in its nucleus that produces the jets. The
jets basically act as conduits for carrying the energy from the nucleus to the
lobes (Blandford and Rees, 1974). Like Seyfert galaxies, radio galaxies are also
galaxies which have active nuclei. The radio emissions from the jets and lobes
of radio galaxies seem to be of the nature of synchrotron radiation, since they
have the power-law spectra characteristic of synchrotron radiation. As discussed

Fig. 9.10 The radio image of the radio galaxy Hercules A produced with the radio

telescope VLA (Very Large Array). The radio-emitting jets and lobes are clearly seen.

From Dreher and Feigelson (1984). ( c©Nature Publishing Group. Reproduced with

permission from Nature.)
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in §8.11, the emission of synchrotron radiation implies that the jets and lobes
must have magnetic fields around which relativistic electrons are gyrating.

Quasars, which are the most extreme examples of active galaxies, came
to the attention of astronomers in a dramatic fashion. These are radio sources
of very compact size, some of which could be identified with optical sources
looking very much like stars. However, these optical sources were found to
have broad emission lines in the spectra, which seemed mysterious and non-
identifiable at first. Finally Schmidt (1963) identified the spectral lines of the
quasar 3C 273 to be nothing other than the ordinary spectral lines of hydrogen
redshifted by an amount z = 0.158, which was considered an unbelievably large
redshift at that time. Spectral lines of many other quasars were soon identified to
be ordinary lines which had undergone even larger redshifts. If these redshifts
are caused by recession velocities due to the expansion of the Universe, then
(9.18) implied that these quasars must be lying at enormous distances – beyond
the distances of most ordinary galaxies known at that time. If the quasars were
really at such distances and still appeared so bright, then the typical luminosity
of a quasar should be of order 1039 W, making it more than 100 times brighter
than an ordinary galaxy. What baffled astronomers further is that the emissions
from some quasars were found to be variable in time, the time scale of variation
being sometimes of the order of days. If t is the typical time scale of variation,
then the size of the emitting region cannot be larger than ct . It was inferred that
some quasars were emitting their huge energies from very small nuclear regions,
which could not be much larger than the solar system. This seemed so incredible
at the first sight that many astronomers wondered if quasars were actually
not located so far away and hence not intrinsically so luminous. If that were
the case, then the redshifts of quasars should not be due to the cosmological
expansion and one has to give an alternative explanation for the redshifts. One
suggestion was that the quasars may be objects which were ejected at high
velocities from the centre of our Galaxy due to some violent explosion there.
Only gradually, over several years, astronomers came to accept the fact that
quasars are really far-away objects and must be awesome energy-producing
machines. In the case of at least a few nearby quasars, it became possible to
show that they reside inside galaxies and must be nuclei of galaxies. Such
observations are not easy to do, since the nuclei are many times brighter than the
host galaxies and the remaining parts of the galaxies get obscured by the glare of
the nuclei.

Figure 9.11 shows the typical spectrum of a quasar shifted to rest wave-
lengths (i.e. after dividing the observed wavelengths by 1 + z). It may be noted
that the spectra of central regions of Seyfert 1 galaxies look very similar,
whereas the emission lines in the spectra of Seyfert 2 galaxies are narrower.
The similarity in spectra suggests that Seyfert galaxies and quasars may be
similar kinds of active galaxies, the Seyfert galaxies being the milder form of
such active galaxies, whereas the quasars are the more extreme and rarer form
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which can be detected at very large distances where Seyfert galaxies would not
be observable. It is seen from Figure 9.11 that quasars emit very strongly in
UV. One efficient method of searching for quasars is to look for stellar-looking
objects for which the UV brightness compared to the optical brightness is much
higher than what we expect in the case of a star. As a result of such searches,
a large number of sources could be found having all the other properties of
quasars, except that they did not emit in the radio wavelengths. These radio-
quiet quasars are often called quasi-stellar objects, abbreviated as QSOs. Since
some authors use the terms ‘quasar’ and ‘QSO’ almost interchangeably, we shall
use the terms radio-loud and radio-quiet quasars to denote quasars which do and
do not emit in the radio. Radio-quiet quasars seem much more numerous than
radio-loud quasars. Only a few percent of all quasars seem to be radio-emitters.

9.4.2 Superluminal motion in quasars

The only things in common between a radio galaxy and a radio-loud quasar
may seem that they are both emitters of radio waves. Otherwise, they may at
first sight appear to be very different kinds of objects, with quasars being very
compact in appearance and radio galaxies being extended sources with huge jets
and lobes. The fact that they may actually be the same objects became clear only
when VLBI (see §1.7.2) was used to produce high-resolution maps of quasars
showing moving parts inside them. Figure 9.12 shows images of 3C 273 taken
in different years. It is clear that a radio-emitting blob is moving away from the
central region. On multiplying the angular velocity of separation by the distance
of the quasar, one finds a linear velocity larger than c. This phenomenon is
referred to as superluminal motion. Does this mean that things can move faster
than c in the world of very distant galaxies? Even before such superluminal
motions were observationally discovered, Rees (1966) realized the possibility
of apparent superluminal motions if something is moving towards the observer
at a speed v comparable to c making a very small angle θ with respect to the line
of sight. This is illustrated in Figure 9.13, where a source of radiation has moved
from A to B in time δt such that AB = v δt . If the source emitted a signal when
it was at A (setting t = 0 when the source was at A), then that signal would
reach the observer O at a distance D away at time

tAO = D

c
.

If another signal is emitted after time δt when the source is at B, it is easy to
see that this signal will reach the observer at time

tBO = δt + D − v δt cos θ

c
.
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Fig. 9.12 High-resolution radio maps of the quasar 3C 273 obtained by VLBI (Very

Large Baseline Interferometry) at different epochs. From Pearson et al. (1981).

( c©Nature Publishing Group. Reproduced with permission from Nature.)

Fig. 9.13 A sketch illustrating how superluminal motion arises.



282 Extragalactic astronomy

So the observer will receive the two signals at times differing by

tBO − tAO = δt
(

1 − v

c
cos θ
)

.

Since the observer will find that the source has moved by an amount v sin θ δt
in the sky, it will appear to the observer that the transverse speed of the source
perpendicular to the line of sight is

v⊥ = v sin θ δt

tBO − tAO
= v sin θ

1 − (v/c) cos θ
. (9.21)

It is easy to see that v⊥ can be larger than c if v is close to c and θ is small.
The existence of superluminal motion makes it clear that quasars often have

parts moving towards the observer with relativistic speeds. The most plausible
hypothesis is that the moving part is a jet ejected from the nucleus. If this is
correct, one would regard a radio galaxy and a radio-loud quasar to be the same
kind of object viewed from different angles. The radio galaxy has jets at large
inclinations to the line of sight so that the jets are seen as extended objects in
the sky. On the other hand, if the jet is directed towards the observer at a small
angle to the line of sight, then the source is seen as a quasar. We have pointed
out in §8.11 that radiation from a relativistically moving source appears to an
observer to be beamed in the forward direction. The radio emission from the
jet of a quasar (presumably by the synchrotron process) would be beamed in
the direction of the jet and an observer lying in that direction would receive the
beamed radiation, whereas an observer lying at a large angle with respect to the
direction of the jet would get much less radiation. It is because of this relativistic
beaming that the radio emission from a quasar appears amplified and quasars
can be observed at very large distances where radio galaxies would be too faint
to be detected. It may be pointed out that many radio galaxies have jets only on
one direction. Since jets seem to be made up of relativistically moving plasma,
relativistic beaming provides a natural explanation for this one-sidedness. If a jet
has a component of velocity towards the observer, relativistic beaming makes
it brighter than the jet in the opposite direction. We have seen in Figure 9.10
that radio galaxies also have radio-emitting lobes where the radio jets end.
Presumably the lobes are not moving relativistically and radiation from the
lobes is not relativistically beamed. That is why lobes of very distant quasars are
not detectable and we receive relativistically beamed radiation coming primarily
from the jet moving towards the observer.

9.4.3 Black hole as central engine

We now come to the central question: what powers an active galactic nucleus,
making it able to produce huge amounts of energy in a very small volume? We
saw in §5.6 that binary X-ray sources are powered by material falling in the
deep potential wells of neutron stars or black holes through accretion disks and
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by the conversion of a part of the lost gravitational potential energy to other
forms. Zeldovich and Novikov (1964) and Salpeter (1964) suggested that active
galaxies must have black holes at their centres and matter losing gravitational
potential energy in accretion disks around them should be providing the energy.
It is easy to estimate the mass of the central black hole from (5.38) if we
assume that the energy output from the active nucleus is close to the Eddington
luminosity. In order to produce a luminosity of 1039 W, (5.38) tells us that we
need a black hole of mass ≈ 108 M�. In §13.3 we shall introduce the concept of
the Schwarzschild radius. Once matter falls within the Schwarzschild radius, it
cannot send a signal to the outside world any more. So most of the radiation
produced in an accretion disk around a black hole should be coming from
regions a little bit beyond the Schwarzschild radius. We shall show in §13.3
that the Schwarzschild radius is given by

rS = 2GM

c2
= 3.0 × 1011 M8 m, (9.22)

where M8 is the mass of the black hole in units of 108 M�. This is of the order of
the Sun–Earth distance if M8 ≈ 1. So a black hole of mass 108 M� can produce
huge amounts of energy within a region of size comparable to the solar system.

We can estimate the temperature of the energy-producing region by equat-
ing the Eddington luminosity to 4πr2

Sσ T 4. Using (5.38) and (9.22), we get

c GMmH

σT
=
(

2GM

c2

)2

σ T 4,

from which

T ≈ 3.7 × 105 M−1/4
8 . (9.23)

It thus follows that more massive black holes are associated with smaller
temperatures, which may seem counter-intuitive at first sight. In the case of
larger black holes, however, the gravitational potential energy is lost over a
larger radial distance, leading to a reduction in temperature. For a black hole
of mass 108 M�, (9.23) suggests that the temperature would be appropriate for
producing radiation in the extreme UV. We now estimate the mass infall rate
required to produce the typical luminosity 1039 W of an AGN. We have seen
in §5.6 that accretion is an efficient energy conversion mechanism in which a
large fraction η of the rest mass energy can be converted into heat and radiation.
Under favourable circumstances η can be as large as 0.1. If Ṁ is the mass
accretion rate, then we must have

ηṀc2 ≈ 1039 W,

from which

Ṁ ≈ 1.5M� yr−1 (9.24)
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Fig. 9.14 A disk of gas and dust at the centre of NGC 4261 which presumably is feeding

a black hole located inside the disk. Photographed with the Hubble Space Telescope.

From Jaffe et al. (1993). ( c©Nature Publishing Group. Reproduced with permission

from Nature.)

on taking η = 0.1. We see that many of the observed characteristics of active
galaxies are explained by assuming that there is a black hole of mass 108 M�
in the galactic nucleus and that matter is falling into it through an accretion
disk, the infall rate being given by (9.24). More direct evidence that black holes
may power active galaxies came when Jaffe et al. (1993) succeeded in using
the Hubble Space Telescope to photograph a disk of gas and dust at the centre
of the active galaxy NGC 4261. This disk, shown in Figure 9.14, is presumably
the colder outer region of the accretion disk which is feeding the black hole
located inside.

One of the important characteristics of many active galaxies is the radio-
emitting jets. A tiny fraction of the material falling into the black hole has to
be ejected in the form of jets, which presumably come out perpendicular to the
accretion disk. We still have a very incomplete theoretical understanding of how
this happens. This is a very complex subject outside the scope of this elementary
book. It may be mentioned that the active galaxy NGC 4261 has radio-emitting
jets and the disk shown in Figure 9.14 is approximately perpendicular to the axis
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of the jets (Jaffe et al., 1993). Many of the jets appear highly collimated, like
the inner regions in the jets shown in Figure 9.10. It is believed that magnetic
fields play an important role in the collimation of the jets. The emission of
synchrotron radiation from the jets shows that these relativistic plasma jets must
have magnetic fields and accelerated electrons. If the electrons were accelerated
in the galactic nucleus and then carried with the magnetized plasma flowing
into the jets, simple estimates show that the electrons may cool by the time
they reach the extremities of the jets (see Exercise 9.4). Hence in situ particle
acceleration has to take place inside jets.

9.4.4 Unification scheme

If all active galaxies derive their power from a central black hole, is it possible
that all active galaxies are essentially the same kinds of objects? We now
recognize many similarities between different kinds of active galaxies, which
were thought to have nothing in common when they were first discovered.
Seyfert galaxies and quasars now appear to be similar kinds of objects, the only
difference being that quasars have much more powerful central engines. Pre-
sumably Seyfert galaxies have less massive black holes in their central nuclei.
Radio galaxies and radio-loud quasars also seem to be the same objects viewed
from different viewing angles. Is it possible that all active galaxies simply form
a simple sequence according to the strength of their central engines, but appear
as different kinds of objects to observers due to the different viewing angles?

Osterbrock (1978) proposed that a Seyfert galaxy appears as Seyfert 1 with
broad spectral lines if we are located roughly perpendicular to the accretion
torus so that we can get a view of the central region, whereas it appears
as Seyfert 2 with narrow spectral lines if we are viewing it from an angle
so that the accretion torus obscures the central region. The typical widths of
Seyfert 1 spectral lines correspond to velocities larger than even 103 km s−1

(i.e. δλ > 10 Å). If this is due to thermal broadening, then the emitting gas
has to be at the unrealistically high temperature of more than 108 K. A more
reasonable assumption is that there are fast-moving gas blobs called broad-
line regions (abbreviated as BLRs) near the central engine. Only in the case
of Seyfert 1, radiation emitted by these reaches the observer and the emission
lines appear broadened due to the Doppler-broadening of these fast-moving gas
blobs. In the case of Seyfert 2, we receive radiation only from gas blobs much
further away from the central engine which are moving more slowly and are
known as narrow-line regions (abbreviated as NLRs), giving rise to narrower
emission lines.

One of the important differences amongst active galaxies to keep in mind
is that Seyfert galaxies are spiral and radio galaxies are elliptical. Because of
the great distances of quasars, it is usually not easy to ascertain the nature of
the host galaxies of quasars. It appears, however, that most radio-loud quasars
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are associated with elliptical galaxies, whereas most radio-quiet quasars are
associated with spiral galaxies. This suggests that an active nucleus lodged in a
spiral galaxy is not likely to become a radio source (as in the case of a Seyfert
galaxy or a radio-quiet quasar), whereas an active nucleus lodged in an elliptical
galaxy is likely to produce jets and lobes which emit radio waves (as in the case
of a radio galaxy or a radio-loud quasar). We at present have no good theoretical
explanation of why active nuclei in elliptical galaxies are more likely to produce
radio jets.

To sum up, the current ideas about unification of various kinds of active
galaxies are the following. A central engine lodged in a spiral galaxy produces
a Seyfert or a radio-quiet quasar depending on whether the central engine is
weak or strong. The two types of Seyferts are merely the same objects seen
from different angles. A central engine lodged in an elliptical galaxy is seen as
a radio-loud quasar if the viewing angle is close to the radio jet and is seen
as a radio galaxy if the viewing angle is larger. Although this appears like an
attractive scheme, we must stress that at present this scheme cannot be taken as
completely established. The best way of establishing a unification scheme like
this is to carry out various statistical tests. We expect the active galaxies to be
oriented randomly at all possible angles with respect to the line of sight. It is
found that about a quarter of all Seyfert galaxies are Seyfert 1. If the opening
solid angle of the accretion torus on each side is about π/2 (i.e. one-eighth of
the total solid angle 4π around a point in space), then the unification idea based
on the viewing angle provides a natural explanation of why Seyfert 1 galaxies
make up about a quarter in the total population of Seyferts. If the radio jet of an
active galaxy has to be within a certain angle with respect to the line of sight
in order for the galaxy to appear as a radio-loud quasar and if it appears as a
radio galaxy otherwise, then one can think of carrying out similar statistical
tests on the populations of radio-loud quasars and radio galaxies. Unfortunately
the relativistic beaming effect makes this statistical test very complicated and
we do not have definitive results yet. Similarly, we expect a distribution law
for the strengths of the central engines and, if radio-quiet quasars are merely
extreme forms of Seyfert galaxies, then one would think that the populations
of Seyfert galaxies and radio-quiet quasars may form different regimes of the
same distribution law. Even this is not easy to show, since most of the quasars
are found at large distances where Seyfert galaxies would not be visible. We
expect that more research in the coming years will put the unification scheme
of active galaxies on a firmer footing.

9.5 Clusters of galaxies

Like gregarious animals, galaxies also seem to like living in herds. Our Galaxy
is a member of a cluster of about 35 galaxies called the Local Group. The
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Andromeda Galaxy M31 is the most prominent member of the Local Group and
our Galaxy is the second most prominent member. The members of the Local
Group are spatially distributed in an irregular fashion without any symmetry. Rich
clusters with many galaxies, however, tend to have more symmetric and regular
appearance. A typical rich cluster can have more than 100 galaxies distributed
within a range of order 1 Mpc. Abell (1958) catalogued a few thousand clusters
of galaxies, all lying within several hundred Mpc from us. A cluster of galaxies is
usually a gravitationally bound system and does not expand with the expansion
of the Universe. So it is the clusters of galaxies rather than galaxies themselves
which are moving away from each other with the expansion of the Universe.
In fact, there are indications that the Local Group may have an infall velocity
of a few hundred km s−1 towards the Virgo cluster, the nearest large cluster,
superposed on the Hubble expansion (Aaronson et al., 1982). Different standard
candles suggest slightly different distances for the Virgo cluster, the average
being slightly lower than 20 Mpc. It appears that there can be departures from
the Hubble flow over such distance scales. Although the Virgo cluster is a rich
cluster, its appearance is not very regular. The nearest fairly regular cluster is the
Coma cluster, of which the redshift z = 0.023 suggests a distance of 69h−1 Mpc.

Figure 9.15 shows the Virgo cluster. It is seen that a large elliptical galaxy
M87 is at the centre of the Virgo cluster. It is quite common to find a large
elliptical galaxy at the centre of a rich cluster of galaxies. Such an elliptical
galaxy belongs to a special class of galaxies known as cD galaxies. It is
believed that such galaxies form due to the merger of several galaxies (Ostriker
and Tremaine, 1975). Since stars occupy only a tiny fraction of volume inside
a galaxy, physical collisions between stars inside a galaxy is an extremely
unlikely event. On the other hand, individual galaxies occupy a much larger
fraction of volume inside galaxy clusters and astronomers have succeeding in
catching several galaxies in the act of collision. Figure 9.16 shows a pair of
colliding galaxies, which interestingly have produced long tail-like structures.
Toomre and Toomre (1972) were able to model such features theoretically
through simulations of galaxy-galaxy collision. Such colliding galaxies often
merge together. Presumably a cD galaxy at the centre of a cluster is the result of
a merger of a few large galaxies. We have pointed out in §7.4 that a star moving
inside a star cluster can be slowed down by dynamical friction. A galaxy
moving in a galaxy cluster also can be slowed down by dynamical friction in
exactly the same way. Once a cD galaxy forms, other galaxies moving through
nearby regions may lose their energy due to dynamical friction and then fall
into the cD galaxy. This process is called galactic cannibalism.

Galaxies inside a rich cluster typically have velocity dispersions of order
1000 km s−1. We have seen in §7.2 that the virial theorem can be applied to
estimate the mass of a star cluster. If a galaxy cluster is relaxed, then one can
apply (7.9) to estimate the mass of the galaxy cluster as well. On substituting
v ≈ 1000 km s−1 and R ≈ 1 Mpc, the mass of a galaxy cluster typically turns
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Fig. 9.15 The Virgo cluster of galaxies. The large elliptical galaxy at its centre is M87.

Photographed with the Hubble Space Telescope. Courtesy: NASA and Space Telescope

Science Institute.

Fig. 9.16 The colliding galaxies NGC 4038 and NGC 4039 photographed from Antil-

hue Observatory, Chile. Courtesy: Daniel Verschatse.
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out to be of order Mgc ≈ 1015 M�. On the other hand, the total luminosity of a
galaxy cluster typically is of order Lgc ≈ 1013L�. For a typical galaxy cluster,
we then have

Mgc

Lgc
≈ 100

M�
L�

. (9.25)

If the galaxies in a cluster were made up of stars like the Sun and there was no
other matter inside the cluster, then one would have Mgc/Lgc equal to M�/L�.
If a galaxy has lots of stars less massive than the Sun and much less efficient
in producing energy (due to the mass–luminosity relation (3.37)), then it is
possible that M/L of the stellar component can be of order 10M�/L�. A
factor of 100 in (9.25) implies that it is not possible for the stars inside the
galaxies to account for more than 10% of the mass of a typical galaxy cluster.
Most of the matter in a galaxy cluster has to be dark matter, i.e. matter which
does not emit radiation, but makes its presence felt only by the gravitational
field it produces (leading to the high random velocities of the galaxies in the
cluster). The existence of huge amounts of dark matter in galaxy clusters was
first realized by Zwicky (1933). We have pointed out in §9.2.2 that flat rotation
curves suggest the presence of dark matter in spiral galaxies. So a part of the
dark matter implied by (9.25) may be attached to the galaxies. Careful analyses
indicate that at most 30% of the dark matter in a galaxy cluster may be attached
to galaxies. The rest of the dark matter is somehow distributed within the cluster.
Nobody at present has a good clue about how this dark matter is distributed in
a galaxy cluster or what it is made of. A further discussion of this topic will be
presented in §11.5.

Hot X-ray emitting gas in galaxy clusters

Although we do not know much about most of the material in the galaxy cluster
lying outside galaxies, we know that a small fraction of it exists in the form of
hot thin gas, because this gas emits X-rays. The first extragalactic X-ray source
to be detected was M87 in the Virgo cluster (Byram et al., 1966). The Uhuru
X-ray satellite established many galaxy clusters as X-ray sources (Giacconi
et al., 1972). Figure 9.17 shows contours of X-ray brightness superposed on the
optical image of the Coma cluster. The approximately spherical X-ray image
suggests that the hot gas emitting X-rays is distributed fairly uniformly and
symmetrically throughout the galaxy cluster. The primary emission mechanism
is believed to be bremsstrahlung discussed in §8.12. Various aspects of the
X-ray emission of galaxy clusters can be explained by assuming that it is
bremsstrahlung emitted by a hot plasma of temperature 108 K with particle
number density ne ≈ 103 m−3 (Felten et al., 1966). On substituting these values
in (8.71) and assuming that the total volume of the gas is of order 1 Mpc3, it is
easy to show that the total X-ray luminosity from the cluster would be 1037 W.
This is indeed the typical X-ray luminosity of galaxy clusters. The total mass
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Fig. 9.17 An X-ray image (shown as contours of equal intensity) of the Coma cluster,

obtained with the Einstein Observatory (1978–81, a NASA mission of X-ray observa-

tions), superposed on the negative optical image of the cluster in which galaxies are

seen as dark blobs. As given by Sarazin (1986), who obtained the figure from C. Jones

and W. Forman. Courtesy: W. Forman.

of the hot gas is of order 1013 M�, indicating that the hot gas contributes only a
small fraction of the mass of the galaxy cluster. Before addressing the question
of where this hot gas came from, let us show that the cooling time of the hot gas
is very large. A number density ne ≈ 103 m−3 over a volume of 1 Mpc3 gives a
total of about N ≈ 5 × 1070 particles, after multiplying the number of electrons
by a factor of 2 to account for the protons (assuming that the gas is primarily
hydrogen). The total thermal energy of the gas is then

NκBT ≈ 7 × 1055 J

on taking T ≈ 108. Dividing this total thermal energy by the typical X-ray lumi-
nosity 1037 W, we get a cooling time of order 2 × 1011 yr which is larger than
the age of the Universe as estimated in (9.19), though not excessively larger.
Hence, once the hot gas is put in the galaxy cluster, it will remain hot over time
scales in which we are interested, even in the absence of any additional heating
mechanism to keep the gas hot. A more careful calculation, however, suggests
that the effects of cooling may not be completely negligible in the core of the
galaxy cluster where the gas density is highest and hence cooling is expected
to be fastest, since the bremsstrahlung emission is proportional to the square of
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density as seen in (8.71). If the gas in the central core becomes colder and causes
a decrease in pressure there, it is expected that a radially inward flow of the hot
gas known as the cooling flow will be induced (Cowie and Binney, 1977).

Let us now come to the questions (i) from where the gas in the galaxy cluster
came and (ii) why it is so hot. As we shall point out in §11.9, galaxy formation
is still a rather ill-understood subject. Presumably, when the galaxy clusters
formed, some of the primordial gas got trapped within the clusters. The trapped
gas can become heated simply by falling in the gravitational potential well of
the cluster. Suppose a proton of mass mp falls in the gravitational potential of
the cluster and a fraction η of the potential energy lost gets converted to thermal
energy. Then

η
GMgc

Rgc
mp ≈ κBT .

Using Mgc ≈ 1015 M� and Rgc ≈ 1 Mpc, we get

T ≈ 5 × 108η K.

It thus seems that even a relatively low value η ≈ 0.2 can explain the high
temperature of the gas in galaxy clusters.

Although the X-ray spectra from galaxy clusters can be explained quite
well by assuming the emission to be due to bremsstrahlung, the spectra of some
clusters show an emission line at 7 keV, which is identified as a line due to highly
ionized iron (Mitchell et al., 1976). Figure 9.18 shows the X-ray spectrum from
the Coma cluster. From the intensity of this line, one concludes that the ratio of
the number of iron atoms to the number of hydrogen atoms in a typical galaxy
cluster is of order

Fe

H
≈ 2 × 10−5,

which is about half the solar value. As far as we know, heavy elements like
iron can be synthesized only in the interiors of massive stars. The ISM of a
galaxy gets contaminated with such heavy elements when supernovae spew out
materials from the interiors of massive stars into the ISM. The presence of iron
in the gas in galaxy clusters indicates that this gas could not be pure primordial
gas, but material from the ISMs of the galaxies in the cluster also must have
been mixed with the gas. This issue is connected with the issue pointed out in
§9.2.1 that the fraction of spiral galaxies in the central regions of rich clusters is
much less than that fraction in the low-density regions of the Universe. The most
plausible explanation would be that some of the spiral galaxies in the cluster
have been converted into elliptical galaxies by losing their ISMs and this gas
lost from the spiral galaxies has been mixed with the gas in the cluster, thereby
causing the observed iron abundance in that gas.

How do spiral galaxies in a cluster lose their ISM? When two spiral galaxies
collide, Spitzer and Baade (1951) argued that the stellar components could pass
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Fig. 9.18 The X-ray spectrum of the Coma cluster showing an emission line at energy

7 keV. From Henriksen and Mushotzky (1986). ( c©American Astronomical Society.

Reproduced with permission from Astrophysical Journal.)

through each other, leaving behind the ISM. It is, however, possible for spiral
galaxies to lose ISM in more non-violent fashion. When a spiral galaxy moves
fast through the cluster, the gas in the cluster would seem to blow against it like
a strong wind. A simple application of Bernoulli’s principle (see, for example,
Choudhuri, 1998, §4.5) shows that this wind blowing against the galaxy would
exert a pressure 1

2ρv2 on the surface of the galaxy where the wind is braked.
This is called the ram pressure. Gunn and Gott (1972) suggested that this ram
pressure can force the ISM out of the galaxy, provided it is strong enough to
overcome the gravitational force with which the ISM is bound in the galaxy.

If spiral galaxies in rich clusters are continuously being converted into
elliptical galaxies, one would expect that the clusters had more spiral galaxies at
earlier times compared to what they have now. When we are looking at galaxy
clusters at high redshift, we are basically looking at clusters at earlier times
because light would have taken time to reach us from those clusters. Butcher and
Oemler (1978) claimed to have found that clusters at redshifts of order z ≈ 0.4
have more spiral galaxies than nearby clusters. This suggests that many spiral
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galaxies would have been converted into elliptical galaxies during the time light
took to travel from clusters at z ≈ 0.4 to us, which is of order 4 × 109h−1 yr.

9.6 Large-scale distribution of galaxies

Are the galaxy clusters the largest structures in the Universe or are there
even bigger structures? To answer this question, it is necessary to map the
three-dimensional distribution of many galaxies. We see galaxies distributed
over the two-dimensional celestial sphere. Once we find the redshift of a galaxy,
we can use (9.18) to find its distance and thereby obtain its position in three
dimensions. We therefore need to measure redshifts of many galaxies to con-
struct a three-dimensional map of galaxy distribution. This is a rather telescope-
intensive project, since it takes a few minutes to obtain the spectrum of a faint
galaxy to measure its redshift and redshifts of only a limited number of galaxies
can be determined in one night. The first pioneering project of this type was
the CfA Survey undertaken by de Lapparent, Geller and Huchra (1986), which
was later followed by much bigger projects like the Las Campanas Survey
(Shectman et al., 1996), the Sloan Digital Sky Survey (York et al., 2000) and
the 2dF Survey (Colless et al., 2001). Figure 9.19 shows a famous slice of the
sky from the CfA Survey (de Lapparent, Geller and Huchra, 1986) along with a
similar slice from the Las Campanas Survey (Shectman et al., 1996) exactly
a decade later. The radial coordinate is the redshift distance cz. Remember
that cz = 10,000 km s−1 would correspond to a distance of 100h−1 Mpc and
a redshift of z = 0.033. Note that the Las Campanas Survey covers galaxies
at much larger distances than the CfA Survey. Even in the CfA Survey, the
distances over the slice are much larger than the sizes of galaxy clusters. Still we
do not find a uniform distribution. It seems that the galaxy clusters make up still
larger wall-like structures which are called superclusters of galaxies. Lurking
between the superclusters, we see voids typically of size 30h−1 Mpc which
are regions free from galaxies. When we have matter distributed intermittently
in space, we can think of two extreme kinds of distribution. One possibility
is that clumps of matter appear distributed in space. The other possibility is
that bubbles of empty space remain surrounded by matter. The large-scale
distribution of galaxies seems to follow the second possibility. Any theory of
galaxy formation has to take this fact into account.

It may be noted that there are several radially elongated structures in
Figure 9.19, which are particularly prominent in the upper CfA Survey panel.
These are artifacts in the redshift distance space which may not correspond
to real structures in actual space. To understand how they arise, let us con-
sider a cluster of galaxies which have large random velocities caused by the
gravitational field of the cluster. Some galaxies would have random velocities
away from us (superposed on the mean recession velocity of the cluster) and
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Fig. 9.19 The distribution of galaxies in slices of the sky, as obtained by (a) the CfA

Survey (de Lapparent, Geller and Huchra, 1986): upper panel; and (b) the Las Campanas

Survey (Shectman et al., 1996): lower panel. The radial coordinate gives the redshift

distances of galaxies. (Remember that cz = 10,000 km s−1 corresponds to 100h−1

Mpc.) We are at the centre of the slices.

would appear in the redshift distance space to be radially further away than
the mean position of the cluster. On the other hand, galaxies with random
velocities towards us would appear nearer. Thus a cluster of galaxies having
large random velocities appears stretched in the radial direction in the redshift
distance space. Often astronomers refer to such radial elongations as ‘fingers of
God’ suggesting that one has to be cautious in interpreting redshift distances.

In the next chapter, we shall see that one of the guiding principles of cos-
mology is the cosmological principle, which assumes that matter is distributed
uniformly at sufficiently large scales, i.e. at scales larger than the sizes of local
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non-uniformities. While it was not clear from the CfA Survey (the upper panel
of Figure 9.19) whether this is indeed the case, the much deeper Las Campanas
survey (the lower panel of Figure 9.19) involving many more galaxies and
going to much higher redshifts shows that the superclusters may be the largest
structures in the Universe and different patches of the Universe look very similar
when we go to scales larger than 100h−1 Mpc. Other big observational support
for the cosmological principle comes from the amazing uniformity of the cos-
mic background radiation to be introduced in §10.5. Since cosmological models
based on the cosmological principle seem to give results in broad agreement
with various kinds of observational data, no serious cosmologist doubts the
validity of the cosmological principle at a sufficiently large scale, which now
seems reasonably well established from galaxy distribution studies.

9.7 Gamma ray bursts

We end our discussion of extragalactic astronomy with a few words about one
of the most intriguing and ill-understood objects in astronomy – gamma ray
bursts, abbreviated as GRBs. These are bursts of γ -rays typically lasting for a
few seconds. As of now, there is not yet a consensus amongst astrophysicists
how these bursts are produced.

The discovery of GRBs occurred in a dramatic way. They were first detected
by American Vela satellites designed to detect γ -rays from any secret nuclear
tests carried out by the Soviet Union or other countries. Whether these satellites
actually detected any secret nuclear tests or not is classified information, but it
quickly became clear that some of the signals detected were of extraterrestrial
origin (Klebesadel, Strong and Olson, 1973). Initially it was thought that GRBs
are produced within our Galaxy. After the launch of the Compton Gamma Ray
Observatory in 1991 (see §1.7.4), many GRBs were detected, and it became
apparent that their distribution was isotropic and not confined to the galactic
plane, suggesting an extragalactic origin. It was eventually possible to detect
a fading optical source immediately after the occurrence of a GRB at exactly
the same point in the sky (van Paradijs et al., 1997). Afterwards such optical
‘afterglows’ have been found to follow many GRBs. The optical counterparts
appear to be faint galaxies for many of which redshifts have been measured,
leading to estimates of the distance. One can try to calculate the energy emitted
in a GRB from a knowledge of its distance, although such calculations become
uncertain if the emitting material is moving relativistically towards the observer
and the relativistic beaming effect is involved (see §8.11). Still it appears that
GRBs may be the most energetic explosions in the Universe after the Big Bang!

Apart from the fact that GRBs most probably involve relativistically moving
materials, astronomers do not agree about the details of the physical mechanism
by which they are produced. It is not even clear if all the GRBs are produced
in the same way or if there are two or three different mechanisms, suggesting
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that all the GRBs may not arise in the same way. One popular theoretical idea
used to be that GRBs are caused by collisions between two neutron stars. We
have discussed the binary pulsar in §5.5.1. Two neutron stars orbiting each
other would continuously lose energy due to gravitational radiation and would
come closer to each other, eventually leading to a collision. One can make some
statistical estimates of how often such collisions are likely to occur in a galaxy
and how often we may expect to see a GRB. GRBs are detected too frequently
for this theory to be true as the cause of all GRBs. Are the GRBs then some
kind of extreme supernovae? Or are they connected with AGNs? Probably we
shall know the answers to these questions in a few years.

Exercises

9.1 Suppose an elliptical galaxy appears circular in the sky with the fall in

surface brightness given by the de Vaucouleurs law (9.2). Show that the total

light coming from this galaxy given by
∫∞

0 I(r) 2πr dr is equal to 7.22πr2
e Ie.

Show also that the light coming from within re is exactly half this amount.

9.2 On the basis of Figure 9.5, argue that σ ∝ Lα and estimate the power-law

index α.

9.3 Suppose a plasma jet is coming from a quasar at a relativistic speed 0.98c.

At what angle with respect to the line of sight must it lie to cause the maximum

superluminal motion? What is the value of the maximum apparent transverse

velocity?

9.4 Assuming that magnetic fields inside extragalactic jets are of the order of

magnetic fields in the ISM (i.e. about 10−10 T), estimate the value of γ for rela-

tivistic electrons which produce synchrotron radiation in the radio frequencies.

Use (8.59) to estimate the cooling time of these electrons due to synchrotron

emission. Compare this with the time taken by some material to start from

the central galactic nucleus and reach the outer lobes in a jet of size of 1 Mpc

moving with speed 0.1c. Do you think that electrons have to be accelerated

inside the jets, or electrons accelerated in the nucleus of the galaxy would still

be able to produce synchrotron radio emission after reaching the lobes?

9.5 Estimate the typical time a galaxy would take to cross a cluster of galaxies

and the relaxation time. A cluster of galaxies is clearly not a relaxed system,

but it has to be virialized for the virial theorem to be applicable. Do you think

that typical galaxy clusters are virialized?



10

The spacetime dynamics of
the Universe

10.1 Introduction

How the Universe began is a fundamental question which has occupied the
minds of men from prehistoric times. However, only after Einstein’s formulation
of general relativity (Einstein, 1916), did it become possible to build theoretical
models for the evolution of the Universe. Very simple considerations show that
the Newtonian theory of gravity is inadequate for handling the Universe. Con-
sider an infinite Universe uniformly filled with matter of density ρ. If we try to
find the gravitational field g at a point on the basis of the Newtonian theory, we
immediately run into inconsistencies. Since all directions are symmetric in an
infinite uniform Universe, we expect the gravitation field to be zero at any point
because there is no preferred direction in which the gravitational field vector
can point. However, Newtonian theory of gravity leads to the Poisson equation

∇.g = −4πGρ,

which also must be satisfied. If g is zero at all points, then the left-hand side of
this equation has to be zero, so that a non-zero ρ clearly leads to contradictions.

In all theories of physics before the formulation of general relativity, space-
time was supposed to provide an inert background against which one could
study the dynamics of various systems. In other words, spacetime itself was not
supposed to have any dynamics. However, general relativity allowed spacetime
also to have its own dynamics. We have discussed the recessive motions of
galaxies in §9.3. The common sense interpretation of Hubble’s law (9.13) is
that galaxies are rushing away from each other through the empty space of the
Universe. However, general relativity provides a radically different viewpoint.
We assume that the galaxies stay put in space, but space itself is expanding –
thereby moving apart the galaxies which are embedded in space.

297
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General relativity requires the machinery of tensor analysis for its mathe-
matical formulation. Is it not possible to learn cosmology, the science dealing
with the origin and evolution of the Universe, without acquiring a mastery over
the mathematical machinery of tensors? Yes and no! A deep understanding of
cosmology certainly requires a technical knowledge of general relativity based
on tensor analysis. However, some aspects of cosmology can be studied without
learning general relativity first. The dynamics of spacetime, of course, can be
handled properly only through general relativity. However, we also need to
analyse various physical phenomena taking place in the expanding space of
the Universe, in order to understand why the Universe is what it is today. Much
of this can be done without a detailed technical knowledge of general relativity.
Even the dynamics of expanding space can be studied to some extent without
introducing general relativity. If we assume that we are at the centre of the
Universe and the Universe is expanding around us in a spherically symmetric
fashion, then the equation of motion derived from Newtonian mechanics turns
out to be essentially the same as the equation that follows from the detailed
general relativistic analysis. This is an amazing coincidence, which allows us
to make considerable progress in cosmology without general relativity. This
approach is often called Newtonian cosmology (Milne and McCrea, 1934).
Many issues certainly remain unclear at a conceptual level in this approach and
some assumptions have to be taken merely as ad hoc hypotheses without trying
to justify them.

The aim of this chapter is to study the dynamics of expanding space through
the approach of Newtonian cosmology. Then the next chapter will discuss
various physical phenomena taking place in the expanding space. We present
a qualitative introduction to general relativity in §10.2, to give readers an idea
of what is left out by not doing a fully relativistic treatment. Readers not wishing
to learn general relativity at a technical level will have some idea of cosmology
from this chapter and the next. Then Chapter 12 provides elementary intro-
ductions to tensor analysis and general relativity for those readers who would
like to learn this subject at a technical level. Finally, Chapter 14 is devoted to
relativistic cosmology, where we cover some important topics which are beyond
the scope of Newtonian cosmology and are, therefore, not discussed in this
chapter.

10.2 What is general relativity?

General relativity provides a field theory of gravity. To explain what is meant
by a field theory, let us consider the example of the other great classical field
theory with which the reader must be familiar – the theory of electromagnetic
fields. We consider two charges q1 and q2 with r12 as the vectorial distance of
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q2 from q1. According to Coulomb’s law, the electric force on q2 due to q1 is
given by

F12 = 1

4πε0

q1q2

r3
12

r12. (10.1)

In the action-at-a-distance approach, we only concern ourselves with the
charges and the forces acting on them, without bothering about the surrounding
space. On the other hand, the field approach suggests that the charge q1 creates
an electric field around it which is given at the distance r12 by the expression

E = 1

4πε0

q1

r3
12

r12 (10.2)

and that the charge q2 experiences the force

F12 = q2E (10.3)

by virtue of being present in the electric field. It may appear that we are merely
splitting (10.1) into two equations (10.2) and (10.3), and nothing new is gained
in the process. As long as the charges are at rest, it is true that the field approach
does not give us anything new compared to the action-at-a-distance approach.
However, the situation changes if the charges are in motion.

Suppose the charge q1 suddenly starts moving at an instant of time. What
should we now substitute for r12 in the expression (10.1)? You may think that
we have to consider the simultaneous locations of the two charges at an instant
of time and obtain r12 from that. However, we know from special relativity that
simultaneity in different regions of space is a subtle concept and depends on
the frame of reference. If we can somehow suitably define simultaneity in some
frame of reference, then there is a more serious problem with (10.1). Since the
separation between q1 and q2 changes as soon as q1 starts moving, the force
F12 on q2 also should change immediately according to (10.1). This means that
the information that the charge q1 has started moving has to be communicated
to the other charge q2 at infinite speed, which contradicts special relativity.
These difficulties disappear if the electromagnetic fields are treated with the
help of Maxwell’s equations. It can be shown from Maxwell’s equations that
the information about the motion of q1 propagates at speed c and the charge q2

starts getting affected only when the information reaches its location. We thus
see that the action-at-a-distance approach fails to provide a consistent theory of
charges in motion and we need a field approach.

Exactly the same considerations exist in the case of the gravitational field.
When two masses are at rest, Newton’s law of gravitation gives the force
between them. But, when the masses start moving, we have the same difficul-
ties which we have with moving charges. After developing special relativity,
Einstein realized that Newton’s theory of gravity is not consistent with spe-
cial relativity. We need to develop a field approach, which will ensure that
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gravitational information does not propagate at a speed faster than c. In contrast
to two types of electric charges, we have only one type of mass. It might, there-
fore, seem at first sight that a field theory of gravity would be simpler than the
field theory of electromagnetism. In reality, however, the field theory of gravity
is much more complicated. Let us point out some reasons for this. A particle
of charge q and mass m placed in an electric field E will have acceleration
(q/m)E. This acceleration will in general be different for different particles.
In contrast, all particles placed in a small region of gravitational field (over
which the variations of the field can be neglected) have the same acceleration.
As a result, a gravitational field is equivalent to an accelerated frame. Einstein
realized that this equivalence principle would have to be an important part of a
field theory of gravity. A second complication for a field theory of gravity is that
it has to be a nonlinear theory, in contrast to the theory of the electromagnetic
field which is linear. One can give a simple argument for why the field theory
of gravity has to be nonlinear. Any field such as a gravitational field has some
energy associated with it and energy is equivalent to mass according to special
relativity. Hence a gravitational field, having some equivalent mass associated
with it, can itself act as a source of gravitational field. This is not the case
in electromagnetic theory, where charges and currents are the sources of the
electromagnetic field and the field itself cannot be its own source. Since a field
theory of gravity somehow has to incorporate the equivalence principle as well
as some nonlinear aspects, it necessarily has to be more complex than the theory
of electromagnetic fields.

Einstein (1916) had the profound insight of viewing gravity as a curvature
of spacetime. In a region without gravitational fields, the spacetime is flat and
a body moves in a straight line. However, in a region where the spacetime
is curved (which implies the presence of gravity), a body is deflected from a
rectilinear path. Thus, instead of saying that the gravitational force deflects the
body, we say that the curved spacetime makes it move in a curved path. This
geometrical interpretation of gravity automatically provides an explanation for
the equivalence principle. The curved path which a body would take in a region
is determined merely by the curvature of spacetime and should be independent
of the mass of the body. Hence bodies of different masses should follow the
same curved path.

To develop a field theory of gravity, we therefore need a mathematical
machinery to handle the curvature of spacetime. Let us first consider the cur-
vature of a two-dimensional surface. There are two ways of looking at the
curvature: extrinsic and intrinsic. When we perceive a surface as curved in a
common sense way, we essentially perceive the surface embedded in three-
dimensional space to be curved. This extrinsic way of looking at curvature is
not so useful when we consider the curvature of four-dimensional spacetime.
Do we have to think of it as being embedded in a five-dimensional something
within which it is curved? To explain the alternative intrinsic way of viewing
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Fig. 10.1 Sketch of a triangle ABC on a sphere, made with two circles of longitude and

the equator.

curvature, let us again consider the example of the two-dimensional surface. Let
there be some intelligent ants or other creatures living on this two-dimensional
surface who have no conception of three-dimensional space. Can they make
some measurements within this two-dimensional surface to find out if it is
curved or not? If a surface is plane, we know that any arbitrary triangle will
have the sum of three angles equal to 180◦. But this is not necessarily true for a
curved surface. In the case of a curved surface, a straight line has to be replaced
by a geodesic, which is the shortest path between two points of the surface
lying wholly on the surface. Great circles on a sphere are geodesics. We can
think of a triangle on the Earth’s surface made with two circles of longitude
and the equator, as shown in Figure 10.1. Clearly this triangle made up of three
geodesics has the sum of its angles larger than 180◦. So the intelligent ants living
on the two-dimensional surface can determine whether the surface is curved by
considering some arbitrary triangles and measuring the sums of their angles.
This intrinsic view of curvature does not require any consideration whether the
curved surface is embedded in a higher-dimensional space. When we consider
the curvature of four-dimensional spacetime, we naturally have to look at the
curvature from an intrinsic point of view.

The intrinsic view of curvature usually conforms to our everyday notion
of curvature – but not always! For example, we normally think of the surface
of a cylinder as a curved surface. But this surface can be unrolled to a plane
and has the same geometric properties as a plane surface. All triangles drawn
on a cylindrical surface have the sum of their angles equal to 180◦. Therefore,
when we are taking an intrinsic point of view, there is nothing to distinguish a
cylindrical surface from a plane and we have to consider the surface of a cylinder
as a plane or flat surface – a point of view which appears puzzling at first.
Now we come to the crucial question: what determines if a two-dimensional
surface is flat? If the surface can be spread on a plane without stretching or
shrinking anywhere, then it should be regarded as flat. This cannot be done
with a spherical surface and that is why a spherical surface is not flat. When
geographers have to represent the map of the whole Earth on a flat sheet of
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paper, they have to apply some projections which do drastic things like making
Greenland appear as large as Africa or making some continents highly distorted.

When we stretch or shrink some portions of a surface, we change distances
between various pairs of points on the surface. On the other hand, when we try to
spread the surface on a plane without any stretching or shrinking, we essentially
apply transformations which keep distances between all possible pairs of points
invariant. Whether such transformations would enable us to spread the surface
on a plane or not depends on how the distances between various pairs of points
are related to each other. If we introduce the standard (θ, φ) coordinates on a
spherical surface of radius a, the distance ds between two nearby points (θ, φ)

and (θ + dθ, φ + dφ) is given by

ds2 = a2(dθ2 + sin2 θ dφ2). (10.4)

In general, the distance between two neighbouring points on a surface is given
by an expression of the form

ds2 =
∑
α,β

gαβ dxα dxβ, (10.5)

where gαβ is called the metric tensor. It is this tensor which determines how
distances between various possible pairs of points are related. Hence, it is this
tensor gαβ which decides whether it would be possible to spread the surface on
the plane, i.e. whether the surface is flat or not. These considerations carry over
to spaces of higher dimensions as well. The distances between nearby points in
a higher dimensional space also can be written in the form (10.5). It is again the
metric tensor gαβ for the space which determines whether the space is flat or
curved. In §12.2 we shall develop the appropriate mathematical tools of tensor
analysis which can be applied to a metric tensor gαβ to calculate the curvature
of the space.

On using polar coordinates, the metric tensor of a plane surface is given by

ds2 = dr2 + r2 dθ2. (10.6)

Using the same coordinates (x1, x2), the two metrics (10.6) and (10.4) can be
written as

ds2 = a2(dx2
1 + x2

1 dx2
2), (10.7)

ds2 = a2(dx2
1 + sin2 x1 dx2

2). (10.8)

Another possible metric for a two-dimensional surface is

ds2 = a2(dx2
1 + sinh2 x1 dx2

2). (10.9)

When we apply the technique of curvature calculation to be developed in
§12.2.4, we find that the metric (10.7) has zero curvature (i.e. it corresponds
to a flat surface), whereas the metrics (10.8) and (10.9) correspond to uniform
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Fig. 10.2 Sketch of a saddle-like

surface.

surfaces of constant curvature 2/a2 and −2/a2 respectively. Certainly a sphere,
of which (10.8) is the metric, has a surface of uniform curvature. But what kind
of surface does (10.9) correspond to? Figure 10.2 shows a saddle-like surface.
It can be shown that the saddle point P has negative curvature. However, the
saddle surface is not a uniform surface, but has its geometric properties chang-
ing from point to point. The metric (10.9) corresponds to a uniform surface of
which every point is a saddle point. Certainly there is no real two-dimensional
surface embedded in three-dimensional space which has this property. However,
one can mathematically postulate such a surface and study its properties by
analysing (10.9).

In order to learn general relativity at a technical level, one first has to learn
the mathematical machinery of calculating curvature. That is presented in §12.2.
Here we merely point out that the theoretical structure of general relativity has
certain analogies with the theory of electromagnetic fields. The basic idea of
electromagnetic theory is that charges and currents produce electromagnetic
fields. We have Maxwell’s equations which tell us how the electromagnetic
field can be obtained if we know the distribution of charges and currents. In an
analogous way, general relativity suggests that mass and energy can give rise to
the curvature of spacetime, and the central equation, known as Einstein’s equa-
tion (to be introduced in §12.4.2), describes how the curvature of spacetime is
related to mass-energy. Hence, given the distribution of mass-energy, one can in
principle find out the metric of spacetime from Einstein’s equation and thereby
determine the structure of spacetime. To complete electromagnetic theory, we
need another equation describing how a charge moves in an electromagnetic
field, which is the Lorentz equation

m
dv
dt

= q(E + v × B). (10.10)

We require an analogous equation in general relativity, which will tell us how a
mass will move in the curved spacetime. The basic idea of general relativity is
that a mass moves along a geodesic of spacetime if non-gravitational forces are
absent. Hence, in the place of (10.10), we have the equation of the geodesic (to
be discussed in §12.2.5) in general relativity. Table 10.1 presents a comparison
between electrodynamics and general relativity. In general relativity, we basi-
cally have to replace the Newtonian theory of gravity by the idea that mass and
energy create curvatures in spacetime and a particle moves along geodesics in
this curved spacetime.
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Table 10.1 Analogy between electrodynamics and general relativity.

ELECTRODYNAMICS GENERAL RELATIVITY

Basic field equations Maxwell’s equations: Einstein’s equation:
{Charge, current} ⇒ {Mass, energy} ⇒
{Electromagnetic field} {Curvature of spacetime}

Equation of motion The Lorentz equation (10.10) Motion along geodesics
in the field

10.3 The metric of the Universe

After the brief qualitative introduction to general relativity in the previous
section, we now discuss the possible structure of spacetime in the Universe.
In §9.6, we have introduced the cosmological principle, which states that space
is homogeneous and isotropic. Now, it is possible for space to be homogeneous
and isotropic only if it has uniform curvature everywhere. We have seen that
(10.7), (10.8) and (10.9) are the only possible metrics for a two-dimensional
surface which is uniform (i.e. which has a constant curvature everywhere). We
now have to write down similar metrics for a uniform three-dimensional space.
Using spherical coordinates (r, θ, φ), the distance between two nearby points in
a flat space is given by

ds2 = dr2 + r2(dθ2 + sin2 θ dφ2). (10.11)

One can explicitly calculate the curvature of this metric (by methods to be
introduced in §12.2.4) and show that it is zero. Writing r = aχ , this metric
takes the form

ds2 = a2(dχ2 + χ2 d
2), (10.12)

where

d
2 = dθ2 + sin2 θ dφ2. (10.13)

It may be noted that the three-dimensional metric (10.12) looks very similar to
the two-dimensional metric (10.7). In analogy with (10.8) and (10.9), we can
consider the following three-dimensional metrics

ds2 = a2(dχ2 + sin2 χ d
2), (10.14)

ds2 = a2(dχ2 + sinh2 χ d
2), (10.15)

where d
2 is always given by (10.13). If we apply the techniques of curvature
calculation to be discussed in §12.2.4, we indeed find that the two metrics
(10.14) and (10.15) have uniform curvatures 6/a2 and −6/a2 respectively. Just
as all points of a sphere are equivalent, all points in the space described by
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metrics (10.14) and (10.15) must be equivalent, since the curvature has the same
value at all points in either of these metrics. In fact, (10.12), (10.14) and (10.15)
are the only possible forms of three-dimensional metrics for which all points
are equivalent. Hence, if the cosmological principle has to be satisfied, then
the spatial part of the metric of the Universe has to have one of these three
forms.

It is not difficult to show that the space described by the metric (10.14) must
have finite volume. Let us consider an element of volume with its sides along
the three coordinate directions. Keeping in mind that d
2 is given by (10.13),
it follows from (10.14) that the sides of the volume element have lengths a dχ ,
a sin χ dθ and a sin χ sin θ dφ. Hence the volume of this volume element is

dV = a3 sin2 χ dχ sin θ dθ dφ.

To get the total volume of the space, we have to integrate this over all possible
values of χ , θ (0 to π ) and φ (0 to 2π ). What is the range of values of χ?
The factor sin2 χ appearing in the metric takes the same values for χ = 0 and
χ = π , beyond which there is a repetition of the same range. Hence the total
volume of the space is given by

V = a3
∫ χ=π

χ=0
dχ sin2 χ

∫ θ=π

θ=0
dθ sin θ

∫ φ=2π

φ=0
dφ = 2π2a3. (10.16)

Just as a sphere has a surface of finite area without any edges, this space also
similarly has a finite volume without any bounding surface. It is easy to show
that the spaces given by the metrics (10.12) or (10.15) have infinite volumes.

Let us now introduce a slightly different notation. We substitute χ = r in
(10.12), sin χ = r in (10.14) and sinh χ = r in (10.15). It is straightforward to
show that (10.12), (10.14) and (10.15) now become

ds2 = a2(dr2 + r2 d
2),

ds2 = a2
(

dr2

1 − r2
+ r2 d
2

)
,

ds2 = a2
(

dr2

1 + r2
+ r2 d
2

)
.

These three equations can be written together in the combined compact form

ds2 = a2
(

dr2

1 − kr2
+ r2 d
2

)
, (10.17)

where k can have values 0, +1 and −1, respectively corresponding to uniform
space with zero, positive and negative curvature.

So far we have considered the metric of three-dimensional space. To
describe the spacetime of the Universe, we need the metric of four-dimensional
spacetime. We expect (10.17) to provide the spatial part of this metric. We now
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have to add the time part. Special relativity can guide us how to do this. We
know that the metric of special relativity is given by

ds2 = −c2dt2 + dx2 + dy2 + dz2.

Since dx2 + dy2 + dz2 is the spatial part of the metric, it is clear that we get the
full spacetime metric by adding −c2dt2 to it. In exactly the same fashion, we
expect to get the four-dimensional spacetime metric of the Universe by adding
−c2dt2 to (10.17). This gives

ds2 = −c2dt2 + a(t)2
(

dr2

1 − kr2
+ r2 d
2

)
. (10.18)

Substituting for d
2 from (10.13), the full four-dimensional form of the metric
is given by

ds2 = −c2dt2 + a(t)2
[

dr2

1 − kr2
+ r2(dθ2 + sin2 θ dφ2)

]
. (10.19)

This is known as the Robertson–Walker metric (Robertson, 1935; Walker, 1936)
and is the only possible form of the metric for a Universe satisfying the cosmo-
logical principle (i.e. having the spatial part uniform). The three values 0, +1
and −1 of k give the three possible kinds of Universe with flat, positively curved
and negatively curved space. Sometimes it is useful to write the Robertson–
Walker metric in terms of the variable χ used in (10.12), (10.14) and (10.15)
rather than r . This is easily seen to be

ds2 = −c2dt2 + a(t)2
[
dχ2 + S2(χ)(dθ2 + sin2 θ dφ2)

]
, (10.20)

where the function S(χ) has to be χ , sin χ or sinh χ corresponding to the values
0, +1 or −1 of k.

One very important point to note is that we have written a in (10.19) and
(10.20) in the form a(t) to make it explicit that a(t) can in general be a function
of time. To understand the physical significance of this, let us look at the metric
(10.4) for the surface of a sphere. There the parameter a was the radius of the
sphere and would increase with time if the sphere expanded. In exactly the same
spirit, we can regard a(t) appearing in (10.19) as a measure of the size of the
Universe. It is called the scale factor of the Universe. A time evolution equation
of a(t) will tell us how the Universe evolves with time. Such an equation can be
obtained by substituting (10.19) into Einstein’s equation, the basic equation of
general relativity. We shall carry out this exercise in §14.1. However, we have
already pointed out in §10.1 that, by a miraculous coincidence, exactly the same
equation for the evolution of the Universe can be obtained from Newtonian
mechanics with some suitable assumptions. We shall discuss this in the next
section.

Let us now point out another useful analogy with the metric (10.4) for the
spherical surface. Suppose we consider some marks on the spherical surface.
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The coordinates (θ, φ) for any particular mark will not change with time if
the sphere expands. But the marks will move away from each other because the
radius of the sphere is increasing and the distance between any two marks (along
the great circle connecting them) is proportional to the radius. In relativistic
cosmology, we take a similar point of view that galaxies are moving from each
other because the scale factor of the Universe is increasing, but the spatial
coordinates (r, θ, φ) of a galaxy would not change (provided we neglect any
motion of the galaxy with respect to the Hubble expansion). In other words,
a galaxy stays put at a point in space while space is expanding. A coordinate
system in which galaxies do not change their coordinates with the expansion of
the Universe is called a co-moving coordinate system. The Robertson–Walker
metric is usually assumed to be a metric corresponding to a co-moving coor-
dinate system. Suppose we take our Galaxy to be the origin of our coordinate
system and we want to find the distance of a galaxy located at (r, θ, φ). One
way of obtaining a measure of this distance is to integrate the spatial part of ds
between us and that galaxy. If we are at the origin, this integration will clearly
be in the radial direction and we easily conclude from (10.19) that this measure
of distance to the galaxy is given by

l = a(t)
∫ r

0

dr ′
√

1 − kr ′2 . (10.21)

We should point out that the concept of distance in general relativity involves
some subtleties. We shall present an analysis of length measurement in §13.1.
How different kinds of galaxy distances can be inferred from observational data
will be discussed in §14.4. However, these different distances as well as the
distance measure given by (10.21) converge if the redshift z of the galaxy is
small compared to 1 such that the curvature of the Universe is not important
within the distance to the galaxy. Taking l given by (10.21) as the distance to the
galaxy, the recession velocity of the galaxy with the expansion of the Universe
is obviously

v = ȧ(t)
∫ r

0

dr ′
√

1 − kr ′2 , (10.22)

where a dot represents differentiation with t throughout this chapter. It follows
from (9.13) that the Hubble constant is given by

H = v

l
= ȧ

a
. (10.23)

We have introduced some elementary concepts of relativistic cosmology.
Now we shall use only Newtonian mechanics in the rest of this chapter and see
how far we can go with it. We shall find that it is possible to study the mathemat-
ical equations for the evolution of the Universe without getting into the details of
general relativity. However, our treatment will lack self-consistency and will not
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Table 10.2 Conceptual differences between relativistic cosmology

and Newtonian cosmology.

RELATIVISTIC COSMOLOGY NEWTONIAN COSMOLOGY

1 All points in space are equivalent We are at the centre of the Universe

2 Space is expanding with galaxies Galaxies are moving away in space

3 Redshift caused by stretching of Redshift caused by Doppler effect
light wavelength due to expansion due to recession of galaxies

be satisfactory at a deep conceptual level if we shy away from general relativity.
Table 10.2 lists the main differences between relativistic cosmology and the
so-called Newtonian cosmology. Just as all points on a spherical surface are
equivalent, all points in a uniform three-dimensional space described by the
metric (10.19) are equivalent. In Newtonian cosmology, however, we shall take
the point of view that we are at the centre and the Universe is expanding radially
outwards with us at the centre. In the co-moving coordinate system introduced
in relativistic cosmology, space is expanding and carrying the galaxies with
it. On the other hand, we shall have to assume in Newtonian cosmology that
galaxies are moving away in space, which is regarded as the inert background
without any dynamics. Another problematic aspect of Newtonian cosmology is
the interpretation of the redshift of spectral lines, which is regarded as a simple
Doppler shift due to the recession of the galaxies. When the redshift z defined
in (9.11) is of the order of 1 or larger (which is the case for many objects found
through the most powerful telescopes), this interpretation does not make very
good sense, as pointed out at the end of §9.3. When we discuss the relativistic
theory of light propagation in an expanding Universe in §14.3, we shall see
that the wavelength of light gets stretched with the expansion of the Universe.
Thus, if a were the scale factor of the Universe when light started from a distant
galaxy and if a0 is the present scale factor (which must be larger than a for an
expanding Universe), it follows from relativistic considerations that

1 + z = λobs

λem
= a0

a
. (10.24)

We shall see that the expressions of most of the observable quantities in cos-
mology will involve the ratio of scale factors rather than the scale factor itself,
as in (10.24).

10.4 Friedmann equation for the scale factor

We now want to derive an equation describing how the scale factor a(t) appear-
ing in (10.19) evolves with time. We shall use some simple considerations
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Fig. 10.3 Sketch of a spherical shell in a region of

spherical expansion.

of Newtonian mechanics. As we already pointed out, we have to assume the
Universe to be spherically symmetric around us located at the centre of a
uniform expansion, as sketched in Figure 10.3, and the equation we shall
get miraculously turns out to be the same as what one gets by putting the
Robertson–Walker metric in Einstein’s equation.

Let us consider a spherical shell of radius a indicated in Figure 10.3. The
kinetic energy per unit mass of the shell is 1

2 ȧ2 and the potential energy per unit
mass is −G M/a, where M is the mass enclosed within this shell. Assuming a
uniform density ρ, the potential energy turns out to be

−
4
3πGρa3

a
= −4

3
πGρa2

so that the total mechanical energy E , which is a constant of motion, is given by

E = 1

2
ȧ2 − 4

3
πGρa2. (10.25)

If we know how ρ depends on a, then this equation can be solved to find how a
will evolve with time. As we shall see in §14.1, on substituting the Robertson–
Walker metric into Einstein’s equation, we get essentially the same equation as
(10.25) with E given by

E = −kc2

2
, (10.26)

where k is the same k that appears in the Robertson–Walker metric (10.19) and
can have values +1, −1 or 0. On substituting (10.26) in (10.25), we get

ȧ2

a2
+ kc2

a2
= 8πG

3
ρ, (10.27)

which is known as the Friedmann equation (Friedmann, 1924).
It may be pointed out that Einstein’s equation allows the possibility

of an extra term (called the cosmological constant), which causes an extra
acceleration of the Universe (Einstein, 1917). As we shall discuss in §14.5,
the recent redshift data of distant supernovae indicate that the Universe
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may be accelerating, which suggests that the Friedmann equation (10.27) may
not be the complete equation and an additional cosmological constant term may
be present. Even if that is true, for purely pedagogical purposes, it is useful to
study the consequences of (10.27) before getting into a discussion of the effects
of the cosmological constant. All the discussions in this chapter will assume
a zero cosmological constant and will be based on (10.27). In Chapter 14 we
shall discuss the modifications of the theory necessitated by the cosmological
constant. Since the cosmological constant was believed to be zero until a few
years ago, most of the standard textbooks of cosmology written till about
2000 assumed (10.27) to be the complete equation and discussed its solutions.
We shall see in §14.2 that the cosmological constant becomes more domi-
nant as the Universe becomes older. It appears that the Universe is right now
passing through the phase when the cosmological constant term has become as
large as the other terms in the equation. For a study of the Universe when it was
young, (10.27) is more than adequate.

For a projectile moving against gravity, we know that a positive total energy
E would imply that it will move forever and escape to infinity, whereas a
negative energy implies that it will eventually fall back due to the attraction
of gravity. We expect similar considerations to hold here also. Noting from
(10.26) that k has a sign opposite of E , we can at once draw a very important
conclusion. If k = −1, then the Universe will expand forever. On the other hand,
if k = +1, then the expansion of the Universe will eventually be halted, making
the Universe fall back and collapse (provided the cosmological constant is zero).
Such a Universe will last for a finite time before it ends in a big crunch. We have
already seen in §10.3 that a Universe with positive curvature (i.e. k = +1) has
a finite volume, whereas a Universe with negative curvature (i.e. k = −1) is
infinite. This leads to an interesting statement. A Universe finite in space (with
k = +1) should last for a finite time. On the other hand, a Universe infinite in
space (with k = −1) will last for infinite time.

Whether the Universe will expand forever or not must depend on the density
of the Universe, which determines the strength of the gravitational attraction.
The value of density for which the Universe will lie exactly on the borderline
between these two possibilities (with k = 0) is called the critical density and
is denoted by ρc. On putting k = 0 in (10.27) and using (10.23), the critical
density is given by

ρc = 3H2

8πG
. (10.28)

On substituting the present-day value of the Hubble constant as given by (9.17),
the present-day value of the critical density turns out to be

ρc,0 = 1.88 × 10−26h2 kg m−3. (10.29)
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If the average density of our present Universe is less than this, then it should
expand forever. On the other hand, a higher average density is expected to make
the Universe eventually fall back. We shall come to the question of the value
of average density of the Universe in the next section where we discuss the
contents of the Universe. The ratio of the density to the critical density is called
the density parameter and is denoted by 
, i.e.


 = ρ

ρc
. (10.30)

On making use of (10.23), (10.28) and (10.30), we can write (10.27) in the form

kc2

a2 H2
= 
 − 1. (10.31)

It should be noted that a, H and 
 all evolve with time. Their values at
any particular epoch t have to be related by (10.31). Their values at the
present epoch are denoted by a0, H0 and 
0. It should be clear from (10.30)
and (10.31) that k = 0, k = +1 and k = −1 respectively correspond to the
cases ρ = ρc, ρ > ρc and ρ < ρc. This is consistent with the conclusion we
have already drawn that a Universe with k = +1 should eventually fall back,
whereas a Universe with k = −1 should expand forever. Only when the density
is more than the critical density ρc, will the gravitational force be strong enough
to pull back the Universe eventually (k = +1 case). On the other hand, a density
less than the critical density ρc corresponds to a weak gravitational pull that
cannot halt the expansion of the Universe (k = −1 case).

In the Newtonian expression (10.25) of the spherical shell, it is possible
for E to have any real value. However, it follows from (10.26) that general
relativistic considerations constrain E to have only three values corresponding
to the three values of k. This may seem surprising at first sight. It is to be noted
that the variables like a, ȧ and ρ appearing in (10.27) can have continuous
possible values. The three possible values of k basically force a, ȧ and ρ

to satisfy three possible relationships amongst themselves which follow from
(10.27) on substituting the values of k. Since it is the mass-energy which creates
the curvature of spacetime in general relativity, we do expect such relationships.
On the other hand, when we apply purely Newtonian considerations to the
spherical shell of Figure 10.3, its radius a does not have to be related to the
density ρ. We could consider spherical shells of different radii and write down
equations of the form (10.25) for them. The value of E can be different for them.
In relativistic cosmology, on the other hand, a is like the radius of curvature
of the Universe and general relativity certainly imposes some extra constraints
which would not be present in the Newtonian formulation of the expanding
shell. While Newtonian considerations lead us to the equation (10.25) having
the same form as what we get from general relativity, these subtle differences
should be kept in mind.
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We shall discuss in the next section how ρ varies with a. Here we merely
point out how we proceed to solve (10.27) when we have ρ as a function of a.
It is particularly easy to handle (10.27) when k = 0. Since ȧ has to be positive
for an expanding Universe, we get

ȧ =
√

8πGρ

3
a. (10.32)

This is very easy to integrate when we have ρ as a function of a. When k = ±1,
it is useful to change from t to another time-like variable η defined through

c dt = a dη. (10.33)

On using this variable η, the Robertson–Walker metric (10.19) would have
the form

ds2 = a(η)2
[
−dη2 + dr2

1 − kr2
+ r2(dθ2 + sin2 θ dφ2)

]
. (10.34)

Keeping in mind that a dot denotes a differentiation with respect to t ,
a differentiation with respect to η has to be indicated explicitly. We find
from (10.33) that

ȧ = c

a

da

dη
.

Substituting in (10.27), we get

c2

a4

(
da

dη

)2

+ kc2

a2
= 8πG

3
ρ,

from which

da

dη
= ±
√

8πG

3c2
ρa4 − ka2.

This can be put in the form of a quadrature

η = ±
∫

da√
8πG
3c2 ρa4 − ka2

. (10.35)

Once ρ is given as a function of a, one can work out this quadrature to find
how a varies with the time-like variable η. If one is interested in determining
the variation of a with t , then it is further necessary to relate η to t by solving
(10.33) after obtaining a as a function of η. We shall carry out some calculations
of this type explicitly in §10.6.
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10.5 Contents of the Universe. The cosmic blackbody radiation

As pointed out in §10.4, we need to specify how the density ρ of the Universe
varies with the scale factor a in order to solve for a as a function of time. We
have to consider the contents of the Universe for this purpose. Before we get
into the discussion of the specific contents, let us consider a fluid filling the
Universe with density ρ and equivalent energy density ρc2. Since ρc2 has the
dimension of pressure, we can write the pressure due to this fluid as

P = wρc2. (10.36)

We consider a volume a3 of the Universe which is increasing with time. The
total internal energy inside this volume is ρc2a3. Assuming the expansion to be
adiabatic, the first law of thermodynamics dQ = dU + P dV leads to

d(ρc2a3) + wρc2 d(a3) = 0,

from which it follows that

ρ ∝ 1

a3(1+w)
. (10.37)

If we know the appropriate value of w appearing in (10.36) for a particular
component of the Universe, (10.37) tells us how the density of that component
will vary with a. One standard result of the kinetic theory of gases is that the
pressure of a gas is given by

P = 1

3
ρv2,

where v is the molecular velocity (see, for example, Saha and Srivastava, 1965,
§3.12). Comparing with (10.36), we find that

w = 1

3

v2

c2
. (10.38)

For a non-relativistic gas, we have

w ≈ 0, ρ ∝ 1

a3
, (10.39)

whereas for a gas of relativistic particles all moving around with speed c,

w ≈ 1

3
, ρ ∝ 1

a4
. (10.40)

Although matter in the Universe is distributed in a hierarchy of structures,
we pointed out in §9.6 that the matter distribution starts looking homogeneous
when we go to scales larger than about 100h−1 Mpc, in accordance with the
cosmological principle. If the luminous stars constituted all the matter in the
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Universe, then a careful analysis of observational data indicates that the density
parameter 
 defined in (10.30) would be of order


Lum ≈ 0.01. (10.41)

However, we pointed out in §9.2.2 that rotation curves of galaxies suggest a
significant amount of dark matter beyond the stellar disks of galaxies. Then we
discussed in §9.5 that the application of the virial theorem to galaxy clusters
suggests even larger amounts of dark matter. The density parameter estimated
from the virial masses of galaxy clusters turns out to be independent of the
uncertainties in the Hubble constant (see Exercise 10.1) and is of order


M,0 ≈ 0.3. (10.42)

The subscript 0 implies that this is the present value of the density parameter
due to matter, which can have different values at other epochs. We shall discuss
other independent arguments in §14.5 that 
M,0 indeed has this value. From
(10.29) and (10.30), the present matter density should be

ρM,0 = 1.88 × 10−26
M,0h2 kg m−3. (10.43)

Using (10.39), we can now write down the matter density at an arbitrary epoch
in the form

ρM = ρM,0

(a0

a

)3
, (10.44)

where a0 is the value of the scale factor at the present epoch and a its value at
that arbitrary epoch.

Hubble’s law (9.13) implies that all the galaxies were on top of each other
at a certain epoch, often called the Big Bang. In other words, the physical
parameters of the Universe like its density and its temperature were infinite
at that epoch, according to straightforward theoretical considerations, so that
it is not possible to extrapolate our currently understood physical laws to
times earlier than the epoch of the Big Bang. We know that hot matter emits
radiation. Since the early Universe must have been dense and hot, it would
have been filled with radiation existing in thermodynamic equilibrium with
matter. As we discussed in §2.2.4 and §2.3, radiation in equilibrium with matter
has to be blackbody radiation. As the Universe expanded and its density fell,
at some stage the Universe became transparent to radiation and the radiation
ceased to be in equilibrium with matter. We shall discuss this decoupling of
radiation and matter in greater depth in §11.7. As the Universe kept expand-
ing after this decoupling, the radiation would undergo adiabatic expansion
because it ceases to interact with matter any more. One of the important
results from the thermodynamics of blackbody radiation (see, for example, Saha
and Srivastava, 1965, §15.25) is that blackbody radiation continues to remain
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blackbody radiation under adiabatic expansion, although its temperature keeps
decreasing with expansion. As we shall show in §14.3, the general relativistic
analysis of light propagation in the expanding Universe also leads to the same
conclusion that the radiation continues to remain blackbody radiation even
though it is not interacting with matter any more. We thus expect on theoretical
grounds that the Universe should still be filled with a blackbody radiation
background, which will be cooling with the expansion of the Universe. Alpher
and Herman (1948) were the first to point this out and predicted that the present
temperature of this blackbody radiation should be of order 10 K. Without being
aware of this theoretical prediction, Penzias and Wilson (1965) accidentally
discovered this radiation which seemed to have a temperature of 3 K. Since
much of this blackbody radiation at 3 K lies in the microwave range, it is called
the cosmic microwave background radiation, abbreviated as CMBR.

The discovery of CMBR was perhaps the most important milestone in the
development of observational cosmology after the discovery of Hubble’s law.
Lemaitre (1927) was the first person to argue that the Universe must have
begun from a hot Big Bang. The CMBR is a remnant of this Big Bang and
its existence provided reasonably compelling proof (at least compelling enough
to most astrophysicists) that there was really a hot Big Bang from which the
Universe was born. Penzias and Wilson (1965) were able to measure only a
small part of the CMBR spectrum. The satellite COBE (Cosmic Background
Explorer) was launched in 1989 to study the CMBR in detail. Figure 10.4
shows the spectrum of CMBR measured by COBE, as reported by Mather et al.

Fig. 10.4 The spectrum of cosmic microwave background radiation (CMBR) as

obtained by COBE. From Mather et al. (1990). ( c©American Astronomical Society.

Reproduced with permission from Astrophysical Journal.)
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(1990). It is a fantastic fit to the Planck spectrum (2.1) for blackbody radiation
at temperature

T0 = 2.735 ± 0.06 K. (10.45)

We know that the energy density of blackbody radiation at temperature T is
given by aBT 4

0 , where aB is Stefan’s constant (see Exercise 2.1). Hence the
contribution of CMBR to the density of the Universe is

ργ = aB

c2
T 4. (10.46)

We shall discuss in §11.4 that the Universe is expected to have a background
of neutrinos in addition to the background of photons in the CMBR. The
detailed properties of the neutrino background will be worked out in §11.4.
For the time being, let us only mention that the total density of relativistic
background particles (photons and neutrinos together) at the present epoch will
be shown to be

ρR,0 = 1.68ργ,0, (10.47)

where ργ,0 is the present-day contribution of CMBR to the density of the
Universe. Since the CMBR photons and the neutrinos are both relativistic gases,
we expect (10.40) to hold for both so that we can write

ρR = ρR,0

(a0

a

)4
. (10.48)

Since the CMBR density ργ separately would also fall as a−4, it easily follows
from (10.46) that

T ∝ 1

a
, (10.49)

which tells us how the temperature of the CMBR must be falling with the
expansion of the Universe. We shall show in §11.4 that the neutrino temperature
also should fall in the same way, although its value will be different from the
value of CMBR temperature at the same instant.

By summing up (10.44) and (10.48), the total density of the Universe can
be written as

ρ = ρM,0

(a0

a

)3 + ρR,0

(a0

a

)4
. (10.50)

In the following discussion, we shall refer to both photons and neutrinos
as ‘radiation’. Some obvious conclusions can be drawn from the expression
(10.50) for the density. The radiation density (falling as a−4) falls more rapidly
than the matter density (falling as a−3) with the expansion of the Universe.
Going backwards in time, as we approach the Big Bang closer and closer, the
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radiation density must be rising faster than the matter density with increasingly
smaller a. At the present time, we have

ρM,0 � ρR,0.

However, there must be a past epoch when the matter and radiation densities
were equal, before which the radiation was dominant. If aeq was the value of
the scale factor at that epoch of matter-radiation equality, on equating (10.44)
and (10.48) we get

a0

aeq
= ρM,0

ρR,0
= ρM,0c2

1.68aBT 4
0

(10.51)

where we have made use of (10.46) and (10.47). Substituting from (10.43) and
(10.45), we get

a0

aeq
= 2.3 × 104
M,0h2. (10.52)

We can divide the history of the Universe into two distinct periods. At times
earlier than the matter-radiation equality when the scale factor a was smaller
than aeq given by (10.52), the Universe is said to be radiation-dominated. On the
other hand, after the matter-radiation equality the Universe has become matter-
dominated.

To study the evolution of the Universe, we now need to solve the Fried-
mann equation (10.27) after substituting for ρ from (10.50). The calculations,
however, become much simpler without introducing any significant error if
we assume ρ = ρM given by (10.44) when we study the matter-dominated
period of the Universe and assume ρ = ρR given by (10.48) when we study
the radiation-dominated period of the Universe. It is possible to get analytical
solutions in these simpler cases. The next two sections will be devoted to solving
the Friedmann equation for the matter-dominated and the radiation-dominated
Universe respectively.

10.6 The evolution of the matter-dominated Universe

We shall now solve the Friedmann equation (10.27) by taking ρ = ρM given by
(10.44) appropriate for the matter-dominated Universe. We need to consider the
three cases k = −1, 0, +1.

Let us first consider the case k = 0, for which the Friedmann equation leads
to (10.32). On substituting from (10.44) in (10.32), we have

ȧ =
√

8πGρM,0a3
0

3
a−1/2,
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of which the solution is

2

3
a

3
2 =
√

8πGρM,0a3
0

3
t (10.53)

on setting t = 0 at the epoch of the Big Bang when a = 0. For the k = 0 case,
the density is equal to the critical density given by (10.28) so that

ρM,0 = 3H2
0

8πG
.

On substituting this in (10.53), we get

a

a0
=
(

3

2
H0t

)2/3

. (10.54)

We thus reach the very important conclusion that the size of the Universe
increases with time as t2/3. This solution for the k = 0 case is often called the
Einstein–de Sitter model, since it was studied by Einstein and de Sitter (1932).

For the cases k = ±1, we use the quadrature formula (10.35) obtained from
the Friedmann equation (10.27). On substituting (10.44) into (10.35), we get

η = ±
∫

da√
8πGρM,0a3

0
3c2 a − ka2

. (10.55)

10.6.1 The closed solution (k =+1)

As already discussed in §10.4 and as should be clear from (10.31), this is the
case where the density is larger than the critical density, i.e. 
M,0 > 1. When
k = +1, the quadrature (10.55) can be worked out to give

a = 4πG

3c2
ρM,0a3

0(1 − cos η).

This can be written as

a

a0
= 1

2

(
8πGρM,0

3H2
0

)
a2

0 H2
0

c2
(1 − cos η).

On making use of (10.28), (10.30) and (10.31), it becomes

a

a0
= 
M,0

2(
M,0 − 1)
(1 − cos η), (10.56)

where 
M,0 = ρM,0/ρc,0 is the density parameter at the present epoch due to
matter. The evolution of a as a function of the time-like variable η is given by
(10.56). In order to bring in t , we use (10.33) which gives
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t = 1

c

∫
a dη = 
M,0a0

2c(
M,0 − 1)
(η − sin η)

on substituting from (10.56) for a. Multiplying by H0 and making use of
(10.31), we get

H0t = 
M,0

2(
M,0 − 1)3/2
(η − sin η). (10.57)

The two equations (10.56) and (10.57) together give an implicit solution of a as
a function of t . It follows from (10.56) that a goes to zero when η increases
to 2π . In other words, this is a solution which corresponds to a Universe
eventually ending up in a big crunch. We have already used arguments based on
simple Newtonian mechanics in §10.4 to conclude that a Universe with k = +1,
which has finite volume and has density more than the critical density, should
eventually collapse. This is now explicitly seen in the solution. Figure 10.5
shows a/a0 as a function of t .

10.6.2 The open solution (k = −1)

This is the case corresponding to 
M,0 < 1. With k = −1, instead of (10.56)
and (10.57), we have

a

a0
= 
M,0

2(1 − 
M,0)
(cosh η − 1), (10.58)

H0t = 
M,0

2(1 − 
M,0)3/2
(sinh η − η). (10.59)

Again these two equations together give an implicit solution of a as a function
of t . This solution of a/a0 as a function of t is also plotted in Figure 10.5,

Fig. 10.5 The evolution of the scale factor a/a0 as a function of the time t for the cases

k = −1, 0,+1.
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which shows the solution for the k = 0 case as well. It is seen that the solution
for k = −1 increases forever at a rate faster than the rate of increase of the
critical solution k = 0. We had already anticipated in §10.4 that the k = −1
solution, which corresponds to an infinite Universe with density less than the
critical density, will expand forever. The explicit solution now confirms this.

As we pointed out in §10.5, it appears that 
M,0 is about 0.3. It would
then seem that the open solution is the appropriate solution for our Universe.
However, so far in our discussion, we have not included the cosmological con-
stant which would contribute another term to the Friedmann equation (10.27).
In §14.5 we shall discuss the observational evidence that this cosmological
constant may actually be non-zero, leading to an acceleration of the Universe.
The cosmological constant term, however, becomes more important with time.
At the present epoch, this term is comparable to the matter density term. At
earlier epochs, the cosmological term was less important. So the open solution
is presumably the appropriate solution for the evolution of the Universe at early
epochs and can be used up to the present epoch in many calculations without
introducing too much error. We shall show explicitly in §14.2 that the solution
with non-zero cosmological constant (given by (14.20)) reduces at early times
to the approximate solution we are going to discuss now.

10.6.3 Approximate solution for early epochs

We see in Figure 10.5 that the solutions for all the three values of k behave very
similarly at sufficiently early times. We can simplify the solutions for k = ±1
when η � 1. Both (10.56) and (10.58) reduce to

a

a0
≈ 
M,0

2|1 − 
M,0|
η2

2

when η is small. Similarly both (10.57) and (10.59) reduce to

H0t ≈ 
M,0

2|1 − 
M,0|3/2

η3

6
.

Eliminating η between these two equations, we get

a

a0
≈
(

3

2



1/2
M,0 H0t

)2/3

. (10.60)

This reduces to the critical solution (10.54) when the density parameter

M,0 is 1. Although (10.60) may not be strictly true at the present epoch, it is
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still very useful in many quick calculations. Since a = a0 at the present epoch
t = t0, it follows from (10.60) that

t0 ≈ 2

3
H−1

0 

−1/2
M,0 . (10.61)

Then (10.60) can be written as

a

a0
≈
(

t

t0

)2/3

. (10.62)

It may be pointed out that the ratio a/a0 is a more observationally relevant
quantity than the scale factor a itself, since this ratio is related to the redshift z
through (10.24). If a source is at redshift z, then light from it started at time t to
reach us at the present epoch t0. The relation between z and t can be obtained
by combining (10.24) with (10.62):

t

t0
≈ (1 + z)−3/2. (10.63)

When we look at a galaxy at redshift z = 1, we essentially see the galaxy as it
existed when the age of the Universe was 2−3/2 times its present age.

As we already discussed, the very early Universe was radiation-dominated.
So (10.60), based on the assumption that the Universe is matter-dominated,
should not hold at those early times. However, the Universe became matter-
dominated fairly early. From (10.52) and (10.62), the epoch teq of matter-
radiation equality is given by

teq = 2.9 × 10−7

−3/2
M,0 h−3t0. (10.64)

Since t0 is believed to be of the order of 1010 years, the Universe would have
become matter-dominated a few thousand years after the Big Bang. From then
onwards, equations like (10.60) and (10.62) should hold till the present time.

10.6.4 The age of the Universe

An approximate expression for the age of the Universe is given in (10.61), where
we see that the age is shorter if 
M,0 is larger. One can understand this result
quite easily. A larger 
M,0 means a stronger deceleration, which implies that the
expansion rate of the early Universe would have been faster if 
M,0 was larger.
This faster expansion leads to a shorter age. Instead of using the approximate
expression (10.61), one can easily find out the exact value of the age t0 for a
given 
M,0. Since a = a0 at the present epoch, the age t0 of the Universe is
given by the value of t which makes a = a0. If 
M,0 > 1, then the numerical
value of H0t0 can be found from (10.56) and (10.57). On the other hand, we have
to use (10.58) and (10.59) if 
M,0 < 1. Figure 10.6 plots the numerical values
of H0t0 as a function of 
M,0. The expansion rate of the Universe would have
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Fig. 10.6 The plot of H0t0 against 
M,0, showing how the age t0 of the Universe

depends on 
M,0.

been unchanged if 
M,0 were equal to zero, making t0 equal to the Hubble time
H−1

0 . We see in Figure 10.6 that t0 becomes a smaller and smaller fraction of the
Hubble time as 
M,0 is increased, giving the value (2/3)H−1

0 when 
M,0 = 1,
in accordance with (10.61).

10.7 The evolution of the radiation-dominated Universe

We shall now discuss how the Universe evolved at the early times before teq

given by (10.64) when the Universe was dominated by radiation. In the case
of the matter-dominated Universe, it should be clear from Figure 10.5 that the
solutions for k = −1, 0, +1 converge at sufficiently early times. The reason
for this is not difficult to understand. It is the curvature term kc2/a2 in the
Friedmann equation (10.27) which is responsible for making the three solutions
different. At sufficiently early times, this term becomes negligible compared to
the mass density term which goes as a−3 and becomes more dominant when
a is sufficiently small. During the radiation-dominated epoch, the radiation
density term going as a−4 becomes even more dominant and we can ignore
the curvature term kc2/a2, so that (10.32) obtained by putting k = 0 in the
Friedmann equation (10.27) is applicable. On substituting ρ = ρR as given by
(10.48), we obtain from (10.32) that

aȧ =
√

8πGρR,0

3
a2

0,
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of which the solution is

a

a0
=
(

32πGρR,0

3

)1/4

t1/2. (10.65)

The radiation-dominated Universe expanded with time as t1/2 in contrast to the
early matter-dominated Universe which expanded as t2/3 according to (10.62).

We have pointed out in (10.49) that the temperature of the CMBR falls as
the inverse of a. So we expect

a

a0
= T0

T
.

Using this and substituting for ρR,0 from (10.46), we get from (10.65) that

T =
(

3c2

32πGaB

)1/4

t−1/2. (10.66)

On substituting the values of c, G and aB, we obtain

T (in K) = 1.52 × 1010

√
t

. (10.67)

Here T is in kelvin as indicated and t has to be in seconds. It may be noted
that (10.66) and (10.67) are derived by assuming that photons were the only
relativistic particles in the early Universe. As we shall see in Chapter 11, there
were other relativistic particles and these equations have to be suitably modified
in more accurate calculations.

A typical photon in blackbody radiation at temperature T has energy
E = κBT . It can be easily shown that an energy E in eV corresponds to
temperature

T = 1.16 × 104 E (in eV). (10.68)

It is sometimes useful to express temperature in units of energy like eV. If we
do this, then (10.67) becomes

T (in MeV) = 1.31√
t

. (10.69)

This is a very important equation which gives an indication of the typical energy
a photon (or any other kind of particle) would have at time t after the Big Bang.
We shall make extensive use of (10.69) in the next chapter.

Since we have neglected the curvature term kc2/a2, we now argue that this
term really becomes negligible compared to the other terms in the Friedmann
equation (10.27) as we go close to the Big Bang. It follows from (10.31) that

|
 − 1| = c2

a2 H2
= c2

ȧ2
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on using (10.23). Since a goes as t1/2, we find from this that

|
 − 1| ∝ t. (10.70)

In other words, as t → 0, the density parameter 
 approaches 1 arbitrarily
closely and the curvature term becomes totally insignificant compared to other
terms, in spite of the fact that the curvature term kc2/a2 by itself becomes
infinite as a goes to zero.

Exercises

10.1 Since the recession velocity of a galaxy can be determined reasonably

accurately from the redshift in its spectrum, an application of Hubble’s law to

estimate distance makes the estimated distance uncertain as h−1 if the value

of the Hubble constant is uncertain. If the average density of the Universe is

determined by estimating the masses of galaxy clusters by the application of

the virial theorem, show that the density parameter 
 determined therefrom

will be independent of the uncertainties in the Hubble constant.

10.2 Consider quasars with redshifts z = 1 and z = 4. We want to find out

the age of the Universe (as a fraction of its present age) when light started

from these quasars. First do the straightforward estimates for the case 
M,0 =
1. Then estimate the percentile errors you would make if it turned out that


M,0 = 0.5 and 
M,0 = 1.5.

10.3 Assuming the Universe to be matter-dominated, numerically calculate

the age of the Universe for different values of 
M,0. Make the plot to produce

Figure 10.6.

10.4 Suppose the Universe had only radiation and no matter. Solve the Fried-

mann equation for the values 0, +1 and −1 of k. Make plots of the scale factor

a as functions of time for all the three cases.

10.5 According to the steady state theory of cosmology (Bondi and Gold,

1948; Hoyle, 1948), the average density of the Universe remains constant due

to continuous creation of matter as the Universe expands. Using (9.17) and

(10.43), estimate the number of hydrogen atoms which, on an average, have

to be created per year in a volume of 1 km3 to keep the average density of the

Universe constant.



11

The thermal history of
the Universe

11.1 Setting the time table

The present uniform expansion of the Universe suggests that there was an epoch
in the past when the Universe was in a singular state with infinite density. Since
most of the known laws of physics become inapplicable to such a singular
state, we cannot extrapolate to earlier times before this epoch of singularity.
We therefore concern ourselves only with what happened after this epoch of
singularity, which is called the Big Bang. In the solutions discussed in §10.6
and §10.7, the time t was measured from the Big Bang.

The spacetime dynamics discussed in Chapter 10 sets the stage of the
Universe. Now we shall look at the dramatis personae who were involved in
the grand drama which unfolded and is still unfolding against this background
stage of spacetime. How the temperature of the early Universe varied with time
is given by (10.67) and (10.69). At times earlier than 1 s after the Big Bang,
typical photons had energies somewhat larger than 1 MeV. Since such pho-
tons are known to produce electron-positron pairs, the Universe at these early
times must have been full of electrons and positrons which would have been
approximately as abundant as photons. When photons had energies larger than
2 GeV at still earlier times, they would have given rise to proton-antiproton pairs
and neutron-antineutron pairs along with pairs of many other particles listed in
elementary particle physics textbooks and their antiparticles. At even higher
energies existing at still earlier times, the quarks making up the elementary
particles would have been free. The Universe at this very early time consisted of
quarks and leptons along with their antiparticles and the bosons which mediate
the various fundamental interactions. One often says that the early Universe
was the best laboratory of particle physics that ever existed. However, if all the
records of a laboratory have completely disappeared, then that laboratory would
not be of great interest to most of us today even if it was the best laboratory once

325
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Fig. 11.1 Landmarks in the thermal history of the Universe. Adapted from Kolb and

Turner (1990, p. 73).

upon a time! We shall see in this chapter that many things which we observe now
have connections with what happened in the early Universe.

Figure 11.1 shows a timetable with time plotted in a logarithmic scale along
with temperature in K and in eV. When the temperatures were higher than
1 GeV, we enter the particle physics era. Since theoretical considerations of
these very early times are often of rather speculative nature and do not have
much direct connections with observational data, we shall not discuss much
about times earlier than the particle physics era in this elementary textbook.
Typical nuclear reactions involve energies of order MeV. During the epoch from
about t = 1 s to t = 102 s, particles in the Universe had energies appropriate for
nuclear reactions and various kinds of nuclear reactions must have taken place.
We shall discuss the issue of primordial nucleosynthesis at some detail later
in this chapter. It follows from (10.64) that the Universe was a few thousand
years old when it changed from being radiation-dominated to being matter-
dominated. This important epoch is indicated in Figure 11.1. Another landmark
epoch came a little bit later when T fell to about 1 eV and formation of atoms
took place. Since typical ionization energies are of order eV, we would not
expect atoms when T was larger than this and matter must have existed in the
form of free electrons and bare nuclei. Although (10.69) is no longer valid at
the epoch of atom formation when the Universe is already matter-dominated,
we can get an approximate value of time t for this epoch by setting T = 1 eV in
(10.69), which gives t ≈ 5 × 104 yr as the epoch of atom formation. There was
a very important consequence of the formation of atoms. Radiation interacted
with matter before this epoch primarily through Thomson scattering discussed



11.2 Thermodynamic equilibrium 327

in §2.6.1. When the atoms formed, all the electrons got locked inside them and
there ceased to be any free electrons available to produce Thomson scattering.
So radiation got decoupled from matter and the Universe suddenly became
transparent to radiation. We shall discuss these things in §11.7. The aim of this
chapter is to elaborate on the history of the Universe summarized in Figure 11.1
and to connect it to the present-day observations.

11.2 Thermodynamic equilibrium

Let us consider a reaction in which A, B, C , . . . combine to produce L , M ,
N , . . . :

A + B + C + · · · ←→ L + M + N + · · · , (11.1)

which can proceed in both directions. Under normal circumstances, we expect
this reaction to reach a chemical equilibrium when the concentrations of A, B,
C , . . . , L , M , N , . . . are such that the backward rate balances the forward rate
and the concentrations do not change any more. It may be noted that we shall
be using the term chemical equilibrium even if (11.1) is strictly not a ‘chemical’
reaction, i.e. it can be a nuclear reaction involving nuclei. The condition for the
chemical equilibrium of reaction (11.1) is

μA + μB + μC + · · · = μL + μM + μN + · · ·, (11.2)

where the μ-s are the chemical potentials. This is a very well-known condition
discussed in any standard textbook covering this topic (see, for example, Reif,
1965, §8.9) and we shall not get into a detailed discussion of this condition here.

Various kinds of nuclear and particle reactions were possible in the early
Universe. The fundamental question we want to ask now is whether these
reactions could reach chemical equilibrium. As the Universe expanded at the
rate H = ȧ/a, the condition for chemical equilibrium kept changing. Only if
a reaction proceeded at a rate faster than this expansion rate, can we expect
the reaction to reach equilibrium. Suppose � is the interaction rate per particle,
i.e. it is the number of interactions a particle is expected to have in unit time.
Within time ∼1/�, most of the particles will have one interaction and we
may expect the system to reach equilibrium if it starts from a state not too far
from equilibrium. If � � H , then the reaction would be able to reach chemical
equilibrium and, as the Universe expanded, it would evolve through successive
states in chemical equilibrium appropriate to the physical conditions at the
successive instants of time. On the other hand, if � � H , then the reaction
would not proceed fast enough to change the concentrations of the particles
involved in the reaction. Let us write down
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�

H
� 1 (11.3)

as the condition for a reaction to reach chemical equilibrium. Since the inter-
action rate � depends on the density of the Universe, we expect � to decrease
with the expansion of the Universe. Although H also decreases with time (for
example, H decreases as t−1 if a goes as some power tn of t), the decrease
in � is typically faster. We then expect the condition � � H to change over
to the condition � � H as the Universe evolves. In such a situation, a reaction
which was initially able to remain in chemical equilibrium eventually falls out of
equilibrium. The concentrations of the particles involved in the reaction are not
expected to change after the reaction goes out of equilibrium. So we can assume
the concentrations to be frozen at the values which they had when � ≈ H and
the reaction was just going out of equilibrium. It should be emphasized that the
ideas presented in this paragraph should be taken as rough rules of thumb. To
obtain more accurate results, one has to carry out a detailed calculation of the
reaction in the expanding Universe (usually done numerically with computers).

When a reaction is able to reach chemical equilibrium, the concentrations
of the various species of particles involved in the reaction will be given by
the standard results of thermodynamic equilibrium. The number of particles
occupying a quantum state with momentum p is given by

f(p) =
[

exp

(
E(p) − μ

κBT

)
± 1

]−1

, (11.4)

where we have to use the plus sign for fermions obeying Fermi–Dirac statistics
(Fermi, 1926; Dirac, 1926) and the minus sign for bosons obeying Bose–
Einstein statistics (Bose, 1924; Einstein, 1924), E(p) = √p2c2 + m2c4 being
the energy associated with the momentum p. To obtain the actual number
density from (11.4), we have to keep in mind that the six-dimensional phase
space volume element dV d3p (where dV is the ordinary volume element) has
g dV d3 p/h3 quantum states in it. Here g is the degeneracy, which is 2 for both
electrons and photons, corresponding to the two spin states and two degrees of
polarization respectively. Hence the number density per unit volume must be
given by multiplying (11.4) by g d3 p/h3 and then integrating over all possible
momenta, i.e.

n = g

(2π)3

∫
f (p)

d3p

�3
. (11.5)

The contribution to density made by this species of particles is

ρ = g

(2π)3

∫
E(p)

c2
f (p)

d3p

�3
. (11.6)

Let us make some comments on the chemical potential μ appearing in
(11.2) and (11.4). It is well known that μ = 0 for photons which can be created
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or destroyed easily. If photons produce particle-antiparticle pairs, then (11.2)
is satisfied only if the sum of the chemical potentials of the particle and the
antiparticle is zero. In other words, if the chemical potential of the particle is
+μ, the chemical potential of the antiparticle has to be −μ. It follows from
(11.4) that these differences in chemical potential would make the number
densities of particles and antiparticles different.

We now consider the case κBT � mc2 such that most particles would have
energies much larger than the rest mass energy and would be relativistic, i.e.
we can write E ≈ pc. At such a high temperature, the Universe is expected
to be full of these particles and their antiparticles, which should be present
in comparable numbers. This is possible only if μ is much smaller compared
to κBT . Writing d3p = 4πp2 dp, E = pc and μ = 0, we find from (11.4) and
(11.5) that

n = g

2π2�3

∫ ∞

0

p2dp

epc/κBT ± 1
. (11.7)

It similarly follows from (11.4) and (11.6) that

ρ = g

2π2c�3

∫ ∞

0

p3dp

epc/κBT ± 1
. (11.8)

Both (11.7) and (11.8) can be evaluated analytically (see Exercise 11.1). For the
cases of bosons and fermions, (11.7) can be integrated to give

n =

⎧⎪⎨
⎪⎩

ζ(3)

π2 g
(

κBT
�c

)3
(boson),

3
4

ζ(3)

π2 g
(

κBT
�c

)3
(fermion),

(11.9)

where ζ(3) = 1.202 is the Riemann zeta function (see, for example,
Abramowitz and Stegun, 1964, Chapter 23). Similarly from (11.8) we get

ρ =
{ g

2c2 aBT 4 (boson),

7
8

g
2c2 aBT 4 (fermion).

(11.10)

Here

aB = π2κ4
B

15�3c3
(11.11)

is the Stefan constant. If we take g = 2 for photons, then the energy density
ρc2 according to (11.10) is aBT 4, which is the standard expression for energy
density of blackbody radiation at temperature T (see Exercise 2.1). It is now
instructive to determine the entropy density of this gas of relativistic bosons or
fermions. For this purpose, we begin with the standard thermodynamic relation

T dS = dU + P dV, (11.12)
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where the internal energy U inside a volume V is given by ρc2V . If s is the
entropy density, then we can write S = sV . On making these substitutions,
(11.12) gives

TV ds = V c2dρ + [(ρc2 + P) − Ts]dV. (11.13)

We see in (11.10) that ρ is a function of T alone. We expect the entropy density
s also to be a function of T alone. If both s and ρ are independent of V ,
then consistency requires that the coefficient of dV in (11.13) must be zero.
This means

s = ρc2 + P

T
. (11.14)

On making use of the fact that P = (1/3)ρc2 for a relativistic gas (see the
discussion in §10.5) and substituting for ρ from (11.10), we get

s =
{ 2g

3 aBT 3 (boson),

7
8

2g
3 aBT 3 (fermion).

(11.15)

After devoting the last paragraph to the case κBT � mc2 when most parti-
cles are relativistic, we now take a brief look at the opposite case κBT � mc2.
We can take

E(p) ≈ mc2 + p2

2m

in (11.4) in this case. Substituting (11.4) in (11.5), the particle density in the
non-relativistic limit is found to be

n = g

�3

(
mκBT

2π

)3/2

exp

(
−mc2 − μ

κBT

)
. (11.16)

Note that the exponential factor is supposed to be quite small in the non-
relativistic limit. So the number density of non-relativistic particles under ther-
modynamic equilibrium would be negligible compared to the number density
of relativistic particles.

We already pointed out in §10.5 that the CMBR still has a spectral distri-
bution appropriate for thermodynamic equilibrium even though the photons in
the CMBR are no longer in equilibrium with matter. So we can still use (11.9)
to calculate the number density of photons in the CMBR at present. Using T as
given by (10.45) and taking g = 2, we find from (11.9) that the present photon
number density is

nγ,0 = 4.14 × 108 m−3. (11.17)

It is instructive to compare this with the present number density of baryons
(i.e. the total number of protons and neutrons in unit volume). If 
B,0 is the
contribution of baryons to the density parameter, then the number density nB,0
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of baryons should clearly be 
B,0ρc,0/mp, where mp is the mass of a proton.
On using (10.29), we get

nB,0 = 11.3 
B,0h2 m−3. (11.18)

The ratio of baryon to photon number densities is an interesting dimensionless
quantity which has the value

η = nB,0

nγ,0
= 2.73 × 10−8
B,0h2. (11.19)

As the Universe expands, the photon number density nγ falls as T 3, which, in
combination with (10.49), suggests that nγ falls as a−3. The baryon number
density also is obviously falling as a−3. Hence the ratio of these number
densities does not change with time. In other words, the value of this ratio given
by (11.19) is not only its present value, but also its value at earlier or later times
(as long as there are no reactions to change nγ or nB suddenly). Thus η is an
important quantity in cosmology and we shall comment on its significance later.

11.3 Primordial nucleosynthesis

As indicated in Figure 11.1, the epoch from 1 s to 102 s after the Big Bang
was suitable for nuclear reactions. In early work, Gamow (1946) suggested that
most of the heavy nuclei were synthesized during this short epoch just after the
Big Bang. As we pointed out in §4.3, there is no stable nucleus of mass 5 or 8
and hence it is not easy for nuclear reactions to synthesize nuclei heavier than
helium. In the interiors of heavy stars, this mass gap is superseded by the triple
alpha reaction (4.28). This reaction, however, involves a three-body process and
cannot take place unless the number density of helium nuclei is sufficiently
high. Detailed calculations show that this reaction was very unlikely under the
conditions of the early Universe and heavier nuclei could not be synthesized
there. We now believe that all heavy nuclei starting from 12C are produced
inside stars.

Realistic calculations of nucleosynthesis in the early Universe have to be
done numerically. Peebles (1966) and Wagoner, Fowler and Hoyle (1967) devel-
oped the first codes soon after the discovery of the CMBR, which established
that the Universe really began with a hot Big Bang. The code perfected by
Wagoner (1973) came to be regarded as the ‘standard code’ on which most of
the later computations are based. The results depend on η introduced in (11.19).
A higher η implies that there were more baryons per unit volume and nuclear
reactions were more likely to take place. Figure 11.2 shows the mass fractions
of various nuclei produced in the early Universe as a function of η. Although
this figure is based on results obtained by numerical simulation, we shall now
show that at least some of the results can be understood from general arguments.
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Fig. 11.2 Theoretically calculated primordial abundances of various light nuclei as a

function of η. Adapted from Wagoner (1973).

Let us first consider the production of helium. Two protons and two neutrons
have to combine to produce a helium nucleus. During the epoch of nuclear
reactions, the protons and neutrons should take part in reactions like (5.29)
and (5.30), which were listed as possible reactions inside neutron stars. These
reactions are mediated by the weak interaction. The crucial question is whether
these reactions would have been able to reach chemical equilibrium, for which
the condition is given by (11.3). To answer this question, we need to find out the
reaction rate �, which depends on the coupling constant of the weak interaction
and can be calculated from a knowledge of the half-life of a free neutron.
We know that free neutrons decay by the reaction (5.29) with a half-life of
10.5 minutes. Since not all readers may be familiar with the theory of weak
interactions, we skip the derivation and merely quote the result, which is

�

H
≈
[

T (in MeV)

0.8 MeV

]3
. (11.20)

It follows from this that the condition of chemical equilibrium (11.3) would
be satisfied when T (in MeV) � 0.8 MeV. Under this situation, we can apply
(11.16) to calculate the number densities of protons or neutrons. Since chemical
potentials are expected to be small compared to the rest masses, it follows from
(11.16) that the ratio of these number densities will be

nn

np
= exp

[
−(mn − mp)c2

κBT

]
, (11.21)
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where the various symbols have obvious meanings. There is a very simple
way of understanding (11.21). We can regard the proton as the ground state
for a baryon and the neutron as the first excited state. Then (11.21) can be
regarded merely as the Boltzmann distribution law (2.28) applied to this sit-
uation. As the temperature keeps decreasing, we expect (11.21) to be valid
till T ≈ 0.8 MeV, after which the reactions will no longer be able to maintain
thermodynamic equilibrium and the ratio nn/np will be approximately frozen.
Since (mn − mp)c2 = 1.29 MeV, this frozen ratio is given by

nn

np
≈ e− 1.29

0.8 ≈ 0.20. (11.22)

After the neutron number is frozen, these neutrons may eventually be used
up to synthesize helium. Let us assume that nn neutrons in the unit volume
combine with nn protons to synthesize helium nuclei and the other np − nn

protons remain as protons. Then the helium mass fraction should be given by

2nn

nn + np
= 2(nn/np)

1 + (nn/np)
= 0.33 (11.23)

on substituting from (11.22). It may be noted that the ratio nn/np does not
remain completely frozen during the time of order 100 s when nucleosynthe-
sis takes place, but decreases due to the decay of neutrons by the reaction
(5.29) which is still possible even when thermodynamic equilibrium no longer
prevails. So this ratio becomes somewhat less than 0.20 given in (11.22),
leading to a smaller helium fraction compared to what is given in (11.23).
Careful numerical simulations suggest a value of about 0.25 for the helium
mass fraction. We see in Figure 11.2 that the helium mass fraction is nearly
independent of η, although it becomes slightly smaller for low η. The rea-
son behind this is not difficult to understand. A low η implies a low baryon
number density, which means that the nuclear reactions which build up helium
nuclei would proceed at a slower rate and more neutrons would decay before
being bound up inside helium nuclei, thereby leading to a lower helium mass
fraction.

Let us now point out what the observational data tell us. Although the
mass fractions of higher elements are found to vary considerably in different
astrophysical sources, the helium fraction is found to be very similar in widely
different astrophysical systems, lying in the range 0.23–0.27. It is one of the
triumphs of Big Bang cosmology that this observation can be explained very
naturally if we assume that most of the helium was produced by primordial
nucleosynthesis, with nuclear reactions in the interiors of stars contributing a
little bit afterwards. The theoretically calculated value of the helium fraction is
completely in agreement with observational data. The fact that the abundances
of higher elements vary considerably in different astrophysical sources suggests
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that they were not produced in the early Universe, because such a production
would imply a more uniform distribution today.

We now consider the abundance of deuterium 2H. It is an intermediate
product in the synthesis of helium, as can be seen from the pp chain reac-
tions listed in §4.3. If η is high and the nuclear reaction rate is fast, then
most of the deuterium would get converted into helium during the primordial
nucleosynthesis era. On the other hand, a lower η and a slower reaction rate
would imply that the synthesis of helium would not be so efficient in the
nucleosynthesis era and some deuterium would be left over. We therefore see
in Figure 11.2 that the deuterium fraction falls sharply with the increase in η.
From observations, it is found that the cosmic deuterium abundance is not less
than 10−5. This puts an upper bound on η, which is η < 10−9. A larger value
of η would not allow the observed deuterium to be left over after the primordial
nucleosynthesis.

This upper bound on η has a tremendously important significance. It follows
from (11.19) that this upper bound on η translates into an upper bound on 
B,0,
which is 
B,0 < 0.037h−2. Even if we take 0.64 as the lowest possible value
of h in accordance with (9.20), we are still bound by the limit 
B,0 < 0.09. On
the other hand, the value of 
M,0 based on virial masses of clusters of galaxies
was quoted to be about 0.3 in (10.42). We shall discuss in §14.5 that there is
other evidence suggesting that 
M,0 indeed has a value close to 0.3. How do we
reconcile this result with the limit 
B,0 < 0.09? The only way of reconciling
these results is to conclude that a large part of the matter in the Universe is
non-baryonic in nature and hence is not included when we estimate 
B,0 or η.
This is a truly extraordinary conclusion. The different objects around us and we
ourselves are made up of atoms with nuclei which consist of baryonic matter. If
much of the matter in the Universe is non-baryonic, it means that this matter is
not made up of ordinary atoms we are familiar with. As discussed in §10.5, we
believe that most of the matter in the Universe does not emit light and hence is
dark. We do not know much about the distribution of this dark matter in galaxies
or galaxy clusters. Now we conclude that a major component of this dark matter
is not even made up of ordinary atoms. What is it made up of then? We shall
come to this question in §11.5.

11.4 The cosmic neutrino background

Various thermal processes in the early Universe created photons and that is
why we still have a cosmic background of blackbody radiation. Exactly sim-
ilarly we would expect a background of neutrinos because neutrinos were
created in the early Universe by reactions like (5.29) and (5.30) which involved
weak interactions and these neutrinos must be present today. When the weak
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interaction rate was faster than the rate of expansion of the Universe, these
neutrinos must have been in thermodynamic equilibrium with matter and would
have satisfied relations like (11.9), (11.10) and (11.15) for fermions. After the
weak interaction rate became slower, the neutrinos would get decoupled from
matter and thereafter must have evolved adiabatically. We know that photons
in thermodynamic equilibrium (i.e. obeying the blackbody spectrum) continue
to remain in thermodynamic equilibrium under adiabatic expansion, as we
shall prove explicitly in §14.3. If neutrinos are either massless or continue to
remain relativistic (i.e. the thermal energy continues to remain higher than rest
mass energy mνc2), then exactly the same considerations should hold for the
background neutrinos as well. In other words, even after the neutrinos have
decoupled from matter, they should continue to have a distribution appropriate
for thermodynamic equilibrium, with the temperature T falling as a−1. In the
early Universe, photons, neutrinos and matter particles must all have been in
thermodynamic equilibrium and must have had the same temperature. Since the
temperatures of both photons and neutrinos fall as a−1 after decoupling, should
we still expect them to have the same temperature?

The background neutrinos would have the same temperature as the CMBR
photons only if nothing had happened to change the temperature of photons after
the neutrinos decoupled from the other particles. We believe that one important
phenomenon had changed the temperature of the photons. When the neutrinos
decoupled, the electrons were still relativistic. So the Universe must have been
filled with electrons and positrons with number densities given by (11.9). When
the temperature fell, the electrons and positrons would have annihilated each
other creating photons, thereby putting more energy in the photon background
and increasing its temperature. Let Ti be the temperature before the electron-
positron annihilation (i.e. it would have been the temperature of the electrons
and positrons as well as photons) and let T f be the enhanced temperature
of the photons after this annihilation. Since this is an adiabatic process, we
expect the entropy to remain conserved. Equating the final entropy with the
initial entropy, we shall now obtain a relation between Ti and T f . To find
the initial entropy density si , we have to add up the contributions of photons,
electrons and positrons as given by (11.15). For all these particles, we have
g = 2 – because of the two polarization states of photons and two spin states of
electrons or positrons. Remembering that photons are bosons whereas electrons
and positrons are fermions, we get

si =
(

4

3
+ 7

8
× 4

3
+ 7

8
× 4

3

)
aBT 3

i = 11

4
× 4

3
aBT 3

i . (11.24)

The final entropy density sf is due only to the photons and must be

sf = 4

3
aBT 3

f . (11.25)
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Equating si and sf as given by the above two equations, we get

T f

Ti
=
(

11

4

)1/3

. (11.26)

In other words, the photon temperature jumped by this factor after the electron-
positron annihilation, but the neutrino temperature did not change because the
neutrinos constituted a distinct system decoupled from other matter. Since both
the photon temperature and the neutrino temperature afterwards fell as a−1, the
photon temperature would still be larger than the neutrino temperature by this
factor (11/4)1/3. The present neutrino temperature should be

Tν,0 =
(

4

11

)1/3

T0, (11.27)

where T0 is the present temperature of the CMBR given by (10.45). On taking
T0 = 2.735 K, we get

Tν,0 = 1.95 K. (11.28)

We can calculate the energy density of the neutrino background by using (11.10).
Since there are three types of neutrinos (associated with electrons, muons and
τ -particles) and each neutrino has an antineutrino, we take g = 6 so that the
present energy density of the neutrino background, according to (11.10), is

ρν,0 = 7

8

3

c2
aB

[(
4

11

)1/3

T0

]4

= 0.68
aB

c2
T 4

0 = 0.68ργ,0, (11.29)

where ργ,0 is the present energy density of the CMBR. We have already made
use of this in writing down (10.47), which is obtained by adding the energy
density of neutrinos to the energy density of photons.

At the end of this discussion, we again stress one point which we mentioned
at the beginning of this section. The contribution to density by neutrinos will be
given by (11.29) only if the neutrinos are still relativistic. If the neutrinos have
mass and if the thermal energies become smaller than mνc2 with the fall in
temperature, then it is possible for neutrinos to contribute much more to the
density because there would be a lower bound in the contribution to density
made by a neutrino. A neutrino with mass mν has to contribute at least mν to
density. We discuss this further in the next section.

11.5 The nature of dark matter

We have already pointed out that much of the matter in our Universe does
not emit light. Evidence for dark matter comes from the rotation curves of
spiral galaxies (§9.2.2) and from the application of the virial theorem to galaxy
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clusters (§9.5). In fact, luminous matter contributes only a small fraction to
the total matter density of the Universe, as discussed in §10.5. Primordial
nucleosynthesis calculations described in §11.3 lead us to the extraordinary
conclusion that much of the dark matter is non-baryonic, i.e. not made up
of ordinary atoms. We now briefly discuss the question of what could be the
constituents of dark matter.

While neutrinos are very light particles, physicists wondered for a very long
time whether they are massless or have very small mass. If neutrinos have mass
and the masses of the three types of neutrinos are different, then it is possible
for neutrinos to have oscillations in which one type of neutrino gets converted
into another. Since these oscillations depend on the mass difference between
different kinds of neutrinos, the discovery of neutrino oscillations led to the
conclusion that |�m|2 should be of order 5 × 10−5 eV2 (Ahmad et al., 2002).
While we do not know the individual masses of different types of neutrinos,
we now know that neutrinos have mass. Is it then possible that the background
neutrinos are responsible for the non-baryonic mass part of dark matter?

To answer this question, let us first find out the number density of neutrinos.
As long as neutrinos are relativistic, the number density is given by (11.9).
It turns out that (11.9) can still be used to calculate the number density of
neutrinos even if they had become non-relativistic, provided we take T to be
a quantity which falls off as a−1 in the expanding Universe. After learning
general relativity, the reader is asked in Exercise 14.4 to analyse the dynamics
of particles in the expanding Universe and to show this. On taking g = 6 and
substituting the temperature given by (11.28), we obtain from (11.9) that

nν,0 = 3.36 × 108 m−3. (11.30)

If mν is the average mass of neutrinos, then we have to divide mνnν,0 by ρc,0

given by (10.29) to get the density parameter 
ν,0 due to neutrinos, which turns
out to be


ν,0 = 3.18 × 10−2h−2
(mν

eV

)
, (11.31)

where mν has to be in eV. We have seen in (10.42) that 
M,0 should have a
value of about 0.3. Since the neutrino contribution to the density parameter has
to be less than this, we get the following limit by demanding that 
ν,0 given by
(11.31) should be less than 0.3:

mν < 9.4h2 eV. (11.32)

This is known as the Cowsik–McClelland limit and was a more stringent limit
on the neutrino mass than the limit from laboratory experiments when it was
first pointed out (Cowsik and McClelland, 1972). This is an example of how
astrophysical considerations can be relevant in particle physics.
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If we hypothesize that neutrinos have an average mass close to the Cowsik–
McClelland limit (11.32), then we can solve the mystery of non-baryonic dark
matter because the neutrinos will provide the estimated mass of this dark matter.
There are, however, some serious difficulties with this hypothesis that dark
matter is made up of neutrinos with mass just a little less than the limit given
by (11.32). Although we do not have a good idea about the distribution of
dark matter, observations indicate that it is not uniformly spread throughout
the Universe. Estimates of the masses of spiral galaxies and galaxy clusters
suggest that much of the dark matter should be gravitationally bound with
these systems. For this to be possible, the typical kinetic energy of dark matter
particles should not exceed the gravitational binding energy mν |�|, where �

is the gravitational potential associated with structures like galaxies and galaxy
clusters. This condition is hard to satisfy if the limit of mν is given by (11.32).
If dark matter particles satisfy (11.32), then that type of dark matter is called
hot dark matter. Such dark matter would tend to be distributed throughout the
Universe without clumping in the gravitational structures like galaxies or galaxy
structures. If we want dark matter to be bound in these gravitational structures,
then we need to have cold dark matter, in which particles are more massive,
move more slowly at a given temperature (since the thermal velocity is given
by

√
2κBT/m) and can get gravitationally bound in galaxies or galaxy clusters.

When we discuss structure formation in §11.9, we shall point out that cold dark
matter helps to fulfil some requirements of structure formation as well.

In view of (11.32), is it possible to have cold dark matter with particles
more massive than this limit? Note that we obtained (11.32) by using (11.9),
which would be applicable only if the particles were relativistic at the time of
decoupling. If the particles are so heavy that they were already non-relativistic
at the time of decoupling, then the number density would be given by (11.16)
rather than (11.9). Some supersymmetric theories of particle physics suggest
the possibility of some particle with mass of about a few GeV, which acts with
other particles only through the weak interaction. Such a particle is expected to
get decoupled from the other constituents of the Universe when the temperature
was of order MeV. This particle would remain in thermodynamic equilibrium
before the decoupling and its number density at the time of decoupling would be
given by (11.16). The exponential factor in (11.16) would ensure a low number
density of this particle. If the particle is more massive than about 3 GeV, detailed
calculations show that its number density would be sufficiently suppressed by
this exponential factor and it would not make a contribution to the density
parameter more than what is estimated from observations (i.e. 
M,0 ≈ 0.3).
The limit that the particles of cold dark matter have to be more massive than
3 GeV is known as the Lee–Weinberg limit (Lee and Weinberg, 1977).

We basically conclude that dark matter particles could not have mass in the
range 10 eV to 3 GeV. They either have to be lighter than 10 eV (hot dark matter)
or heavier than 3 GeV (cold dark matter). Current evidence suggests the second
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possibility that the dark matter in the Universe should be cold dark matter made
up of particles heavier than 3 GeV. We shall discuss this point further in §11.9.

11.6 Some considerations of the very early Universe

In §11.3 we considered the nuclear reaction era when the temperature of the
Universe was of order MeV (≈1010 K). The next two sections followed the fate
of particles which got decoupled during this era. This era roughly lasted from
about 10−1 s to 102 s after the Big Bang, according to (10.67) or (10.69). With
new developments in particle physics in the last few decades, there has been
considerable interest in investigating what might have happened in the Universe
at still earlier times when the temperature was of the order of GeV or higher.
The Universe at this extremely early epoch is usually referred to as the very
early Universe. The study of the very early Universe is still a rather speculative
subject, without too many connections with present-day astrophysical data. It is
beyond the scope of this book to get into that subject. We merely touch upon
two topics which have some astrophysical relevance.

11.6.1 The horizon problem and inflation

Since the Universe began with a violent Big Bang, it is very unlikely that
the Universe was created as a very homogeneous system. Why then is the
Universe so homogeneous now? Suppose inhomogeneities are suddenly created
inside a gas kept within a container. We expect that the gas from regions of
higher density will move to regions of lower density to establish homogeneity
again. If cs is the sound speed, we expect that regions of size cst will become
homogeneous in time t. At the present time when the age of the Universe is t , we
could not have received information from regions further away than ct because
any information starting from those regions beyond ct would not be able to
reach us by today. Hence a sphere of radius ct around us is our horizon. We
can have causal contacts only with regions inside this horizon. We may expect
the Universe to have become homogeneous over regions of horizon size, but not
over larger regions. It may be noted that an accurate calculation of the horizon
in an expanding Universe requires a more careful analysis of light propagation
(to be discussed in §14.3). But we need not get into those details.

There is enough evidence to show that the Universe is actually homoge-
neous over regions much larger than the horizon. We have discussed the CMBR
in §10.5. We shall point out in §11.7 that photons in the CMBR reach us
after travelling through space for time comparable to the age of the Universe.
Consider CMBR photons coming from two diametrically opposite regions in
the sky. These two regions are causally connected to us, but are not causally
connected to each other because the information from one of the regions had
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just time enough to reach us and did not yet have time to reach the other region.
The isotropy of CMBR, however, suggests that these two regions which appar-
ently had never been in causal contact have the same physical characteristics,
since they produce CMBR of exactly the same nature. How is it possible that
regions which are out of each other’s horizons and which have never been in
causal contact are so homogeneous? This is known as the horizon problem in
cosmology.

Guth (1981) proposed a solution to the horizon problem. On the basis of
some field theoretic arguments which are beyond the scope of this book, Guth
(1981) suggested that there was a brief phase in the very early Universe when
the Universe expanded very rapidly and became larger by several orders of
magnitude. This is called inflation. If this is true, then the Universe before
inflation must have been much, much smaller than what we would expect it
to be if inflation had not taken place. Different parts of the Universe could have
been causally connected if the Universe was very small before inflation and
thereby the homogeneity of the Universe could have been established.

11.6.2 Baryogenesis

According to (11.19), the photon number density nγ,0 is nearly eight orders of
magnitude larger than the baryon number density nB,0. As long as new photons
or baryons are not created, both these numbers fall as a−3 and their ratio does
not change. Even at the time when photons decoupled from matter, this ratio
must have had this value. Why are there many more photons than baryons?

In the early Universe when the temperature was higher than a few GeV
and baryon-antibaryon pairs could be formed, the number of either baryons or
antibaryons would have been comparable to the number of photons, since all
these numbers would have been given by (11.9). But the number of baryons
must have been slightly larger than the number of antibaryons to ensure that
some baryons were left over after the baryon-antibaryon annihilation which
must have taken place when the temperature fell below GeV. If �nB was the
excess in the number density of baryons compared to the number density of
antibaryons before the annihilation, then we must have

�nB

nB
≈ 10−8 (11.33)

if we want the baryon-to-photon ratio to have a value like this after annihilation.
Many physicists feel that it is esthetically more satisfying to assume that

the Universe was created with equal numbers of baryons and antibaryons rather
than to assume that the Universe was created with such a tiny imbalance. If the
Universe really had equal numbers of baryons and antibaryons in the beginning,
then the net baryon number �nB was initially zero and it had to change to a
non-zero value later. We find the baryon number to be a conserved quantity
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in all particle interactions we study at the present time. If the Universe was
created with equal numbers of baryons and antibaryons, then the small excess
of baryons over antibaryons could arise only if baryon number conservation
was violated in the very early Universe. This is known as the problem of
baryogenesis and has been of some interest to theoretical particle physicists.

11.7 The formation of atoms and the last scattering surface

After discussing the physics of the nucleosynthesis era and its consequences in
§11.3–§11.5, we took a brief digression in §11.6 to raise some theoretical issues
pertaining to still earlier times. Now we again follow the evolutionary history
of the Universe and look at some of the later landmarks in that evolutionary
history. After the electron-positron annihilation discussed in §11.4, the Universe
consisted of the basic constituents of ordinary matter – protons, helium nuclei
and electrons – in addition to the non-baryonic matter and the relativistic
particles (photons and neutrinos). We have seen in (10.52) that the Universe
became matter-dominated when its size was 1 + z = 2.3 × 104 
M,0h2 times
smaller than its present size. This happened about 104 yr after the Big Bang, as
indicated in (10.64). Since the temperature at that time was 2.735 K multiplied
by this redshift factor, the Universe was still too hot for the formation of atoms.

We know that matter and radiation were in equilibrium in the early
Universe. We now ask the question how long this coupling between matter
and radiation continued. We have seen in §2.6.1 that photons interact with
electrons through Thomson scattering. As long as electrons are free, we expect
Thomson scattering to keep matter and radiation in equilibrium. Radiation gets
decoupled from matter when atoms form and all electrons get locked up inside
atoms. We can apply the Saha equation (2.29) to estimate the ionization fraction
which gives a measure of the number of free electrons. The ionization potential
for hydrogen is χ = 13.6 eV, corresponding to a temperature of 1.5 × 105 K
by (10.68). However, a simple application of (2.29) shows that the number
of free electrons becomes insignificant only when the temperature falls to a
much lower value of about 3000 K (see Exercise 11.4). We thus conclude
that the Universe becomes transparent to photons when the temperature falls
below 3000 K, causing radiation to get decoupled from matter. Interestingly, the
plot of stellar opacity in Figure 2.8 shows that stellar material also becomes
transparent when the temperature falls to about this value. Since the present
CMBR temperature is 2.735 K, a simple application of (10.49) suggests that the
Universe must have been about 1000 times smaller in size when the temperature
was 3000 K. A more careful calculation gives the redshift zdec ≈ 1100 as the era
when matter-radiation decoupling took place. The Universe became transparent
after this decoupling and photons no longer interacted with matter.
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All the CMBR photons which reach us today last interacted with matter at
the era of redshift zdec ≈ 1100. These photons started as blackbody radiation of
temperature 3000 K. The redshift of 1100 has made them the present blackbody
radiation of temperature 2.735 K. When we look at the Sun, we basically see
photons which last interacted with matter at the solar surface, since the space
between the solar surface and us is transparent to visible light. So the photons
coming from the Sun show us the solar surface. In exactly the same way, the
CMBR photons coming from all directions show us a surface of primordial
matter surrounding us as it existed at redshift zdec ≈ 1100. This is called the
last scattering surface. If the primordial matter at redshift zdec ≈ 1100 was
completely homogeneous, then this last scattering surface would appear smooth
and CMBR coming from it would be totally isotropic. On the other hand, if
there were inhomogeneities in the last scattering surface, they would manifest
themselves as angular anisotropies in the CMBR.

11.7.1 Primary anisotropies in CMBR

We believe that the matter distribution in the primordial Universe was reason-
ably homogeneous. A standard paradigm in cosmology is that there were some
small initial perturbations in matter density which kept on being enhanced with
time as the Universe expanded and eventually led to the formation of structures
that we see today – stars, galaxies and galaxy clusters. If this paradigm is cor-
rect, then there must have been some density perturbations in the last scattering
surface, causing anisotropies in the CMBR. We pointed out in §10.5 that the
mission COBE showed the spectrum of CMBR to be a perfect blackbody spec-
trum (Mather et al., 1990). COBE also kept looking for anisotropies in CMBR
and finally discovered them (Smoot et al., 1992). It was found that CMBR looks
exactly like blackbody radiation in all directions, but the temperature of the
blackbody radiation was found to vary slightly from direction to direction. The
temperature variation was discovered to be of order

�T

T
≈ 10−5. (11.34)

The upper panel of Figure 11.3 shows a map of this temperature anisotropy
as discovered by COBE (Smoot et al., 1992). Since COBE had an angular
resolution of about 7◦, the temperature variation at smaller angular scales could
not be determined by COBE. This was finally achieved by the later mission
WMAP. The lower panel of Figure 11.3 is the temperature anisotropy obtained
by WMAP (Bennett et al., 2003). We shall discuss in §11.9 how these inhomo-
geneities in the last scattering surface grew to produce structures. The typical
angular size of anisotropies can be used to put important constraints on various
cosmological parameters. This topic will be taken up in §14.5. The anisotropies
in CMBR resulting from irregularities in the last scattering surface are often
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Fig. 11.3 Map of the CMBR temperature distribution in different directions of the sky,

as obtained by (a) COBE (Smoot et al., 1992): upper panel; and (b) WMAP (Bennett

et al., 2003): lower panel.

called primary anisotropies, to distinguish them from anisotropies which may
arise during the passage of the CMBR photons from the last scattering surface
to us.

11.7.2 The Sunyaev–Zeldovich effect

We have said that the photons from the last scattering surface reach us without
interacting with matter any more. This is an almost correct statement, since
most of the space between the last scattering surface and us is devoid of free
electrons. There is, however, one important exception. We have discussed in
§9.5 that galaxy clusters contain hot gas, which is ionized and has free electrons.
So CMBR photons passing through galaxy clusters can interact with the free
electrons in the hot gas. In normal Thomson scattering, photons scatter off elec-
trons without any significant change in energy. Thomson scattering involving
an energy exchange between photons and electrons is called the Compton effect
(Compton, 1923). While the mathematical theory of Thomson scattering can
be developed by treating the photons as making up a classical electromagnetic



344 The thermal history of the Universe

wave (as discussed in §2.6.1), the theory of the Compton effect requires a
treatment of photons as particles. The Compton effect becomes important when
the photon energy is not negligible compared to the rest mass energy of the
electron (as in the case of X-ray photons) and some energy can be transferred
from the photon to the electron (see, for example, Yarwood, 1958, §7.20). On
the other hand, when an electron with high kinetic energy interacts with a low-
energy photon, we can have the inverse Compton effect in which energy is
transferred from the electron to the photon. This happens when CMBR photons
interact with the free electrons in a galaxy cluster, which are highly energetic
because of the high temperature of the cluster gas. This transfer of energy from
the electrons in the hot cluster gas to the CMBR photons is known as the
Sunyaev–Zeldovich effect (Sunyaev and Zeldovich, 1972). As a result of this,
some of the radio photons in the CMBR get scattered to become X-ray photons,
leading to a depletion of CMBR intensity in radio frequencies in the directions
of galaxy clusters. From this depletion in intensity, one can estimate the optical
depth (usually � 1) of CMBR photons through the cluster gas. For a spherical
cluster of radius Rc and internal electron density ne, the maximum optical depth
at the centre would be of order 2σTne Rc, where σT is the Thomson scattering
cross-section.

One important application of the Sunyaev–Zeldovich effect is that it can be
used to estimate the distances of galaxy clusters, thereby leading to a determi-
nation of the Hubble constant. We get ne Rc from the depletion in the CMBR
intensity. The angular size of the cluster is equal to 2Rc divided by its distance.
The X-ray emission from the cluster gas by bremsstrahlung is governed by
(8.70), which gives the emissivity per unit volume. On measuring the X-ray
flux from the cluster received by us and combining it with the other measured
quantities such as the angular size of the cluster and the depletion in the CMBR
intensity, we can find the distance to the cluster (see Exercise 11.5). The Hubble
constant derived from the Sunyaev–Zeldovich effect somehow turns out to be
slightly lower than its value measured by the other methods.

11.8 Evidence for evolution during redshifts z ∼1–6

We can get direct information about some material object in the astronomical
Universe if it either emits radiation or absorbs radiation passing through it. We
can study the distribution of primordial matter at the moment of its decoupling
from radiation by analysing the CMBR which was emitted by this matter. After
the matter-radiation decoupling, however, the matter in the Universe became
transparent and did not emit any more radiation until stars and galaxies formed
long afterwards. The era between the matter-radiation decoupling (around z ∼
1100) and the era when the first stars formed is often called the ‘dark age’ in
cosmology. During this dark age, matter did not emit any radiation that we can
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detect today, although the CMBR that had got decoupled from matter remained
present and kept on being redshifted to lower temperatures as the Universe
expanded. We now discuss observations which give us an indication how the
Universe might have looked like at the end of the dark age, when there were
again radiation-emitting sources which we can try to discover today.

This new field of studying astronomical objects at redshifts lying in the
range z ∼ 1–6 has blossomed only in the last few years when telescopes like
the Hubble Space Telescope (HST) allowed astronomers to study faraway faint
sources which could not be studied earlier. We do not plan to provide a full
coverage of this newly emerging field here. We shall restrict our discussion here
only to the question of what the Universe looked like at these high redshifts –
especially to the question whether the Universe looked substantially different
from the present Universe and whether we see clear indications of evolution.
Another important issue is whether we can determine important cosmological
parameters (such as 
M,0) by using high-redshift observations. Since this topic
requires a knowledge of relativistic cosmology, we postpone the discussion of
this important topic to Chapter 14.

11.8.1 Quasars and galaxies at high redshift
Since quasars are intrinsically brighter than normal galaxies, they are much
more likely to be discovered at large redshifts compared to normal galaxies.
Quasars were therefore amongst the first objects at high redshifts to be studied
systematically by astronomers. Figure 11.4 shows a plot of quasar number
density in co-moving volume as a function of redshift. Keeping in mind that

Fig. 11.4 The plot of quasar number density in co-moving volume as a function of

redshift. From Peterson (1997, p. 17), based on the data catalogued by Hewitt and

Burbidge (1993). ( c©Cambridge University Press.)
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higher redshifts mean earlier times, it is very clear from this plot that the
quasar number density has changed with the age of the Universe. It was highest
around redshift z ∼ 2. The evolution of quasar number density was one of the
first pieces of evidence of evolution in the world of galaxies discovered by
astronomers. As discussed in §9.4.3, we believe that quasar energy emission
is caused by gas falling into a supermassive black hole. After the formation
of a galaxy, it presumably takes some time for a supermassive black hole to
develop at its centre. It is likely that the majority of galaxies formed well before
the redshift of z ∼ 2 when quasars were most abundant, but central black holes
took time to form. Since the black hole has to be fed with infalling gas in order
to produce quasar activity, we expect such activity to be more prevalent when
more gas is available. It is possible that the availability of gas decreases with
the age of a galaxy as more gas is used up for star formation. This scenario
gives a qualitative explanation of why the quasar number density was maximum
around z ∼ 2. At earlier times, not many galaxies had supermassive black holes
at their centres. At later times, the availability of gas for feeding the black holes
decreased. This suggests that there must be many dead quasars in our present
Universe. These are galaxies with supermassive black holes at their centres,
which had acted as quasars once upon a time, but have now run out of gas to
feed the central engine.

Since a powerful telescope can detect many millions of galaxies, it is
notoriously difficult to isolate high-redshift galaxies in this vast sample. Also,
a high-redshift normal galaxy would appear very faint to us (as will be shown
§14.4.1) and can be imaged only after a very long exposure. In December 1995
HST imaged a very small portion of the sky without any special characteristics
for about 10 days (Williams et al., 1996). The resulting image, known as the
Hubble Deep Field, is shown in Figure 11.5. It shows about 1500 galaxies at
various stages of evolution, some of the galaxies being much fainter than any
galaxies imaged before. From a detailed analysis of the Hubble Deep Field, it is
concluded that the star formation rate was maximum during redshifts z ∼ 1–1.5
(Hughes et al., 1998).

To sum up, although some galaxies and quasars might have formed even
before z ∼ 6, such phenomena as quasar activity and star formation reached
their maxima much later. It is, however, clear that the Universe revealed by the
furthest quasars and furthest normal galaxies is quite different from the present
Universe. There is unmistakable evidence for evolution. We now consider the
material in the space between galaxies, to find out if this material gives any
more clues in completing the story of the earliest galaxies.

11.8.2 The intergalactic medium

Apart from the gas in clusters of galaxies, is there matter in regions of
space between clusters and outside of galaxies? Even if there is matter in the
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Fig. 11.5 The Hubble Deep Field, photographed with the Hubble Space Telescope.

From Williams et al. (1996). ( c©American Astronomical Society. Reproduced with

permission from Astronomical Journal.)

intergalactic space, the question is how we can detect it. The emission from
the intergalactic medium lying outside galaxy clusters has not been detected
in any band of the electromagnetic spectrum. The only other way of checking
the existence of the intergalactic medium is to look for absorption lines in
the spectra of objects lying very faraway. Since quasars are the most faraway
objects which are bright enough to obtain spectra from, looking for absorption
lines in the spectra of quasars is the best way of searching for the intergalactic
medium.

Let us consider the Lyman-α absorption line caused by the transition
1s → 2p in a hydrogen atom. If an absorbing system is mainly made up of
neutral hydrogen atoms, then we expect this line to be one of the strongest
absorption lines. The rest wavelength of this line is λLα = 1216 Å. Suppose a
quasar is at redshift zem. Since quasars typically have broad emission lines, we
expect a broad emission line at the redshifted wavelength (1 + zem)λLα of the
Lyman-α line. If there is some absorbing material on the line of sight lying at
some intermediate redshift zabs (obviously we expect 0 < zabs < zem), then we
expect absorption at wavelength (1 + zabs)λLα . If there is neutral hydrogen gas
all along the line of sight, then we would expect to see an absorption trough from
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Fig. 11.6 The spectrum of a quasar at redshift zem = 2.6. From Wolfe et al. (1993).

( c©American Astronomical Society. Reproduced with permission from Astrophysical

Journal.)

λLα to (1 + zem)λLα in the spectrum of the quasar corresponding to the full run
of possible values of zabs. The presence or absence of such an absorption trough
in the spectrum of a distant quasar would give us an estimate of the amount of
neutral hydrogen gas over the line of sight (Gunn and Peterson, 1965).

Figure 11.6 shows the spectrum of a quasar at redshift zem = 2.60, for
which the Lyman-α emission line is at 4380 Å. We, however, do not see a
continuous absorption trough from 1216 Å to 4380 Å. Instead of a trough, we
find a large number of narrowly spaced absorption lines. These absorption lines
are collectively referred to as the Lyman-α forest. This implies that we do not
have a uniform distribution of neutral hydrogen gas along the line of sight. There
must be many clouds of neutral hydrogen lying on the path at different redshifts,
which are causing the absorption lines. In the particular spectrum shown in
Figure 11.6, there is a prominent absorption feature at 3650 Å (corresponding
to redshift zabs = 2.0) where the radiation seems to fall almost to zero intensity.
There must be a very large cloud at this redshift zabs = 2.0. Such large dips
in the spectra indicating the presence of large hydrogen clouds are found very
often in the spectra of many distant quasars.

Readers wishing to know how to analyse these features in quasar spectra
quantitatively may consult Peebles (1993, §23). Here we summarize the main
conclusions qualitatively. The absence of an absorption trough, which is often
referred to as the Gunn–Peterson test (Gunn and Peterson, 1965), shows that
there is very little neutral hydrogen gas outside the clouds and one quanti-
tatively finds that the number density of hydrogen atoms has to be less than
about 10−6 m−3. For the sake of comparison, remember that the density of
X-ray emitting gas in galaxy clusters is of order 103 particles m−3. The large
hydrogen clouds producing prominent dips in the quasar spectra (like the dip at
3650 Å in Figure 11.6) are estimated to have masses comparable to the mass
of a typical galaxy. The most obvious possibility is that these are galaxies in
the making. The smaller clouds producing the absorption lines of the Lyman-α
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forest, however, have much smaller masses of the order of a few hundred
M�. Careful analysis of observational data shows that these smaller clouds are
most abundant at redshifts z ≈ 2–3 and become much less abundant at lower
redshifts.

The spectra of distant quasars like the one shown in Figure 11.6 make it
clear that neutral hydrogen is mainly found inside isolated clouds. There is very
little neutral hydrogen outside these clouds. But does this mean that there is no
material outside the clouds and space is really empty in those regions? A more
plausible assumption is that there is hydrogen outside the clouds, but it has been
ionized and hence is not producing the Lyman-α absorption line. As pointed
out in §11.7, matter was ionized before z ≈ 1100. Then neutral atoms formed,
leading to the matter-radiation decoupling. When the first stars, galaxies and
quasars started forming, the ionizing radiation from these objects presumably
ionized the intergalactic medium again. This is called the reionization. The
absence of neutral hydrogen atoms between the distant quasars and us (apart
from the Lyman-α clouds) is believed to be a consequence of this reionization.
However, if light started from a very distant quasar before the reionization, then
the light path would initially pass through space filled with neutral hydrogen
and we would expect to see a Gunn–Peterson trough in the spectrum at the
lower-wavelength side of the redshifted Lyman-α line. There are indications
that quasars with redshifts larger than z ≈ 6 show such troughs in their spectra
(Becker et al., 2001).

Altogether, we get a picture of the Universe at redshifts z ∼ 2–6 which
is very different from the present-day Universe. Already some quasars have
formed and ionized the intergalactic medium. Embedded in this ionized
medium, there are clouds of neutral hydrogen (presumably their interiors are
shielded from ionizing photons due to higher densities) with masses of order
a few hundred M�. There are also more massive clouds which appear like
galaxies in the making.

11.9 Structure formation

As discussed in §11.7.1, matter was distributed fairly uniformly at the era
z ≈ 1100 when matter-radiation decoupling took place, the density perturba-
tions at that era being of the order of 10−5. On the other hand, the observations
discussed in §11.8 suggest that the first stars, galaxies and quasars should have
formed some time before z ≈ 6. How do we connect the two? Presumably the
very small density perturbations present in era z ≈ 1100 grew by gravitational
instability to become the first stars and galaxies before z ≈ 6. Understanding
the details of how this happened is the subject of structure formation. This is an
enormously complex subject on which quite a lot of research is being done at
the present time. Here we shall touch upon only some of the key issues.
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In §8.3 we discussed the gravitational instability first studied by Jeans
(1902), which showed that density enhancements having masses larger than
the Jeans mass keep growing due to the stronger gravitational forces in the
regions of density enhancements. The analysis in §8.3 was done for gas in a
non-expanding region. To understand the growth of density perturbations in
the expanding Universe, we have to carry out the Jeans analysis against an
expanding background. This analysis is somewhat more complicated and is
given in many standard textbooks (Kolb and Turner, 1990, §9.2; Narlikar, 1993,
§7.2). Here we shall not reproduce that derivation (but see Exercise 11.6). Let
us summarize the main conclusions only.

1. It is found that the perturbations remained frozen and could not grow as
long as the Universe was radiation-dominated.

2. Only after the Universe becomes matter-dominated, can those perturba-
tions grow for which the wavenumber k is less than kJ given by (8.21).

3. In contrast to the result in §8.3 that growing perturbations grow expo-
nentially in time, a growing density perturbation in the matter-dominated
expanding Universe is found to grow as

δρ

ρ
∝ t2/3. (11.35)

According to (10.60), the scale factor a in the matter-dominated Universe
also grows as the 2/3 power of t . On the basis of (10.60) and (11.35), we can
write

δρ

ρ
∝ a. (11.36)

It should be remembered that this result is based on a linear analysis, like the
linear analysis presented in §8.3. When the perturbation grows to be of the order
of 1, the nonlinear effects become important and thereafter the perturbation can
grow much faster than what is suggested by (11.36).

The result (11.36) at once leads us to a difficulty. The density perturbations
were of order 10−5 at the era z ≈ 1100. Since the scale factor has grown by a
factor of 103 between that era and the present time, a straightforward application
of (11.36) suggests that δρ/ρ at the present time should be of the order of
only 10−2. This certainly contradicts the existence of various structures in the
Universe that we see at the present time. Since 10−2 is quite small compared
to 1, we cannot hope to get around this difficulty by invoking nonlinear effects.
Where could our arguments go wrong?

To find a clue for solving this puzzle, let us look at the expression of the
critical wavenumber kJ as given by (8.21). For the early matter-dominated era,
if we take a ∝ t2/3, the Friedmann equation (10.27) gives

ρ ≈ 1

6πGt2
(11.37)
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on neglecting the curvature term kc2/a2, which was insignificant at early times.
On substituting this for ρ0 in (8.21), we get

k2
J = 2

3c2
s t2

. (11.38)

The corresponding Jeans wavelength is

λJ = 2π

kJ
= √

6πcst. (11.39)

A perturbation would grow only if its wavelength is larger than λJ. We now
consider the sound speed cs appearing in (11.39). After the matter-radiation
decoupling, it is given by (8.15). Before the formation of atoms, however, a
perturbation in matter density would be accompanied by a perturbation in the
radiation field which was coupled to matter. Since the pressure of the radiation
field is P = (1/3)ρc2, the sound speed in the radiation field can be as large as

cs = 1√
3

c.

On substituting this in (11.39), we find

λJ = √
2πct. (11.40)

This means that the Jeans length was even somewhat larger than the horizon
size (of order ct) before matter-radiation decoupling and then suddenly fell to a
much smaller value given by (11.39) after the decoupling when cs becomes
equal to the ordinary sound speed in the gas. Although perturbations can,
in principle, grow after the Universe became matter-dominated, most of the
perturbations would have wavelengths smaller than the Jeans length (11.40)
and would not grow as long as matter and radiation remained coupled. Only
after the radiation becomes decoupled, does the Jeans length become small and
perturbations larger than it start growing.

We have discussed in §11.5 the possibility that much of the matter in the
Universe is non-baryonic cold dark matter. If this is true, then the situation
can be somewhat tricky. We expect only the baryonic matter to interact with
radiation and to be coupled with it till the formation of atoms. Since the cold
dark matter can have only the weak interaction, it must have become decoupled
from the other components of the Universe when the temperature fell below
MeV values. By the time the Universe became matter-dominated, the cold dark
matter was totally decoupled and the Jeans length for the cold dark matter would
be given by (11.39), with cs representing the sound speed in the cold dark matter.
This Jeans length would be much smaller than the Jeans length of baryonic mat-
ter given by (11.40) before the formation of atoms. So, as soon as the Universe
became matter-dominated and it became possible for perturbations to grow,
the perturbations in cold dark matter larger than its Jeans length would start
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Fig. 11.7 Sketch indicating how perturbations in baryonic matter (solid line) and in

cold dark matter (dashed line) would have grown.

growing. Eventually, when the atoms form, the baryonic matter also becomes
decoupled and its Jeans length drops drastically, allowing perturbations larger
than its Jeans length to grow. By that time, the perturbations in the cold dark
matter would have grown considerably and would have produced gravitational
potential wells in the regions where the cold dark matter got clumped. Once
the baryonic perturbations are allowed to grow after the formation of atoms, the
baryonic matter would quickly fall in the gravitational potential wells created
by the cold dark matter.

Figure 11.7 gives a sketch of how the perturbations must have grown. When
the Universe was radiation-dominated till t = teq, the perturbations in the bary-
onic matter and the cold dark matter must have had similar amplitudes and could
not grow. Since perturbations in the baryonic matter remained frozen till the
decoupling time t = tdec and CMBR observations tell us that the perturbations
at the time tdec were of amplitude 10−5, we expect the primordial perturbations
also to have this amplitude. Since cold dark matter perturbations started growing
from t = teq when a = aeq given by (10.52) and the perturbation growth rate
is given by (11.36), we expect the dark matter perturbations to become close
to 1 by the present time. After t = tdec, the baryonic perturbations fell in the
potential wells of the cold dark matter and started following the cold dark
matter perturbations, as indicated by the solid line in Figure 11.7. Hence the
baryonic perturbations also should become of order 1 by the present time. When
the perturbations are no longer very small compared to 1, nonlinear effects start
becoming important and the clustering of matter to produce various structures
proceeds at a much faster rate. Evolution due to these nonlinear effects can be
studied best by carrying on detailed numerical simulations.
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Many ambitious numerical simulations of structure formation are being
carried out by different groups, following the pioneering early work by Davis
et al. (1985). These simulations are still not realistic enough to show matter
eventually forming stars. First of all, the grid spacing in most of the simulations
is much larger than the size of a star. Secondly, star formation involves several
complicated physical processes and it is not easy to include them in a simula-
tion which has to follow the large-scale perturbations as well. However, these
simulations indicate that structures like what we see today may indeed form
if the Universe contains a significant amount of cold dark matter in addition
to baryonic matter. This is taken as further compelling evidence that the dark
matter in the Universe is cold and not hot. Only if the Universe has a large
amount of cold dark matter, would baryonic perturbations having amplitude of
order 10−5 at tdec be able to grow enough by the present time, by falling in the
potential wells created by the cold dark matter, so as to explain the observed
structures of today.

Exercises

11.1 (a) Using the definition of the Riemann zeta function

ζ(n) =
∞∑

k=1

k−n

derive (11.9) for bosons from (11.7). Express (11.8) for bosons in terms of

ζ(4) and then obtain (11.10) for bosons by using the fact that ζ(4) = π4/90.

[Hint: You can use

1

ex − 1
= e−x + e−2x + e−3x + e−4x + · · ·

to evaluate the integrals in (11.7) and (11.8).]

(b) Defining

I ±
n =
∫ ∞

0

xn dx

ex ± 1
,

show that I −
n − I +

n = 2−n I −
n . Use this relation to derive expressions for

fermions in (11.9) and (11.10) from the expressions for bosons.

11.2 If the reaction rate for the reaction n + νe ←→ p + e− were to fall

below the expansion rate of the Universe at a temperature T ≈ 0.4 MeV, what

would have been the helium abundance in the Universe?

11.3 In the early Universe before electron-positron annihilation, the electron

number density must have been slightly higher than the positron number

density. Show that this implies that the chemical potentials for electrons and
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positrons have to be non-zero. How can one calculate these chemical potentials

theoretically?

11.4 Estimate the gas pressure in the Universe at the epoch corresponding

to z ≈ 1100 and consider hydrogen gas kept at that pressure. Apply the Saha

equation (2.29) to calculate numerically the ionization fraction x for different

temperatures T and plot x as a function of T . You will find that x changes from

values close to 0 to values close to 1 within a not very wide temperature range.

What is the approximate temperature at which this transition takes place?

11.5 Suppose we find the optical depth τ of CMBR photons passing through

the middle of a galaxy cluster from the Sunyaev–Zeldovich effect and we also

measure the X-ray flux fν at frequency ν from the hot gas in the cluster.

Assuming that the hot gas makes up a sphere of radius Rc with uniform

electron density ne inside, we obviously have τ = 2σT Rcne and

fν =
4
3π R3

c εν

4π D2
,

where εν is the emissivity per unit volume of the hot gas and D is the distance

of the galaxy cluster. Following (8.70), we can write

εν = An2
e√

T
e−hν/κBT .

Now show that

D = A �θ

24σ 2
T

√
T

e−hν/κBT τ 2

fν
,

where �θ = 2Rc/D is the observed angular size of the X-ray emitting gas

sphere. This expression for D is used to determine the distances of galaxy

clusters. [Note: If the galaxy cluster is at a large redshift, then some corrections

have to be applied to the above expression for D.]

11.6 We have discussed in §10.4 how the Friedmann equation can be obtained

classically by considering the radial expansion of a spherical shell located at

a(t) at time t . Suppose there is a perturbation in the central region such that

the radius a(t) has become a(t) + l(t). For small l(t), show that

d2l

dt2
= 2G M

a3
l = 8πG

3
ρ(t)l,

where M is the mass inside the spherical shell and

ρ = 3

4π

M

a3
.
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If the material within the shell a(t) evolves slightly differently due to this

perturbation compared to what we would expect from the Friedmann equa-

tion, the density difference compared to the unperturbed density leads to the

parameter

δ = δρ

ρ
= −3

l

a
.

For a marginally critical situation (i.e. for a situation in which the total mechan-

ical energy of the unperturbed shell is zero), derive the equation for δ:

δ̈ + 4

3t
δ̇ − 2

3t2
δ = 0.

This equation tells us how a density perturbation in the central region of

expansion would evolve. It turns out that the evolution equation of density

perturbations in the expanding matter-dominated Universe is exactly this if

k � kJ. Show that

δ ∝ t2/3

is a solution.
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Elements of tensors and
general relativity

12.1 Introduction

We have pointed out in §10.2 that in general relativity we have to deal with the
curvature of spacetime and that tensors provide a natural mathematical language
for describing such curvature. We now plan to give an introduction to tensor
analysis and then an introduction to general relativity at a technical level. It will
be useful for readers to be familiar with the qualitative concepts introduced in
§10.2 before studying this chapter.

Since general relativity is a challenging subject, it is helpful to clearly
distinguish the purely mathematical topics from the physical concepts of general
relativity. So, when we develop tensor analysis in the next section, we shall
develop it as a purely mathematical subject without bringing in general rela-
tivistic concerns at all. The two-dimensional metrics (10.7), (10.8) and (10.9)
introduced in §10.2 will be used as illustrative examples repeatedly to clarify
various points. When various formulae of tensor analysis are applied to metrics
of dimensions higher than two, the algebra can be horrendous. It is, therefore,
advisable to develop a familiarity with tensors by first applying the important
results to two-dimensional surfaces.

After introducing the basics of tensor analysis in the next section, we
shall start developing the basic concepts of general relativity from §12.3. Since
general relativity is now used in many areas of astrophysics, a minimum knowl-
edge of general relativity is expected nowadays from a student of astrophysics,
irrespective of the area of specialization. What will be presented in this chapter
is somewhat like that bare minimum. There are many excellent textbooks on
this subject, to which the reader can turn in order to learn the subject at a
greater depth.

357
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12.2 The world of tensors

It requires a little bit of practice to feel comfortable with tensors. While we
shall introduce all the basic notions, we shall be rather brief, and some previous
acquaintance with tensor algebra at least may be helpful in following our
discussion.

12.2.1 What is a tensor?

In elementary textbooks of physics, usually two kinds of physical quantities
are introduced: scalars and vectors. A vector is defined as a quantity which has
both magnitude and direction. There is, however, an alternative way of defining
a vector. A vector has components of which each one is associated with one
coordinate axis (i.e. components Ax , Ay and Az of the vector A are associated
with x , y and z axes respectively) and they transform in some particular way
when we change from one coordinate system to another. Since this alternative
definition of vectors provides a natural entry point into the world of tensors,
let us consider in some detail how the components of a vector transform on
changing the coordinate system.

In order to find out how the components of a vector transform, we first
need to know how the components of a vector are defined in a coordinate
system. Let us take the concrete examples of the generalized velocity and
the generalized force which we encounter in Lagrangian mechanics (see, for
example, Goldstein, 1980, §1–4; Landau and Lifshitz, 1976, §1). Suppose
we denote the generalized coordinates in a system by xi , where i can have
values i = 1, 2, . . . , N . The rationale of writing i as a superscript rather than a
subscript will be clear as we proceed. A component of the generalized velocity
is given by dxi/dt , whereas a component of the generalized force is given by
−∂V/∂xi where V is the potential. If components of generalized velocity and
generalized force are defined in another coordinate system xi in exactly the
same way, then the chain rule of partial differentiation implies

dxi

dt
=

N∑
k=1

dxk

dt

∂xi

∂xk
, (12.1)

∂V

∂xi
=

N∑
k=1

∂V

∂xk

∂xk

∂xi
. (12.2)

It should be noted that these two transformation laws are slightly different. Vec-
tors transforming like dxi/dt are called contravariant vectors and are indicated
by superscripts, whereas vectors transforming like ∂V/∂xi are called covariant
vectors and are indicated by subscripts (i in xi or xi appearing at the bottom of
a derivative should be treated as subscript). We also introduce the well-known
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summation convention that if an index is repeated twice in a term, once as a sub-
script and once as a superscript, then it automatically implies summation over
the possible values of that index and it is not necessary to put the summation
sign explicitly. Using this summation convention, the transformation laws for a
contravariant vector Ai and a covariant vector Ai would be

A
i = Ak ∂xi

∂xk
, (12.3)

Ai = Ak
∂xk

∂xi
, (12.4)

where A
i

and Ai are components of these contravariant and covariant vectors
in the coordinate system xi . By comparing (12.3) with (12.1) and (12.4) with
(12.2), it is clear that the generalized velocity dxi/dt transforms as a contravari-
ant vector and the generalized force −∂V/∂xi transforms as a covariant vector.
If we consider the transformation from one Cartesian frame to another (for
example, due to a rotation from one frame to the other in two dimensions),
it is easy to show that

∂xi

∂xk
= ∂xk

∂xi
.

This implies that the distinction between contravariant and covariant vectors
disappears if we consider only transformations between Cartesian frames.

A component of a vector is associated with only one coordinate axis. In the
case of a general tensor, a component can be associated with several coordinate
axes. So a component will generally have several indices. The transformation
law of a general tensor will be the following:

T
ab..d
l..n = T αβ..δ

λ..ν

∂xa

∂xα

∂xb

∂xβ
..
∂xd

∂xδ

∂xλ

∂xl
..
∂xν

∂xn . (12.5)

Note that some indices are put as superscripts and some as subscripts depending
on whether the corresponding parts of the transformation are like contravariant
vectors or covariant vectors.

From the transformation law (12.5) of tensors, it is very easy to show that
the product Ai Bk of two vectors Ai and Bk should transform like a tensor with
two covariant components i and k. This can be generalized to the result that
the product of two tensors gives a tensor of higher rank. One very important
operation is the contraction of tensors. Suppose we write n = d in the tensor

T
ab..d
l..n . This, by the summation convention, implies that we are summing over

all possible values of n = d. It follows from (12.5) that

T
ab..d
l..d = T αβ..δ

λ..ν

∂xa

∂xα

∂xb

∂xβ
..
∂xd

∂xδ

∂xλ

∂xl
..

∂xν

∂xd
.
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Using the fact that

∂xd

∂xδ

∂xν

∂xd
= δν

δ ,

we easily get

T
ab..d
l..d = T αβ..δ

λ..δ

∂xa

∂xα

∂xb

∂xβ
..
∂xλ

∂xl
.. (12.6)

on making use of the obvious result T αβ..δ
λ..ν δν

δ = T αβ..δ
λ..δ following from the

properties of the Kronecker δ. We leave it as an exercise for the reader to verify
that δi

k transforms like a tensor, but not δik or δik (the Kronecker δ in any form is
assumed to have the value 1 if i = k and 0 otherwise). It is clear from (12.6) that
T αβ..δ

λ..δ transforms like a tensor with one contravariant index and one covariant
index less compared to T αβ..δ

λ..ν . Thus the operation of contraction reduces the
rank of the tensor (by reducing one contravariant rank and one covariant rank).

12.2.2 The metric tensor

We have pointed out in §10.2 that the distance between two nearby points
in a space is given by (10.5). Using our present notation and the summation
convention, we can write

ds2 = gik dxi dxk . (12.7)

Although xi does not transform as a vector, dxi is clearly a contravariant vector.
Hence gikdxldsm must be a tensor which, after two contractions, would give a
scalar, implying that ds2 is a scalar.

We pointed out in §10.2 that it is the metric tensor gik which determines
whether a space is curved or not. We shall now develop the mathematical
machinery to calculate curvature. As we develop the techniques, we shall
illustrate them by applying them to the metrics

ds2 = dr2 + r2 dθ2, (12.8)

ds2 = a2(dθ2 + sin2 θ dφ2), (12.9)

where (12.8) corresponds to a plane using polar coordinates and (12.9) corre-
sponds to the surface of a sphere. We shall also sometimes consider the metric

ds2 = a2(dx2
1 + sinh2 x1 dx2

2), (12.10)

which corresponds to the surface having the property of a saddle point at every
point. We pointed out in §10.2 that these three metrics can be written in the
forms (10.7)–(10.9) by using very similar notation and also discussed that these
correspond to the only three possible uniform two-dimensional surfaces (i.e.
surfaces in which every point is equivalent). It may be noted that (12.7) allows



12.2 The world of tensors 361

for cross-terms of the form g12dx1dx2. The metrics (12.8)–(12.10), however,
have only pure quadratic terms and no cross-terms. If the coordinate system is
orthogonal, then we do not have cross-terms in the expression of ds2. In this
book, we shall restrict our discussions to only simple metrics without cross-
terms corresponding to orthogonal coordinates. In other words, we shall only be
concerned with metric tensors gik which have non-zero terms on the diagonal
alone when represented in the form of a matrix. For the three metrics (12.8)–
(12.10), the components of the metric tensor respectively are

grr = 1, gθθ = r2, grθ = gθr = 0, (12.11)

gθθ = a2, gφφ = a2 sin2 θ, gθφ = gφθ = 0, (12.12)

g11 = a2, g22 = a2 sinh2 x1, g12 = g21 = 0. (12.13)

There are astrophysical situations where the cross-terms become important,
such as the Kerr metric of a rotating black hole, which is beyond this elementary
book.

From a contravariant vector Ai , it is possible to construct the corresponding
covariant vector in the following way

Ai = gik Ak . (12.14)

This is often called the lowering of an index. It is very easy to do it if the
metric is diagonal. For example, if (Ar , Aθ ) are the contravariant components
of a vector in the plane with the metric tensor (12.11), then the corresponding
covariant components are (Ar = Ar , Aθ = r2 Aθ ). Suppose dxi and dxk have
corresponding covariant vectors dxi and dxk obtained according to (12.14). It
should be possible to write the metric in the form

ds2 = gikdxi dxk . (12.15)

By requiring that ds2 given by (12.7) and (12.15) should be equal, the reader is
asked to show that

gik gkl = δi
l . (12.16)

For a diagonal metric tensor gik , it is particularly easy to obtain the correspond-
ing gik . One merely has to take the inverse of the diagonal elements while
leaving the off-diagonal elements zero in order to satisfy (12.16). For example,
for the metric tensor (12.12) corresponding to the surface of a sphere, it is easily
seen that

gθθ = 1

a2
, gφφ = 1

a2 sin2 θ
, gθφ = gφθ = 0 (12.17)

would satisfy (12.16). Once the covariant metric tensor gik has been introduced,
we can use it to raise an index and obtain a contravariant vector from a covariant
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Fig. 12.1 A constant vector field A, shown with the point P where we consider the

components of this vector field.

vector in the following way

Ai = gik Ak . (12.18)

Starting from a contravariant vector Ai , if we once lower the index by (12.14)
and then raise it again by (12.18), then it is easy to use (12.16) to show that
we get back the same vector Ai . It may be noticed that we are repeatedly
leaving various simple steps to the readers so that they can carry out these steps
themselves and become conversant with tensor operations.

We often have to deal with components of a vector along the coordinate
directions. For a particle moving in a plane, for example, the components of
velocity in polar coordinates are (ṙ , r θ̇ ). We can call these vectorial com-
ponents. It is obvious that the vectorial components in different orthogonal
coordinate systems will not transform amongst each other according to either
(12.3) or (12.4). However, if we divide the two vectorial components of velocity
by

√
grr = 1 and

√
gθθ = r respectively, then we get the contravariant velocity

vector (ṙ , θ̇ ) in polar coordinates. In general, if we divide the i-th vectorial
component of a vector in an orthogonal coordinate system by

√
gii and do this

for each component, then we get a set of components of the vector which would
transform between orthogonal coordinates in accordance with the rule (12.3)
for contravariant vectors. Similarly, if we multiply the vectorial components
by

√
gii , then we would get the components of the corresponding covariant

vector. As an example, let us consider a constant vector field A in a plane and
find its components in polar coordinates if we assume A to transform like a
contravariant vector. Let us measure θ from the direction of A as shown in
Figure 12.1. At a point P with coordinates (r, θ), the vectorial components of A
in polar coordinates are (A cos θ, −A sin θ). Making use of (12.11), we easily
see that the contravariant form of the constant vector in polar coordinates will be

Ar = A cos θ, Aθ = −A
sin θ

r
, (12.19)
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whereas the covariant form will be

Ar = A cos θ, Aθ = −Ar sin θ. (12.20)

One can easily check that these expressions for different components will follow
on applying (12.3) and (12.4) to the components in Cartesian coordinates: Ax =
Ax = A, Ay = Ay = 0. It should be apparent that the question of whether a
vector is contravariant or covariant does not make sense until we are told how
its components in an arbitrary coordinate system are to be taken. For example,
from a knowledge of how the generalized velocity or the generalized force is to
be defined in different coordinates, we could use (12.1) and (12.2) to conclude
that they transform as contravariant and covariant vectors respectively.

12.2.3 Differentiation of tensors

Let us consider a contravariant vector field Ak(xm). In another coordinate
system xl , this same vector field will be denoted by A

i
(xl), the transformation

law being given by (12.3). It readily follows from (12.3) that

∂ A
i

∂xl
= ∂ Ak

∂xm

∂xm

∂xl

∂xi

∂xk
+ Ak ∂xm

∂xl

∂2xi

∂xm∂xk
.

Due to the presence of the second term on the right-hand side, it is clear that the
derivative ∂ Ak/∂xm does not transform like a tensor. To understand the physical
reason behind it, we consider the contravariant form of a constant vector field
given by (12.19). It follows from (12.19) that

∂ Ar

∂θ
= −A sin θ.

Even though we may expect the derivative of a constant vector field to be
zero, that is not the case. This is presumably due to the fact that we are using
curvilinear coordinates. From the derivative, we have to remove the part coming
due to the curvature of the coordinate system in order to get a more physically
meaningful expression of the derivative. We now discuss how to do it.

In order to differentiate a vector field A, we need to subtract A(x) from
A(x + dx). Now we can sensibly talk of adding or subtracting vectors only if
they are at the same point. So we need to do what is called a parallel transport
of A(x) to x + dx before we subtract it from A(x + dx). We expect that A
will change to A + δA under such a parallel transport. For example, when we
transport a vector A even on a plane surface, its components in polar coordinates
(Ar , Aθ ) will in general change. On physical grounds, we expect that the change
δAi in Ai under parallel transport from xl to xl + dxl will be proportional to
the displacement and to the vector itself. Hence we can write

δAi = −�i
kl Akdxl, (12.21)
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where �i
kl is known as the Christoffel symbol, named after Christoffel (1869)

who introduced it. The Christoffel symbol is not a tensor because δAi is not a
tensor. We now expect a proper derivative of Ai to be given by

D Ai

Dxl
= lim

dxl→0

Ai (xl + dxl) − [Ai (xl) + δAi ]
dxl

.

On substituting for δAi from (12.21) and writing

Ai (xl + dxl) = Ai (xl) + ∂ Ai

∂xl
dxl,

we get

D Ai

Dxl
= ∂ Ai

∂xl
+ �i

kl Ak . (12.22)

This is known as the covariant derivative. It may be noted that the ordi-
nary derivative ∂ Ai/∂xl and the covariant derivative D Ai/Dxl are sometimes
denoted by symbols Ai

,l and Ai
;l . Other popular symbols for these derivatives

are ∂l Ai and ∇l Ai . We shall, however, use the longer notation in this book in
order to avoid introducing too many new notations in our short discussion of
general relativity.

In order to calculate the covariant derivate of a vector, we first need to figure
out how to evaluate the Christoffel symbols appearing in the expression (12.22)
of the covariant derivative. It is possible to find the Christoffel symbols from
the metric tensor. For deriving the relation of Christoffel symbols to the metric
tensor, we first have to figure out the expressions of covariant derivatives for a
covariant vector Ai and tensors of higher rank. By noting that Ai Bi is a scalar
for which we must have δ(Ai Bi ) = 0, we obtain

Bi δAi = −Ai δBi = Ai �i
kl Bk dxl .

For indices which are summed (i.e. which are repeated twice above and below),
we can change the symbols without affecting anything else. So we can write the
above relation as

Bi δAi = Ak�
k
il Bi dxl,

from which it follows that

δAi = �k
il Ak dxl . (12.23)

It is now easy to show that

D Ai

Dxl
= ∂ Ai

∂xl
− �k

il Ak . (12.24)
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We leave it for the reader to argue that the covariant derivative of the tensor Aik

must be given by

D Aik

Dxl
= ∂ Aik

∂xl
− �m

kl Aim − �m
il Amk . (12.25)

We now show that the Christoffel symbol is symmetric in its bottom two indices.
Let us consider a vector

Ai = ∂V

∂xi
,

where V is a scalar field. We readily find that

D Ai

Dxk
− D Ak

Dxi
= (�l

ki − �l
ik)

∂V

∂xl
.

We note that the left-hand side is a tensor, which should transform between
frames by obeying tensor transformation formulae. It is obvious that the left-
hand side in a Cartesian frame is zero and hence it must be zero in all frames.
Then the right-hand side also should be zero, implying

�l
ik = �l

ki . (12.26)

Now, if Ai is the covariant vector associated with Ai , then

D Ai

Dxl
= D

Dxl
(gik Ak) = gik

D Ak

Dxl
+ Ak Dgik

Dxl
.

Since Ai and Ai essentially correspond to the same physical entity, their covari-
ant derivatives also must be the same physical entity and should be related to
each other as

D Ai

Dxl
= gik

D Ak

Dxl
.

It then follows that we must have

Dgik

Dxl
= 0. (12.27)

From (12.25) and (12.27), we have

∂gik

∂xl
= �m

kl gim + �m
il gmk . (12.28)

On permuting the symbols, we also have

∂gli

∂xk
= �m

ik glm + �m
lk gmi , (12.29)

∂gkl

∂xi
= �m

li gkm + �m
ki gml . (12.30)
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On subtracting (12.28) from the sum of (12.29) and (12.30), we get

2�n
ik gln = ∂gli

∂xk
+ ∂gkl

∂xi
− ∂gik

∂xl

on keeping in mind the symmetry property (12.26) of the Christoffel symbol
(as well as the symmetry property of the metric tensor). On multiplying this
equation by gml and making use of (12.16), we finally have

�m
ik = 1

2
gml
(

∂gli

∂xk
+ ∂glk

∂xi
− ∂gik

∂xl

)
. (12.31)

This is the final expression of the Christoffel symbol in terms of the metric
tensor. If we have the metric tensor for a space, we can calculate the Christoffel
symbols by using (12.31) and then work out any covariant derivatives. It is
obvious that the Christoffel symbols are zero in a Cartesian coordinate system.
Even when the space is curved, it can be shown that it is possible to introduce
Cartesian coordinates in a local region in such a way that the spatial derivatives
of the metric tensor are zero and the Christoffel symbols vanish. It is, however,
not possible to make the higher derivatives of the metric tensor zero in a general
situation.

Calculating Christoffel symbols for spaces of several dimensions can
involve quite a bit of algebra, even though the algebra is usually straightforward
if the metric tensor is not too complicated. For four-dimensional spacetime,
for example, ik in �m

ik can have 10 independent combinations in view of the
symmetry. Since m can have four possible values, it is clear that the Christoffel
symbol will have 40 components in four-dimensional spacetime. We shall see in
§12.2.4 that one has to do further computations to obtain the curvature of space-
time from the Christoffel symbols. In general relativistic applications, often we
have to do this very long algebra involving quantities with many components.
We shall only consider the two-dimensional metrics (12.8) and (12.9) here for
illustrative purposes. The metric tensors for them are explicitly written down in
(12.11) and (12.12) respectively. On substituting (12.11) into (12.31), we find
that the Christoffel symbols for the plane in polar coordinates are

�r
θθ = −r, �θ

rθ = 1

r
, (12.32)

whereas the other four components (since the Christoffel symbol has six inde-
pendent components in two dimensions) turn out to be zero. For the surface of
the sphere with the metric tensor given by (12.12), the only non-zero compo-
nents are

�θ
φφ = −sin θ cos θ, �

φ
θφ = cot θ. (12.33)

We have seen that the ordinary derivatives of the constant vector field given by
(12.19) are non-zero. Now we are ready to show that the covariant derivatives
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are zero, as we expect in the case of a constant vector field. Using (12.22), we
can write down

D Ar

Dθ
= ∂ Ar

∂θ
+ �r

kθ Ak = ∂ Ar

∂θ
+ �r

θθ Aθ ,

since the other term is zero due to the fact that �r
rθ = 0. On substituting for

(Ar , Aθ ) from (12.19) and using �r
θθ = −r , we find that

D Ar

Dθ
= 0.

The other components of the covariant derivative can also similarly be shown to
be zero. Since the covariant derivative is a proper tensor and we know that the
covariant derivative of a constant vector field in Cartesian coordinates (where
the derivative reduces to an ordinary derivative) is zero, we would expect it to be
zero in the other coordinates as well. The small demonstration of this by explicit
calculations has hopefully given the reader some idea of how such calculations
are done.

12.2.4 Curvature

Suppose a vector Ai lying on a flat surface is made to undergo parallel transport
along a closed path and eventually brought back to its original location. We
expect the final vector to be identical with the initial vector. On the other hand,
if we have a curved surface, then the parallel transport of a vector along some
arbitrary closed path may not bring it back to its original self. From (12.23) we
conclude that the change in the Ak after parallel transport along a closed path C
will be

�Ak =
∮

C
�i

kl Ai dxl . (12.34)

Whether a surface is plane or curved can be inferred by finding out if the right-
hand side of (12.34) is zero or non-zero for arbitrary closed paths. The same
considerations should apply to higher dimensions as well. We can conclude a
space to have zero curvature if

∮
C �i

kl Ai dxl around any arbitrary closed path is
always zero. On the other hand, if we can find some closed path such that this
line integral over it is non-zero, then the space must be curved.

To proceed further, we have to convert the line integral of (12.34) into a
surface integral. Let us try to write down Stokes’s theorem of ordinary vector
analysis in tensorial notation. We consider ordinary three-dimensional Cartesian
space. An element of area ds is a pseudovector from which we can construct a
tensor
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d f ik =
⎛
⎝ 0 dsz −dsy

−dsz 0 dsx

dsy −dsx 0

⎞
⎠ .

On using this notation, Stokes’s theorem can be written as∮
C

Ai dxi = 1

2

∫
d f ik
(

∂ Ak

∂xi
− ∂ Ai

∂xk

)
, (12.35)

where the right-hand side is a surface integral over a surface of which C is the
boundary. This tensorial expression of Stokes’s theorem holds for curved space
and for higher dimensions also, though we shall not try to justify it here. On
converting the right-hand side of (12.34) into a surface integral with the help of
Stokes’s theorem, we get

�Ak = 1

2

∫ [
∂

∂xl
(�i

km Ai ) − ∂

∂xm
(�i

kl Ai )

]
d f lm

= 1

2

∫ [
∂�i

km

∂xl
Ai − ∂�i

kl

∂xm
Ai + �i

km
∂ Ai

∂xl
− �i

kl
∂ Ai

∂xm

]
d f lm .

Now the change in Ai in the present situation is caused by parallel transport
from its original position. So the change in Ai must be given by (12.23) from
which it follows that

∂ Ai

∂xl
= �n

il An.

Using this we get

�Ak = 1

2

∫ [
∂�i

km

∂xl
− ∂�i

kl

∂xm
+ �n

km�i
nl − �n

kl�
i
nm

]
Ai d f lm .

This can be written as

�Ak = 1

2

∫
Ri

klm Ai d f lm, (12.36)

where

Ri
klm = ∂�i

km

∂xl
− ∂�i

kl

∂xm
+ �n

km�i
nl − �n

kl�
i
nm . (12.37)

As we have already pointed out, whether a space is flat or curved can be
determined by finding out if �Ak is always zero or not. This in turn depends
of whether Ri

kml is zero or non-zero, as should be clear from (12.36). We
thus conclude that Ri

klm given by (12.37) is a measure of the curvature of
space. It is called the Riemann curvature tensor, after Riemann who carried
out pathbreaking studies on the curvature of space (Riemann, 1868).
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Just from the definition of Ri
klm given by (12.37), the following symmetry

properties follow

Ri
klm = −Ri

kml, (12.38)

Ri
klm + Ri

mkl + Ri
lmk = 0. (12.39)

Another important result, known as the Bianchi identity, is

DRn
ikl

Dxm
+ DRn

imk

Dxl
+ DRn

ilm

Dxk
= 0. (12.40)

The best way of proving this identity is to go to a Cartesian frame and use
the result following from (12.5) that, if a tensor has all components zero in a
Cartesian frame, it must be identically zero in all frames. Now, if the space
under consideration is curved, it is possible to introduce a Cartesian coordinate
only in a local region. The Christoffel symbol �i

km can be made zero in the local
Cartesian frame, but its derivatives may not be zero. It follows from (12.37) that
at this local point we should have

DRn
ikl

Dxm
= ∂2�n

il

∂xm∂xk
− ∂2�n

ik

∂xm∂xl
,

since the covariant derivative reduces to the ordinary derivative in the local
region of the Cartesian frame. If we write similar expressions for the other
terms in (12.40) and add them up, we establish the identity in the local Cartesian
frame. Due to its tensorial nature, it then follows that the Bianchi identity must
be a general identity true in all frames.

From the curvature tensor Ri
klm , we can obtain a tensor Rkm of lower rank

by contracting i with l:

Rkm = Ri
kim = ∂�i

km

∂xi
− ∂�i

ki

∂xm
+ �n

km�i
ni − �n

ki�
i
nm . (12.41)

This tensor Rkm is known as the Ricci tensor. It is straightforward to show that
Rkm is symmetric, i.e.

Rkm = Rmk .

We can finally obtain a scalar

R = gmk Rmk (12.42)

known as the scalar curvature.
So far our discussion of curvature has been completely formal. Readers

may now develop some appreciation of this tensorial machinery by applying
it to the metric (12.9) pertaining to the surface of a sphere, of which the non-
zero Christoffel symbols are given in (12.33). Let us try to calculate the scalar
curvature, for which we need Rθθ and Rφφ . Now
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Rθθ = Rθ
θθθ + Rφ

θφθ = Rφ
θφθ ,

since Rθ
θθθ = 0 due to the antisymmetry property (12.38). We thus need to

calculate only one component of the curvature tensor to obtain Rθθ . On using
the expressions of Christoffel symbols given by (12.33), it easily follows from
the definition (12.37) of the curvature tensor that

Rθθ = Rφ
θφθ = 1.

A similar calculation gives

Rφφ = Rθ
φθφ = sin2 θ.

Finally the scalar curvature is given by

R = gθθ Rθθ + gφφ Rφφ = 1

a2
.1 + 1

a2 sin2 θ
. sin2 θ = 2

a2
(12.43)

on making use of (12.17). Although the Riemann tensor has many components,
we did not have to do too much algebra to obtain the scalar curvature. Thus
calculating the curvature of a simple two-dimensional metric is not too com-
plicated. The curvature calculation for any four-dimensional spacetime metric
usually involves a horrendous amount of straightforward algebra. We also note
from (12.43) that the curvature scalar is a constant over the surface of the sphere,
which is expected from the fact that this surface is uniform. We leave it as an
exercise for the reader to show that the scalar curvature for the metric (12.10)
is −2/a2. The metrics (12.9) and (12.10) give the only two uniformly curved
surfaces possible in two dimensions, one with uniform positive curvature and
the other with uniform negative curvature. It is easy to show that all components
of the curvature tensor are zero for the metric (12.8) corresponding to a plane.
Given the metric of a space (or a spacetime), we now have the machinery to find
out whether it is curved or flat.

We end our discussion of curvature by introducing another tensor which
turns out to be very important in the formulation of general relativity, as we
shall see later. It is the Einstein tensor defined as

Gik = Rik − 1

2
gik R. (12.44)

One of its very important properties is that it is a divergenceless tensor satisfying

DGik

Dxk
= 0. (12.45)

From the definition (12.44) of the Einstein tensor, this implies

DRik

Dxk
− 1

2
gik

∂ R

∂xk
= 0. (12.46)
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To prove this, we need to begin from the Bianchi identity (12.40). Writing
Rn

imk = −Rn
ikm in the second term of (12.40), we (i) contract n and k, and (ii)

multiply by gim . This gives

DRm
l

Dxm
− ∂ R

∂xl
+ D

Dxn
(gim Rn

ilm) = 0 (12.47)

on remembering that the covariant derivative of the metric tensor is zero, as
indicated by (12.27), and the covariant derivative of a scalar reduces to its
ordinary derivative. In Exercise 12.3 the reader is given some hints to show that
gim Rn

ilm = Rn
l . This implies that the last term in (12.47) is the same as the first

term, giving an equation which is easily seen to be equivalent with (12.46). This
essentially establishes that the Einstein tensor is divergenceless as encapsulated
in (12.45) – a result which is going to be crucially important when we formulate
general relativity.

12.2.5 Geodesics

The shortest path between two points in a plane surface or in a flat space is a
straight line. If the surface or the space is curved, then the shortest path between
two points is called a geodesic. We have pointed out in §10.2 that one of the
central ideas of general relativity is that a particle moves along a geodesic in the
four-dimensional spacetime. Before we get into the physics of general relativity,
the last mathematical question we have to address is to show how we obtain
geodesics in a particular space of which the metric tensor is known.

Let us consider an arbitrary path between two points A and B. The length
ds of a small segment of this path is given by (12.7). Hence the length of the
whole path must be

s =
∫ B

A

√
gik

dxi

dλ

dxk

dλ
dλ, (12.48)

where λ is a parameter measured along the path. On writing

L =
√

gik
dxi

dλ

dxk

dλ
(12.49)

the length of the path is

s =
∫ B

A
L dλ

and the condition for the path to be an extremum is given by the Lagrange
equation

d

dλ

(
∂L

∂(dxi/dλ)

)
− ∂L

∂xi
= 0.
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(See, for example, Mathews and Walker, 1979, §12–1.) On substituting the
expression of L given by (12.49) into this Lagrange equation and remembering
that √

gik
dxi

dλ

dxk

dλ
= ds

dλ
,

a few steps of easy algebra give

d

ds

(
gik

dxk

ds

)
− 1

2

∂gkl

∂xi

dxk

ds

dxl

ds
= 0. (12.50)

Now the first term of this equation is

d

ds

(
gik

dxk

ds

)
= gik

d2xk

ds2
+ ∂gik

∂xl

dxl

ds

dxk

ds

= gik
d2xk

ds2
+ 1

2

(
∂gik

∂xl
+ ∂gil

∂xk

)
dxl

ds

dxk

ds
.

On substituting this in (12.50), we have

gik
d2xk

ds2
= −1

2

(
∂gik

∂xl
+ ∂gil

∂xk
− ∂gkl

∂xi

)
dxk

ds

dxl

ds
.

Multiplying this by gmi , we finally get

d2xm

ds2
= −�m

kl
dxk

ds

dxl

ds
, (12.51)

where �m
kl is the Christoffel symbol defined in (12.31). This equation (12.51) is

finally the geodesic equation which has to be satisfied by a curve in space if it
happens to be a geodesic in that space.

Whenever we obtain any important tensorial relation, we have been illus-
trating it by applying it to one of the two-dimensional metrics. We follow the
same approach now. Since the metric (12.8) corresponds to a plane surface,
the geodesic for this metric must be a straight line. Hence we expect that the
geodesic equation (12.51) applied to this metric should give us a straight line.
We now explicitly show this. The non-zero Christoffel symbols of this metric
(12.8) are given in (12.32). On substituting these in (12.51), we get the following
two equations

d2r

ds2
= r

(
dθ

ds

)2

, (12.52)

d2θ

ds2
= − 2

r

dr

ds

dθ

ds
. (12.53)
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The factor 2 in (12.53) comes from the two equal terms arising out of the
combinations rθ and θr . Now (12.53) is equivalent to

1

r2

d

ds

(
r2 dθ

ds

)
= 0.

It follows from this that r2(dθ/ds) must be a constant along the geodesic. We
therefore write

dθ

ds
= l

r2
, (12.54)

where l is a constant. On dividing the metric (12.8) by ds2, we obtain(
dr

ds

)2

= 1 − r2
(

dθ

ds

)2

= 1 − l2

r2

so that

dr

ds
= ±
√

1 − l2

r2
. (12.55)

Dividing (12.54) by (12.55), we get

dθ

dr
= ± l/r2√

1 − l2

r2

,

of which a solution is

θ = θ0 ± cos−1
(

l

r

)
,

where θ0 is the constant of integration. This solution can be put in the form

r cos(θ − θ0) = l, (12.56)

which is clearly the equation of a straight line. This completes our proof that
the geodesic in a plane is a straight line, even though it is mathematically not so
apparent when we use polar coordinates.

12.3 Metric for weak gravitational field

We have finished developing the mathematical machinery necessary for formu-
lating general relativity. Now we are ready to get into a discussion of the physics
of general relativity. Since it is a complex and difficult subject, we shall proceed
cautiously. Suppose we consider the motion of a non-relativistic particle in a
weak gravitational field. It will become clear soon what we quantitatively mean
by the adjective ‘weak’ applied to the gravitational field. If the gravitational
field is sufficiently weak, we can certainly treat the motion of the particle by
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using the Newtonian theory of gravity. We can, however, use general relativity
also to solve this problem, even though that might be like using a sledgehammer
to crack a nut. Both the Newtonian theory and general relativity should give the
same result in the regime where both are valid. We introduce some first concepts
of general relativity by discussing how it can be applied to study the motion of
a non-relativistic particle in a weak gravitational field for which the Newtonian
theory is adequate.

We have pointed out in §10.2 (see Table 10.1) that the motion of a particle
in a gravitational field is obtained in general relativity by using the fact that the
motion has to be along a geodesic. We also saw in §12.2.5 that the geodesic
between two spacetime points A and B is the path along which the path length
s = ∫ B

A ds is an extremum, ds being given by (12.7). So the path of a particle
in the four-dimensional spacetime between the two points A and B can be
obtained in general relativity by making s an extremum. On the other hand,
classical mechanics tells us that we can solve the motion by applying Hamilton’s
principle that the action I = ∫ B

A L dt has to be an extremum between A and
B, where L is the Lagrangian (see, for example, Goldstein, 1980, Chapter 2;
Landau and Lifshitz, 1976, §2). For the motion of a non-relativistic particle
in a weak gravitational field, both classical mechanics and general relativity
should give correct results, and the results should be identical. In other words,
the extremum of s = ∫ B

A ds and the extremum of I = ∫ B
A L dt should give the

same path. This is possible only if ds for a weak gravitational field in general
relativity is essentially the same thing as L dt in classical mechanics (except for
any additive or multiplicative constants). We know that the Lagrangian L for a
particle moving in a gravitational potential � is given by

L = 1

2
mv2 − m�

(see, for example, Goldstein, 1980, §1–4; Landau and Lifshitz, 1976, §5). Hence
the non-relativistic action can be taken to be

INR =
∫ B

A

[
1

2
mv2 − m�

]
dt − mc2

∫ B

A
dt. (12.57)

The last term has a constant value −mc2(tB − tA) and would not contribute in
the calculation of the extremum. As we proceed further, it will be clear why we
are including this term. We shall now try to figure out how to write ds in this
situation such that the extremum of

∫ B
A ds gives the same result as the extremum

of INR given by (12.57).
Before considering the case for a weak gravitational field, let us first look

at the case of zero gravitational field. In the absence of a gravitational field,
general relativity reduces to special relativity. We write the spacetime coordi-
nates as x0 = ct, x1, x2, x3 in view of the fact that their differentials make up
a contravariant vector and we should use superscripts. If ds is the separation
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between two nearby spacetime events, we know that ds2, which is often written
as −c2dτ 2, can be written in the special relativistic situation in the form

ds2 = −c2dτ 2 = −(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2. (12.58)

We can write this as

ds2 = −c2dτ 2 = ηik dxi dxk, (12.59)

where the special relativistic metric ηik is given by

ηik =

⎛
⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ . (12.60)

One can easily check that a geodesic has to be a straight line in this spacetime
(which is flat). A straight line in the special relativistic spacetime corresponds
to the world-line of a uniformly moving particle. Thus, if the geodesics give
the paths which particles follow, we come to the conclusion that particles move
uniformly in the absence of a gravitational field.

It is clear that the extremum of
∫ B

A dτ , with dτ given by (12.58), would give
the geodesic in the special relativistic case (which is a straight line). Let us now
multiply

∫ B
A dτ by −mc2 and argue that the resulting quantity

I�=0 = −mc2
∫ B

A
dτ (12.61)

should be the action for a free particle (i.e. a particle in zero gravitational field)
in classical mechanics. If (12.61) indeed gives the classical action, then it would
follow that a geodesic is a path along which the action is also an extremum
and the path followed by the particle according to classical mechanics would
then be a geodesic in spacetime. Suppose we consider a moving particle which
is at spacetime points (x0, x1, x2, x3) and (x0 + dx0, x1 + dx1, x2 + dx2,

x3 + dx3) at the beginning and the end of a short interval. The velocity of the
particle is given by

v2 = (dx1)2 + (dx2)2 + (dx3)2

dt2
= c2 (dx1)2 + (dx2)2 + (dx3)2

(dx0)2
, (12.62)

since dx0 = cdt . It then follows from (12.58) that

dτ = dx0

c

√
1 − v2

c2
= dt

√
1 − v2

c2
. (12.63)

On substituting this in (12.61), we have

I�=0 = −mc2
∫ B

A
dt

√
1 − v2

c2
. (12.64)
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If v2 � c2, then we can make a Taylor series expansion of the square root,
which would give

I�=0 ≈ −mc2
∫ B

A
dt +
∫ B

A

1

2
mv2 dt.

This is the same as INR given by (12.57) after setting � = 0. Thus the non-
relativistic limit of (12.61) gives the usual non-relativistic action for a free
particle. So, if we take (12.61) as our action, we shall get the correct path in the
non-relativistic situation, which would be a geodesic in spacetime. Although we
are here discussing the motion of a non-relativistic particle, it may be mentioned
that (12.61) is the correct expression for the action of a free particle even when
the particle moves relativistically (see Landau and Lifshitz, 1975, §8).

When a weak gravitational field is present, we need to add a part due to
gravitational interaction in (12.61). Let us take

I = −mc2
∫ B

A
dτ −
∫ B

A
m� dt

which, by virtue of (12.63), becomes

I = −
∫ B

A
dt

⎡
⎣mc2

√
1 − v2

c2
+ m�

⎤
⎦ . (12.65)

It is trivial to check that the non-relativistic limit (v2 � c2) of (12.65) is (12.57).
The form of (12.65) clarifies the quantitative meaning of a weak gravitational
field. The extra term in the action due to the gravitational field should be small
compared to the rest of the action. It follows from (12.65) that the condition for
a weak gravitational field is

� � c2. (12.66)

In §1.5 we pointed out that the condition for the Newtonian theory of gravity to
be adequate is that f defined by (1.11) is small compared to 1. It is easy to see
that this is effectively the same condition as (12.66). When (12.66) is satisfied,
(12.65) must be approximately equivalent to

I ≈ −mc2
∫ B

A
dt

√
1 − v2

c2
+ 2�

c2
.

This can be written as

I ≈ −mc
∫ B

A

√(
1 + 2�

c2

)
c2 dt2 − v2 dt2.
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On making use of (12.62), this becomes

I ≈ −mc
∫ B

A

√(
1 + 2�

c2

)
(dx0)2 − (dx1)2 − (dx2)2 − (dx3)2. (12.67)

If we take the metric of the four-dimensional spacetime to be

ds2 = −c2dτ 2 = −
(

1 + 2�

c2

)
(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2,

(12.68)
then the geodesics in this spacetime will coincide with the paths we would get
by making the action given by (12.67) an extremum. Since (12.67) in turn
reduces to (12.57) in the non-relativistic situation with a weak gravitational
field, we conclude that a particle moving non-relativistically in a weak gravita-
tional field, of which the motion can be found by making (12.57) an extremum,
should follow a geodesic in the spacetime described by (12.68). This suggests
that (12.68) is the metric of spacetime with a weak gravitational field, where �

is the classical gravitational potential. We can write (12.68) as

ds2 = gik dxi dxk, (12.69)

where the metric tensor gik in the presence of a weak gravitational field is
given by

gik =

⎛
⎜⎜⎜⎝

−
[
1 + 2�

c2

]
0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎠ . (12.70)

It is obvious that the general relativistic metric tensor (12.70) reduces to the
special relativistic metric tensor (12.60) in the absence of the gravitational field.

It is instructive to work out the geodesic equation (12.51) for the metric
tensor given by (12.70) and to show that it is the same as the classical equation
for non-relativistic motion in a weak gravitational field. In the following dis-
cussion, we shall use the superscript α to indicate indices 1, 2 or 3, but not 0.
For non-relativistic motion, the change dxα in the particle’s position during an
interval dt has to be much smaller than dx0 = cdt . Hence the dominant terms
in (12.51) are

d2xm

ds2
= −�m

00
dx0

ds

dx0

ds
, (12.71)

where there is no summation now. To proceed further, we have to calculate the
Christoffel symbol �m

00, which involves derivatives of the metric tensor as seen
in (12.31). If the gravitational potential � is independent of time, then the only
non-zero derivative of the metric tensor (12.70) is
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∂g00

∂xα
= − 2

c2

∂�

∂xα
.

On using this, we find from (12.31) that

�α
00 = 1

c2

∂�

∂xα

, (12.72)

if we neglect terms quadratic in the small quantity �. Substituting this in (12.71)
and making use of the fact ds = i c dτ , we get

d2xα

dτ 2
= − 1

c2

∂�

∂xα

dx0

dτ

dx0

dτ
. (12.73)

It follows from (12.62) and (12.68) that

c dτ = dx0

√
1 + 2�

c2
− v2

c2
. (12.74)

For non-relativistic motions in a weak gravitational field for which we neglect
quadratics of �, we need to substitute

dx0

dτ
= c

in (12.73) and take dτ = dt . Then (12.73) gives

d2xα

dt2
= − ∂�

∂xα

,

which is the classical equation of motion. This completes our proof that general
relativity and ordinary classical mechanics would give the same result if (12.68)
is the metric for a weak gravitational field.

12.4 Formulation of general relativity

After discussing how general relativity can be used to study a weak gravitational
field, we are now ready to present the complete formulation of general relativity.
As pointed out in §10.2, the central equation of general relativity is Einstein’s
equation telling us how the curvature of spacetime is related to the density of
mass-energy present in spacetime. In §12.2.4 we have introduced several tensors
associated with the curvature of space. It is the Einstein tensor Gik defined
in (12.44) which turns out to be a particularly convenient tensor in the basic
formulation of the theory. Suppose we are able to find a suitable second-rank
tensor describing the mass-energy density. Then making Gik proportional to this
tensor would give us an equation that would imply that the curvature of space-
time is caused by mass-energy. Since the divergence of Gik is zero according
to (12.45), the divergence of the tensor giving the mass-energy density also
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has to be zero for the sake of consistency. The job before us now is to find
a divergenceless second-rank tensor which describes the mass-energy density.
This tensor is called the energy-momentum tensor. We shall now show that a
convenient tensor of this kind exists.

12.4.1 The energy-momentum tensor

For the time being, let us forget about relativity and show that the classical
hydrodynamic equations can be put in a form such that the divergence of a
second-rank tensor is zero. Then we shall consider how to generalize this tensor
to general relativity and thereby obtain the energy-momentum tensor. As in
the previous section, let us write x0 for ct and x1, x2, x3 for the three spatial
coordinates. The Roman indices i , j , . . . will run over the values 0, 1, 2, 3,
whereas the Greek indices α, β, . . . will run over only 1, 2, 3. We have pointed
out in §12.2.1 that the generalized velocity transforms as a contravariant vector.
So we shall write the velocity components with indices at the top indicative of
contravariant tensors. It is easy to see that the continuity equation (8.3) can be
written in the form

∂Si

∂xi
= 0, (12.75)

where Si is a 4-vector with components (ρc, ρv1, ρv2, ρv3) and the index i
repeated twice implies that we are summing over 0, 1, 2, 3. We have

∂

∂t
(ρvα) = vα ∂ρ

∂t
+ ρ

∂vα

∂t
.

Let us now substitute for ∂ρ/∂t from the continuity equation (8.3) and for
∂vα/∂t from the Euler equation (8.9) after setting the external force F to zero.
This gives

∂

∂t
(ρvα) = −vα ∂

∂xβ
(ρvβ) − ρvβ ∂vα

∂xβ
− ∂ P

∂xα

,

where a Greek index α or β repeated twice signifies summation over only the
spatial components 1, 2, 3. It is easy to see that the above equation can be written
in the form

∂

∂t
(ρvα) + ∂T αβ

∂xβ
= 0, (12.76)

where

T αβ = P δαβ + ρvαvβ. (12.77)
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We can now combine (12.75) and (12.76) in the compact form

∂(TNR)ik

∂xk
= 0, (12.78)

where (TNR)ik is the non-relativistic four-dimensional energy-momentum
tensor of which the various components are given by

(TNR)00 = ρc2, (TNR)0α = (TNR)α0 = ρcvα, (TNR)αβ = T αβ. (12.79)

It should be noted that we have not invoked relativity in obtaining (12.78).
Writing x0 for ct has been merely a matter of notation. The equation (12.78)
combines the equations of continuity and motion of classical hydrodynamics,
showing that we can have a divergenceless second-rank tensor (TNR)ik in the
non-relativistic situation. We now have to generalize (TNR)ik to obtain the fully
relativistic energy-momentum tensor.

Let us first consider how we generalize the concept of velocity in general
relativity. Suppose a particle has positions xi and xi + dxi before and after an
infinitesimal interval. The difference dxi is a 4-vector and the quotient obtained
by dividing it by a scalar will be a 4-vector as well. As in (12.58) and (12.68),
we introduce the time-like interval dτ defined through

ds2 = −c2dτ 2 = gik dxi dxk . (12.80)

From discussions in the previous section, it should be clear that dτ → dt for
non-relativistic motion in a weak gravitational field. Since dτ as introduced in
(12.80) must be a scalar, dxi divided by dτ should give us a 4-vector. We now
define the relativistic velocity 4-vector as

ui = 1

c

dxi

dτ
. (12.81)

In the non-relativistic limit, this clearly reduces to

ui →
(

1,
v1

c
,
v2

c
,
v3

c

)
. (12.82)

One interesting property of the velocity 4-vector is that

ui ui = −1. (12.83)

This can be easily proved if we use (12.14) to obtain ui from ui and then use
(12.80)–(12.81). We now define the energy-momentum tensor

T ik = ρc2ui uk + P(gik + ui uk). (12.84)

We leave it as an exercise for the reader to verify that this reduces in the non-
relativistic limit to the non-relativistic tensor (TNR)ik as given by (12.79). You
need to assume that P � ρc2 for a non-relativistic fluid. The quantities like ρ

and P are defined with respect to the rest frame of the fluid.
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Since T ik is a proper relativistic second-rank tensor and reduces to the
non-relativistic expression in the appropriate limit, we take it to be the rela-
tivistic generalization of the energy-momentum tensor. Now we can generalize
the equation (12.78) also. We need to replace the ordinary derivative by the
covariant derivative apart from replacing (TNR)ik by T ik . This gives

DT ik

Dxk
= 0. (12.85)

This completes our task of finding a properly relativistic divergenceless second-
rank tensor, which can be presumed to act as the source of curvature of
spacetime.

Before leaving the discussion of the energy-momentum tensor, let us con-
sider one important special case of this tensor. We consider a fluid at rest. Then
the spatial components of the 4-velocity must be zero, i.e.

ui = (u0, 0, 0, 0). (12.86)

It then follows from (12.83) that

u0u0 = −1. (12.87)

On lowering the index k in (12.84) by the usual procedure (12.14), we have

T i
k = ρc2ui uk + P (δi

k + ui uk).

On making use of (12.86) and (12.87), this gives

T i
k =

⎛
⎜⎜⎝

−ρc2 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P

⎞
⎟⎟⎠ . (12.88)

We pointed out in §10.3 that the Robertson–Walker metric (10.19) corresponds
to a co-moving coordinate system in which the material of the Universe is
assumed to be at rest. So the energy-momentum tensor of the Universe is given
by (12.88) when we use the co-moving coordinate system. We shall use this
result when we develop relativistic cosmology in §14.1.

12.4.2 Einstein’s equation

Since Gik defined in (12.44) and T ik defined in (12.84) are both divergenceless
tensors, one being a measure of the curvature of spacetime and the other being
a measure of energy-momentum density, it is tempting to write

Gik = κTik, (12.89)

where κ is a constant. This equation would imply that the curvature of spacetime
is produced by the energy-momentum density, which is a basic requirement of
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general relativity. It should be emphasized that we have not ‘derived’ (12.89),
but have given a string of arguments that such an equation may be expected.
Since the divergences of both sides are zero, there would not be any mathemati-
cal inconsistency when we take a divergence of (12.89). If we want the curvature
of spacetime to be produced by mass-energy, then an equation like (12.89)
would be a natural possibility. Whether (12.89) is a really correct equation can
be determined only by checking if results derived from (12.89) are confirmed
by experiments. We shall discuss some experimental confirmations of general
relativity in the next chapter.

To complete our discussion, we need to determine the constant κ . If we can
determine the value of κ in a special case, then that would be the true value of
κ in all situations if it is a universal constant. We have discussed in §12.3 how
general relativity can be formulated in the case of a weak gravitational field.
We shall now determine κ by applying (12.89) to a weak gravitational field and
comparing it with the Newtonian theory of gravity.

Using (12.44) we can write (12.89) in the form

Ri
k − 1

2
δi

k R = κT i
k . (12.90)

We now carry on a contraction between the indices i and k, keeping in mind that
δi

i = 4 because of the four dimensions of spacetime, allowing i to have values
0, 1, 2, 3. This gives

−R = κT ,

where T = T i
i . On substituting −κT for R in (12.90), we have

Ri
k = κ

(
T i

k − 1

2
δi

kT
)

.

We shall now consider the following particular component of this equation

R0
0 = κ

(
T 0

0 − 1

2
δ0

0T
)

. (12.91)

Let us apply (12.91) to the case of a weak gravitational field produced by a
distribution of matter at rest in our coordinate system. The expression for the
energy-momentum tensor for matter at rest is given by (12.88). If P � ρc2, then

T ≈ T 0
0 = −ρc2.

On substituting this in (12.91), we get

R0
0 = −1

2
κρc2. (12.92)
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Our job now is to find the expression for R0
0 from the metric (12.68) for the

weak gravitational field. It follows from (12.41) that

R00 = Ri
0i0 = ∂�i

00

∂xi
− ∂�i

0i

∂x0
, (12.93)

if we neglect the quadratic terms in Christoffel symbols for a weak gravitational
field. Since we are considering matter to be at rest, the field should be indepen-
dent of time and any derivative with respect to x0 = ct should give zero. Then
(12.93) reduces to

R00 = ∂�α
00

∂xα
,

where α repeated twice implies summation over 1, 2, 3 as usual. The Christoffel
symbol �α

00 for a weak gravitational field was already determined in (12.72). On
substituting this,

R00 = ∂

∂xα

(
1

c2

∂�

∂xα

)
= 1

c2
∇2�.

To get R0
0, we merely have to multiply R00 by g00 ≈ −1, since terms quadratic

in � are neglected. It then follows from (12.92) that

∇2� = κc4

2
ρ. (12.94)

The Newtonian theory of gravity leads to the gravitational Poisson equation

∇2� = 4πGρ.

Comparing this with (12.94), we finally conclude that

κ = 8πG

c4
. (12.95)

On substituting the value of κ in (12.89), we have

Gik = 8πG

c4
Tik . (12.96)

This is the famous Einstein equation and tells how matter-energy acts as a
source of the curvature of spacetime (Einstein, 1916).

The compact tensorial notation makes Einstein’s equation (12.96) appear
deceptively simple. Although it is one of the most beautiful equations of math-
ematical physics, it also happens to be one of the most difficult equations to
handle. Since particles move along geodesics and we need a knowledge of
the metric tensor to determine the geodesics, most of the practical problems
in general relativity require the determination of the metric tensor for a given
matter-energy distribution. The connection between the metric tensor gik and
the Einstein tensor Gik follows from (12.31), (12.41) and (12.44). If we know
the energy-momentum tensor Tik in a particular situation, Einstein’s equation
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(12.96) at once gives us the Einstein tensor Gik . But determining the metric
tensor gik after that is not an easy job. There are very few cases of practical
importance where one can determine the metric tensor that would satisfy Ein-
stein’s equation. We shall consider some applications of general relativity in the
next two chapters, where we shall present some solutions of Einstein’s equation.

Exercises

12.1 Fully work out all the components of the Christoffel symbol, the

Riemann tensor and the Ricci tensor as well as the scalar curvature for the

following metrics

ds2 = dr2 + r2 dθ2,

ds2 = a2(dθ2 + sin2 θ dφ2),

ds2 = a2(dχ2 + sinh2 χ dη2).

12.2 Show that the two covariant derivatives in general do not commute. For

a contravariant vector Ai , show especially that

(
D

Dxk

D

Dxl
− D

Dxl

D

Dxk

)
Ai = −Ri

mlk Am .

12.3 From the tensor Ri
klm defined in (12.37), construct the tensor

Riklm = gin Rn
klm

and show that

Riklm = 1

2

(
∂2gim

∂xk ∂xl
+ ∂2gkl

∂xi ∂xm
− ∂2gil

∂xk ∂xm
− ∂2gkm

∂xi ∂xl

)

+ gnp(�
n
kl�

p
im − �n

km�
p
il)

from which you can demonstrate the following symmetry properties

Riklm = −Rkilm, Riklm = −Rikml , Riklm = Rlmik .

We need to show that gim Rn
ilm appearing in (12.47) has to be equal to Rn

l in

order to complete the proof that the Einstein tensor is divergenceless. You are

now asked to prove this by using the symmetry properties just obtained. [Hint:

You have to write

gim Rn
ilm = gim gnk Rkilm

and then use some symmetry properties of Rkilm .]
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12.4 Suppose xi (s) and xi (s) + δxi (s) are the points on two infinitesi-

mally separated geodesics, where s is a parameter measured along either of

these geodesics. Show that δxi , which measures the separation between the

geodesics, satisfies

D2

Ds2
δxi = −Ri

klm δxl dxk

ds

dxm

ds
,

where D/Ds = (dxi/ds)D/Dxi is the covariant derivative along the arc-

length of either geodesic.

12.5 Prove that the equator on a spherical surface (which is a great circle) is a

geodesic, but any other circle of constant latitude parallel to the equator is not

a geodesic.

12.6 The special relativistic metric is

ds2 = −c2dt2 + dx2 + dy2 + dz2.

Consider a frame rotating uniformly around the z axis with respect to this frame

such that

t ′ = t, z′ = z, x ′ = x cos 
t + y sin 
t, y′ = −x sin 
t + y cos 
t.

Find out the metrics gik and gik in the rotating frame and explicitly verify that

gik gkm = δi
m .

12.7 The metric

ds2 = −
(

1 + 2�

c2

)
c2 dt2 + dx2 + dy2 + dz2

can describe the motion of a non-relativistic particle in a weak gravitational

field (where � is the non-relativistic gravitational potential due to some density

distribution ρ). Calculate the Einstein tensor Gxx for this metric and verify if

the corresponding component of Einstein’s equation is satisfied. If not, how do

you account for it?
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Some applications of
general relativity

13.1 Time and length measurements

While the formulation of general relativity presented in §12.4 may appear
somewhat formal, a physical theory ultimately has to make contact with the
results of measurements. Before considering applications of general relativity,
we need to understand how the results of time and length measurements can be
expressed in terms of the quantities appearing in the mathematical theory.

We keep following the notation that Roman indices i , j , . . . will run over
the values 0, 1, 2, 3, whereas the Greek indices α, β, . . . will run over only 1,
2, 3. Writing the time part of the metric separately, we can write the spacetime
metric in the form

ds2 = g00(dx0)2 + 2g0α dx0 dxα + gαβ dxα dxβ, (13.1)

where x0 is the time-like coordinate. The metric tensor component g0α gives
rise to cross-terms between the time and space coordinates in (13.1). In our ele-
mentary treatment of general relativity, we shall restrict ourselves to examples
in which g0α = 0. The mathematical theory becomes much more complicated if
g0α is not equal to zero, which happens when rotation is present in a system (see
Exercise 12.6). For example, the metric around a rotating black hole (known as
the Kerr metric) has non-zero g0α . We shall not discuss such cases in this book.
If g0α = 0, then (13.1) reduces to

ds2 = g00(dx0)2 + gαβ dxα dxβ. (13.2)

Suppose some observer is at position xα at time x0 and at the position xα +
dxα at time x0 + dx0. In the special relativistic situation, it is easy to show

387
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that the physical time interval dτ measured by the observer’s clock is related
to ds by

ds2 = −c2 dτ 2, (13.3)

where ds2 is given by the special relativistic metric (12.59) and (12.60). Even
in a general relativistic situation, we can always introduce an inertial frame in
a local region of spacetime where special relativity holds. We thus expect that
the physical time dτ measured by the observer’s clock should satisfy the same
relation (13.3) in general relativity also. We now consider an observer at rest
such that the position xα does not change. It then follows from (13.2) and (13.3)
that the physical time measured by the observer’s clock is given by

dτ = 1

c

√−g00 dx0. (13.4)

This is our first important relation. If an observer is at rest in a coordinate frame
and an interval is dx0 in the time-like coordinate x0, then the actual physical
time interval measured by a clock is given by multiplying dx0 by

√−g00/c.
We now discuss how we can find the physical distance between the neigh-

bouring points xα and xα + dxα . Suppose a light signal is sent from the first
point to the second point, where it is reflected back towards the first point
immediately. The physical time interval between the moment when the light
signal leaves the first point and the moment when the light signal comes back
there should be equal to 2 dl/c, where dl is the physical distance between
the two neighbouring points, if we assume that the light signal propagates at
speed c. If two events are connected by a light signal, we know that in special
relativity we have

ds2 = 0. (13.5)

The same consideration should hold in general relativity as well, since we can
always introduce inertial frames in local regions. It follows from (13.2) and
(13.5) that

dx0 =
√

−gαβ dxα dxβ

g00
. (13.6)

Let us clarify the significance of this. A light signal starting from the first point
xα at x0 − dx0 should reach the second point xα + dxα at x0. If the light signal
is immediately reflected back from the second point, it will again reach back
to the first point at x0 + dx0. Thus the moment when the light signal leaves
the first point and the moment when the light signal comes back there differ
by 2 dx0, with dx0 given by (13.6). To get the physical time interval, we have
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to multiply this by
√−g00/c, as suggested in (13.4). On equating this physical

time interval to 2 dl/c, we find

dl =
√

gαβ dxα dxβ. (13.7)

This second important relation gives the physical length between the neighbour-
ing points xα and xα + dxα . The length of a curve between two distant points
can be obtained by integrating the length element given by (13.7), provided all
the components of gαβ are independent of time. If gαβ changes with time during
the propagation of the light signal from one point to another distant point, then
we can meaningfully talk only about length elements dl along the path and
not the length of the whole path. For the Robertson–Walker metric introduced
in (10.19), the metric tensor evolves with time due to the time dependence of
a(t). Hence one has to take special care to treat the propagation of light in the
expanding Universe or to talk about distances to faraway galaxies, as we shall
see in §14.3 and §14.4.

The discussion of the previous paragraph also leads to the concept of
simultaneity. An observer at the first point xα sees the light signal leaving at
x0 − dx0 and returning back at x0 + dx0. Since the median value of the time-
like coordinate between these two moments is x0, this observer would expect
the light signal to reach the second point at time x0 in his clock. We have already
pointed out that the signal reaches the second point xα + dxα when the time-
like coordinate at the second point has the value x0. This means that x0 at the
first point is simultaneous with x0 at the second point. Extending this argument,
events taking place at different spatial points are simultaneous if the time-like
coordinate has the same value x0 for these events. The coordinate x0 is often
called the world time. We need to consider the world time to figure out whether
different events are simultaneous, whereas the physical time can be obtained
from the world time by using (13.4). Since g00 will in general have different
values at different spatial points, it is clear that clocks will run at different rates
at different spatial points.

13.2 Gravitational redshift

We consider a constant gravitational field where the coordinates can be chosen
in such a way that the metric tensor components are independent of time.
Suppose a periodic signal is sent from point A to point B. Let a pulse be emitted
at A at world time x0

e and reach B at world time x0
r , the propagation time being

x0
r − x0

e . Suppose the next pulse is emitted at A at world time x0
e + T 0. For a

constant gravitational field, the propagation time of this pulse to B will be the
same as the propagation time of the first pulse. Hence the second pulse will
reach B at the world time (x0

e + T 0) + (x0
r − x0

e ) = x0
r + T 0. This means that
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observers at A and B would both record the same world time difference T 0

between the two pulses. Using (13.4) to relate the world time to the physical
time, we conclude that the physical period TA inferred by observer A and the
physical period TB inferred by observer B should be related by

TA

TB
=
√

−(g00)A

−(g00)B
= ωB

ωA
, (13.8)

where ωA and ωB are the frequencies of some periodic signal measured at A and
B respectively. This is the general expression showing how the frequency of a
signal changes on propagating from one point in a gravitational field to another.
We shall now consider some simplifications for weak gravitational fields.

For a weak gravitational field, we can use (12.70) so that

√−g00 =
√

1 + 2�

c2
≈ 1 + �

c2
.

On using this, (13.8) gives

ωB

ωA
= 1 + �A

c2

1 + �B
c2

, (13.9)

where �A, �B are Newtonian gravitational potentials at A, B. For a weak
gravitational field, (13.9) can further be written as

ωB = ωA

(
1 + �A − �B

c2

)
. (13.10)

Suppose the point B is further away than A from the central region of the
gravitational field. It is easy to check that the potential difference �A − �B

should be negative, making ωB < ωA. As a periodic signal makes its way out
of a gravitational field, the frequency will decrease. For light coming out of a
gravitational field, the spectrum should be shifted towards the red. This is the
famous gravitational redshift predicted by general relativity. Pound and Rebka
(1960) were able to verify the gravitational shift of wavelength by a brilliant
terrestrial experiment, in which γ -rays from a source kept at the top of a tower
were allowed to travel to the bottom where they were absorbed and analysed.

13.3 The Schwarzschild metric

We pointed out in §12.4.2 that Einstein’s equation (12.96), which is the central
equation of general relativity, is very difficult to solve and complete solutions
are known only for a few cases of practical importance. The simplest gravi-
tational problem one can think of is to find the gravitational field due to an
isolated point mass M . Soon after Einstein’s formulation of general relativity,
Schwarzschild (1916) obtained the exact solution of this problem.
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Let us choose the position of the mass M as the origin of our coordinate
system and use spherical coordinates. According to the Newtonian theory of
gravity, the gravitational potential at a distance r is given by

� = −G M

r
. (13.11)

Far away from the mass point where the gravitational field is weak, the metric
should be given by the expression (12.68) valid in the weak field limit. Substi-
tuting for � from (13.11) and using spherical coordinates, we write

ds2(r → ∞) = −
(

1 − 2G M

c2r

)
c2 dt2 + dr2 + r2(dθ2 + sin2 θ dφ2).

(13.12)
Since there is no matter in space at points other than the point r = 0, the energy-
momentum tensor given by (12.88) should be zero at all points except r = 0.
Then, according to Einstein’s equation (12.96), the Einstein tensor also must be
zero at all points except r = 0. Our job now is to find a metric which tends to
(13.12) as r → ∞ and for which the Einstein tensor is zero at all points except
r = 0. The metric satisfying these requirements is the famous Schwarzschild
metric:

ds2 = −
(

1 − 2G M

c2r

)
c2 dt2 + dr2(

1 − 2G M/c2r
) + r2(dθ2 + sin2 θ dφ2).

(13.13)
Calculating the Einstein tensor for this metric involves a huge amount of alge-
bra. The first step in calculating the Einstein tensor is the calculation of the
Christoffel symbols. As pointed out in §12.2.3, the Christoffel symbols have
40 components in four-dimensional spacetime. Some of these components turn
out to be zero. Still one has to take care of many non-zero components. It is
instructive to go through this tedious but straightforward algebra once in your
lifetime and to show that all components of the Einstein tensor for the metric
(13.13) are zero at points other than r = 0. When r is very large, 2G M/c2r
becomes small compared to 1. If we neglect this in the coefficient of dr2 in
(13.13), we are led to (13.12). One may wonder whether we ought to keep
2G M/c2r in the coefficient of dt2, while neglecting it in the coefficient of
dr2. It is not difficult to justify this. Suppose a particle is at the point r, θ, φ

at time t and at the point r + dr, θ + dθ, φ + dφ at time t + dt . If the particle
is moving non-relativistically, then we must have dr2 � c2dt2. Hence the term
involving dr2 is itself small and a small term in its coefficient is of second order
of smallness. When we neglect this term, we still have to keep the similar term
in the coefficient of dt2.

It may be noted that the coefficient of dr2 in (13.13) diverges when r has
the value

rS = 2G M

c2
. (13.14)



392 Some applications of general relativity

This is called the Schwarzschild radius. We shall make some comments about
the significance of the Schwarzschild radius in §13.3.3. We already pointed out
in §1.5 that the effect of general relativity can be neglected if f defined in
(1.11), which is equal to rS/r , is small compared to 1. This means that at radial
distances large compared to rS general relativistic effects can be neglected.
This also follows from the fact that the metric at such large distances can be
approximated by (13.12), which leads to the same results as what we would get
from the Newtonian theory of gravity (see §12.3).

We would expect the metric around a black hole to be given by (13.13).
This is certainly true if the black hole is not rotating. In the Newtonian theory
of gravity, the gravitational field due to a mass does not depend on whether the
mass is rotating or not. One of the intriguing results of general relativity is that a
rotating mass tries to drag bodies around it to rotate with it (Thirring and Lense,
1918). Kerr (1963) discovered the exact metric for rotating black holes. It has
cross-terms between time and space coordinates, unlike the Schwarzschild met-
ric which does not have such cross-terms. These cross-terms are responsible for
the rotational dragging. We shall not discuss the Kerr metric in this elementary
book.

13.3.1 Particle motion in Schwarzschild geometry.
The perihelion precession

A particle will move along a geodesic in the Schwarzschild metric. One can
use the geodesic equation (12.51) to study the motions of particles. We shall,
however, present a discussion starting more from the basics.

Since the Schwarzschild metric is spherically symmetric, a particle moving
in this metric should always lie in a plane passing through the origin. We leave
it to the reader to find good arguments to justify this. We can choose the plane of
motion to be the equatorial plane in which θ = π/2 and sin θ = 1. A standard
convention in general relativity is to choose units of length and time such that
c and G turn out to be 1. Setting c = 1 and G = 1, it follows from (13.13) that
the metric lying in the equatorial plane is given by

ds2 = −dτ 2 = −
(

1 − 2M

r

)
dt2 + dr2(

1 − 2M
r

) + r2 dφ2. (13.15)

If a particle moves from a spacetime point A to a spacetime point B, then the
path length between them (which turns out to be the proper time measured in a
clock carried with the particle) is given by

∫ B

A
dτ =
∫ B

A
L dλ, (13.16)
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where λ is a parameter measured along the path of the particle and L is
given by

L =
√√√√(1 − 2M

r

)(
dt

dλ

)2

− (dr/dλ)2(
1 − 2M

r

) − r2

(
dφ

dλ

)2

. (13.17)

The basic idea of general relativity is that the particle should follow a geodesic
along which the integral given by (13.16) has to be an extremum. This require-
ment implies that L given by (13.17) should satisfy the Lagrange equation

d

dλ

(
∂L

∂(dqi/dλ)

)
− ∂L

∂qi
= 0,

where qi can be t , r or φ (see, for example, Mathews and Walker, 1979, §12–1).
It is seen from (13.17) that L is independent of t and φ. This suggests that we
shall have the following two constants of motion

∂L

∂(dt/dλ)
=
(

1 − 2M
r

)
dt
dλ

L
=
(

1 − 2M

r

)
dt

dτ
,

∂L

∂(dφ/dλ)
= −r2 dφ

dλ

L
= −r2 dφ

dτ
,

since L = dτ/dλ. We denote these constants of motion by e and −l, i.e.

e =
(

1 − 2M

r

)
dt

dτ
, (13.18)

l = r2 dφ

dτ
. (13.19)

Dividing (13.15) by dτ 2 and using these constants of motion, we get

e2(
1 − 2M

r

) − (dr/dτ)2(
1 − 2M

r

) − l2

r2
= 1.

On rearranging terms a little bit, this can be put in the form

e2 − 1

2
= 1

2

(
dr

dτ

)2

+ Veff(r), (13.20)

where

Veff(r) = − M

r
+ l2

2r2
− Ml2

r3
. (13.21)

It is to be noted that the problem is now reduced to a one-dimensional problem
of r as a function of τ , since the t and φ coordinates have been eliminated with
the help of the two constants of motion.
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To proceed further, it is now instructive to make some comparisons with
the problem of particle motion in an inverse-square law force field in classical
mechanics. This problem is often referred to as the Kepler problem and has been
discussed by Goldstein (1980, §3–2, §3–3) and by Landau and Lifshitz (1976,
§14, §15). Readers are urged to refresh their memories about this problem,
since we are going to use many analogies with this problem. The classical
Kepler problem also has two constants of motion – the angular momentum and
the energy. Our constant of motion l given by (13.19) is clearly the general
relativistic generalization of the classical angular momentum. To interpret e
defined by (13.18), we consider the motion of a particle in the faraway regions
where the gravitational field is weak. Then the relation between dt and dτ can
be obtained from (12.74). On using (12.74) and (13.11), it readily follows from
(13.18) that

e ≈ 1 + �

c2
+ 1

2

v2

c2
. (13.22)

Here we have not set c equal to 1 to make the physics clearer. It is obvious that
e multiplied by mc2 would give the sum of the rest mass, potential and kinetic
energies in the non-relativistic limit. It follows from (13.22) that

e2 − 1

2
≈ �

c2
+ 1

2

v2

c2
.

The right-hand side is essentially the total energy (sum of potential and kinetic
energies) used in classical mechanics calculations. We thus identify (e2 − 1)/2
as the relativistic generalization of the classical energy. Now it is easy to inter-
pret (13.20). The term (1/2)(dr/dτ)2 is like the kinetic energy. Then (13.20)
implies that (e2 − 1)/2, which is a constant and reduces to the classical energy
in the non-relativistic limit, has to be equal to the sum of the kinetic energy and
an effective potential Veff(r). The classical Kepler problem also gives rise to a
one-dimensional equation exactly similar to (13.20), except that the effective
potential does not have the last term −Ml2/r3 appearing in (13.21) (see, for
example, Goldstein, 1980, §3–3; Landau and Lifshitz, 1976, §15). It is this
last term −Ml2/r3 which makes results of general relativity different from the
classical Kepler problem. When r is much larger than rS (which is equal to
2M in our units), this last term in (13.21) becomes negligible compared to the
previous term l2/2r2 and the general relativistic effects disappear. It is easy to
check that, if we had used the metric (13.12) in our calculations rather than
(13.13), then this last term would not be there in (13.21).

The values of r at which Veff(r) has extrema can be obtained from

dVeff

dr
= 0,
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Fig. 13.1 Plots of Veff(r) given by (13.21) for the cases (i) l2 = 16M2 and (ii) l2 =
10M2. The dashed horizontal lines indicate possible values of (e2 − 1)/2.

which gives

r = l2

2M

⎡
⎣1 ±
√

1 − 12

(
M

l

)2
⎤
⎦ . (13.23)

If l2 > 12M2, then Veff(r) has extrema for two real values of r given by (13.23).
On the other hand, if l2 < 12M2, then there is no extremum for any real value
of r . Figures 13.1(a) and 13.1(b) respectively show plots of Veff(r) for one case
with l2 > 12M2 and one case with l2 < 12M2. In Figure 13.1(a), a possible
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value of (e2 − 1)/2 is indicated by a horizontal dashed line, which cuts the curve
Veff(r) at two points r1 and r2. Since (dr/dτ)2 in (13.20) is always positive,
we easily see that (13.20) can be satisfied only if r lies between r1 and r2.
We must have r = r1 and r = r2 as the two turning points within which the
orbit of the particle should be confined. In the case of Figure 13.1(b), it is not
possible for the orbit to be confined from the lower side. This implies that a
particle with l2 < 12M2 should keep falling inward till it hits the central mass.
What does this signify? If we throw a particle with zero angular momentum
towards a gravitating mass, the particle will fall into the gravitating mass. If
the gravitating mass is a point, then in the Newtonian theory of gravity even
a very small angular momentum can make sure that the particle does not fall
into the gravitating mass. We see in general relativity that the particle has to
have an angular momentum with amplitude larger than 2

√
3M in order not to

fall into the central mass. There is one other important point to be made. When
l2 > 12M2 and Veff(r) has two extremum points, it is possible for a particle
to have a circular orbit if it is located at the minimum of Veff(r). The limiting
circular orbit is obtained when l2 = 12M2. On substituting this in (13.23), we
find

r = 6M = 3rS (13.24)

as the lowest value of r above which a circular orbit is possible. It is not possible
for a particle to go around a black hole in a circular orbit of radius less than 3rS.
The circular orbit of radius 3rS is called the last stable orbit.

The determination of the orbit

Finally we now want to calculate the orbit of the particle, which should be in
the form of a functional relation between r and φ. It follows from (13.20) that

dr

dτ
= ±
√

e2 − 1 − 2Veff(r). (13.25)

From (13.19) we have

dφ

dτ
= l

r2
.

On dividing (13.25) by this and then squaring, we get

(
l

r2

dr

dφ

)2

= e2 − 1 − 2Veff(r). (13.26)

To proceed further, we make the substitution

r = 1

u
, (13.27)
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which is a standard procedure followed in the classical Kepler problem also.
Then

dr

dφ
= − 1

u2

du

dφ

so that (13.26) becomes

l2
(

du

dφ

)2

= e2 − 1 − 2Veff(u). (13.28)

Differentiating both sides with respect to φ, we get

2l2 du

dφ

d2u

dφ2
= −2

dVeff

du

du

dφ
. (13.29)

We cancel 2 du/dφ from both the sides and then write (13.21) in the form

Veff(u) = −Mu + 1

2
l2u2 − Ml2u3

to calculate dVeff/du. This gives

d2u

dφ2
+ u = 1

p
+ 3Mu2, (13.30)

where

p = l2

M
. (13.31)

The orbit as a relation between u and φ can be obtained by solving the orbit
equation (13.30).

The last term in (13.30) comes from the last term in (13.21). We have
already identified this term as the contribution of general relativity. If this last
term were not present in the orbit equation (13.30), then it would be the equation
of an ellipse, as we find in the classical Kepler problem. Let us try to solve
(13.30) for a situation where the general relativistic effect is small and the last
term in (13.30) can be treated as a small perturbation compared to the other
terms. The zeroth order solution of (13.30) in the absence of this last term
would be

u0 = 1

p
(1 + ε cos φ). (13.32)

This is the equation of an ellipse with eccentricity ε. Let us now try a solution
of the form

u = u0 + u1, (13.33)
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where u0 is given by (13.32). On substituting this in (13.30) and approximating
the small perturbation term as 3Mu2 ≈ 3Mu2

0, we get

d2u1

dφ2
+ u1 = 3Mu2

0.

On substituting for u0 from (13.32), we get

d2u1

dφ2
+ u1 = 3M

p2
(1 + 2ε cos φ + ε2 cos2 φ). (13.34)

The term 2ε cos φ in the right-hand side acts like a resonant forcing term, since
it varies with φ the same way as u0. As the effect of this term is going to be
much more significant than that of the other two terms in the right-hand side of
(13.34), we can neglect these other two terms. When we keep only the 2ε cos φ

term in the right-hand side of (13.34), its solution can be written down as

u1 = 3Mε

p2
φ sin φ, (13.35)

which can be verified by substituting in (13.34). From (13.32), (13.33) and
(13.35), we have

u = 1

p

[
1 + ε cos φ + 3Mε

p
φ sin φ

]
.

When 3Mφ/p is small compared to 1, this can be written as

u = 1

p

[
1 + ε cos

{
φ

(
1 − 3M

p

)}]
. (13.36)

If the particle followed an exact elliptical path as given by (13.32), then the
value of u would be repeated when φ changes by 2π . It follows from (13.36)
that u would repeat when φ changes by 2π + δφ, where

δφ = 2π
3M

p
= 6π

M2

l2

on using (13.31). Clearly δφ is the angle by which the perihelion of the particle
precesses during one revolution. If one puts back G and c which were set to 1
in our analysis, then the expression for the perihelion precession is given by

δφ = 6π

(
G M

c l

)2

. (13.37)

For the planet Mercury, the perihelion precession rate turns out to be 43′′
per century (Exercise 13.4). This provided one of the famous tests of general
relativity.
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13.3.2 Motion of massless particles. The bending of light

A photon or a massless particle moving with speed c follows a special geodesic
for which

ds2 = 0.

A geodesic with this property is called a null geodesic. For such a massless
particle moving in the equatorial plane, (13.15) becomes(

1 − 2M

r

)
dt2 − dr2(

1 − 2M
r

) − r2dφ2 = 0. (13.38)

Even for a massless particle, we expect the energy and the angular momentum
to be conserved because of the symmetry with respect to t and φ. However, e
and l as defined in (13.18) and (13.19) tend to be infinite, since dτ → 0 along
the trajectory of the particle as its mass goes to zero. But the ratio

e

l
=
(

1 − 2M

r

)
1

r2

dt

dφ
(13.39)

would remain finite and constant even when the mass tends to zero. In the case
of a particle with mass, we had used the proper time τ (which would be the time
measured by a clock moving with the particle) as a label to mark the trajectory
of the particle. For the massless particle, dτ = 0 and τ can no longer be used
to label the trajectory. So we introduced an affine parameter λ which increases
along the trajectory of the massless particle in such a way that

e =
(

1 − 2M

r

)
dt

dλ
(13.40)

remains constant. Then

l = r2 dφ

dλ
(13.41)

also has to be a constant to make the ratio given in (13.39) a constant. Thus, for
a massless particle, we define e and l with the help of the affine parameter λ

rather than the proper time τ as done in (13.18) and (13.19).
Dividing (13.38) by dλ2, we get

e2 − (dr/dλ)2

1 − 2M/r
= l2

r2

on using (13.40) and (13.41). From this

e2

l2
− 1

l2

(
dr

dλ

)2

= 1

r2

(
1 − 2M

r

)
,
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Fig. 13.2 A plot of the effective potential Qeff(r) for a massless particle given by

(13.43). The dashed horizontal line indicates a possible value of 1/b2.

which can be written as

1

b2
= 1

l2

(
dr

dλ

)2

+ Qeff(r), (13.42)

where b = l/e is clearly a constant of motion and

Qeff(r) = 1

r2

(
1 − 2M

r

)
, (13.43)

which is plotted in Figure 13.2, has a maximum at r = 3M with a value
(27 M2)−1. Figure 13.2 also shows a dashed horizontal line indicating a possible
value of 1/b2 less than (27 M2)−1. It easily follows from (13.42) that r has
to be restricted to a lower limit r1 if the trajectory is on the right side of the
Qeff(r) curve. In other words, a massless particle coming from infinity would
not approach any closer than r1. However, if we have b < 3

√
3M , making 1/b2

larger than (27 M2)−1, then the horizontal line corresponding to 1/b2 would
be above the maximum of Qeff(r) and a massless particle coming from infinity
would fall into the gravitating mass M .

To understand the significance of the important result that a massless par-
ticle coming from infinity with b < 3

√
3M would be captured by the mass M ,

let us try to figure out the physical meaning of b. At r much larger than the
Schwarzschild radius 2M , it follows from (13.40) and (13.41) that

b ≈ r2 dφ

dt
. (13.44)
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Fig. 13.3 A massless particle

approaching the central mass M

from a large distance with an

impact parameter h.

We now consider a massless particle approaching the central mass M from a
large distance with the impact parameter h as shown in Figure 13.3. The x axis
is chosen in such a way that the particle moves in the negative x direction. If the
polar angle φ is measured with respect to the x axis, then we have

tan φ = h

x
,

which on differentiation with respect to t gives

sec2 φ
dφ

dt
= − h

x2

dx

dt
.

Here −dx/dt is the speed of the particle, which is c = 1 in our units. Hence

dφ

dt
= h

(x sec φ)2
= h

r2
.

Comparing it with (13.44), we at once see that

b = h,

which means that the parameter b is nothing but the impact parameter with
which the massless particle approaches the mass M . When this impact parame-
ter is less than 3

√
3M , the massless particle or the photon gets captured by the

central mass M .

The orbit of light

If the massless particle has an impact parameter much larger than 3
√

3M , then
its trajectory will be slightly bent. To calculate this bending, we first have to
derive the orbit equation. From (13.42), we get

dr

dλ
= ±l

√
1

b2
− Qeff(r).

Substituting for l from (13.41), we have

dr

dφ
= ±r2

√
1

b2
− Qeff(r),
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so that (
1

r2

dr

dφ

)2

= 1

b2
− Qeff(r), (13.45)

which can be compared with (13.26). We proceed to solve it in exactly the same
way we solved (13.26). By introducing the variable u = 1/r and using (13.43)
to write

Qeff(u) = u2 − 2Mu3,

we put (13.45) in the form(
du

dφ

)2

= 1

b2
− u2 + 2Mu3.

Differentiating with respect to φ and cancelling 2 du/dφ from both sides,
we finally get the orbit equation

d2u

dφ2
+ u = 3Mu2, (13.46)

which has to be solved to find u as a function of φ giving the orbit.
It is easy to check that the term 3Mu2 on the right-hand side of (13.46)

is the general relativistic effect. When this term is small, we can solve (13.46)
by following the same perturbative approach which we followed to solve the
orbit equation (13.30) for particles with non-zero mass. When the 3Mu2 term
is neglected, we can write the zeroth order solution as

u0 = cos φ

R
, (13.47)

where R is the distance of the closest approach and φ is defined in such a way
that we have φ = 0 at the point of closest approach. Again writing u in the form
(13.33), we find that u1 should satisfy the equation

d2u1

dφ2
+ u1 = 3Mu2

0 = 3M

R2
cos2 φ,

of which a solution is

u1 = M

R2
(1 + sin2 φ). (13.48)

Then the full solution can be written down by adding (13.47) and (13.48), i.e.

u = cos φ

R
+ M

R2
(1 + sin2 φ). (13.49)

Since we have chosen φ = 0 at the point of closest approach, the incoming and
the outgoing directions of the massless particle would have been −π/2 and π/2
respectively if the particle travelled in a straight line. This will be clear from
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p/2 –p/2

R

M

(p+Df)/2 –(p+Df)/2

Fig. 13.4 The trajectory of light bent by an angle �φ while passing by the side of the

mass M . The angle φ is measured with respect to the vertical direction such that φ = 0

at the point of closest approach.

Figure 13.4. If the particle undergoes a deflection �φ, then the incoming and
outgoing directions are

φ = ∓
(

π

2
+ �φ

2

)
.

Then we have

cos φ = − sin
�φ

2
≈ −�φ

2

on assuming �φ to be small. When the massless particle initially starts from
infinity or finally reaches infinity, we have u ≈ 0 and sin φ ≈ 1. Hence (13.49)
gives

0 ≈ −�φ

2R
+ M

R2
(1 + 1),

from which we finally have

�φ = 4M

R
.

On putting back G and c, this becomes

�φ = 4G M

c2 R
. (13.50)

If a light ray passes by the side of a mass M such that the closest distance of
approach is R, then the light ray is bent by the amount �φ given by the famous
relation (13.50).

If we substitute the mass and radius of the Sun for M and R in (13.50),
then �φ turns out to be 1.75′′. This means that light from a star at the edge of
the solar disk will be bent in such a way that the star will appear to be shifted
outward from the centre of the solar disk by 1.75′′. We of course cannot see stars
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Fig. 13.5 An illustration of gravitational lensing by the mass M located symmetrically

between the source S and the observer O .

at the edge of the solar disk under normal circumstances. Such stars, however, may
become visible at the time of the total solar eclipse. Comparing their positions
around the eclipsed Sun with their usual positions, one can determine whether
a shift has taken place. Eddington and his colleagues carried out this exercise
during an eclipse in 1919 and announced the discovery of the bending of light in
conformity with general relativity (Dyson, Eddington and Davidson, 1920).

Gravitational lensing

There is one very important application of the gravitational bending of light in
extragalactic astronomy. It is the phenomenon of gravitational lensing. Suppose
there is a massive object M exactly between a source S and an observer O as
shown in Figure 13.5. Light rays from the source S passing by M on different
sides will be deflected by the angle �φ. The observer will then see the source S
in the form of a ring. Such a ring is known as an Einstein ring. A few examples
of nearly perfect Einstein rings are known. Figure 13.6 shows an almost com-
plete Einstein ring. We expect to see a perfect ring only if the lensing-producing
mass M is located symmetrically on the line of sight between S and O . In a
less symmetric situation, we would see arcs of the ring rather than the whole
ring. Many images of extragalactic sources in the forms of extended arcs are
known, suggesting that gravitational lensing is a quite common phenomenon in
the extragalactic world.

Let us also comment on another kind of gravitational lensing. As we have
discussed in §9.2.2, the rotation curves of spiral galaxies suggest the presence
of dark matter associated with these galaxies. One possibility is that the dark
matter exists in the form of massive compact objects (from something like a
large planet to something having a few solar masses) in the halo of the galaxy.
Suppose one such object in the halo of our Galaxy comes between us and a
star in a nearby galaxy. As gravitational lensing would amplify the light from
the star, the star would appear brighter as long as the compact object remains
between us and the star. Since such an event would be very rare and one cannot
predict when a particular star is likely to be lensed, the best way of detecting
such lensing events is to monitor a rich field of extragalactic stars for a long time
to see if the brightness of any star is temporarily enhanced. Events of this kind
in which stars in the Large Magellanic Cloud temporarily appeared brighter
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Fig. 13.6 A nearly complete Einstein ring MG 1131+0456 imaged at the radio fre-

quency 15 GHz by the VLA (Very Large Array). From Chen and Hewitt (1993).

( c©American Astronomical Society. Reproduced with permission from Astronomical

Journal.)

typically by 1 magnitude for a few days were first reported simultaneously
by two groups (Alcock et al., 1993; Aubourg et al., 1993). From a study of
such events, it seems that a part of the dark matter associated with our Galaxy,
but probably not the whole of it, is in the form of compact objects in the
galactic halo.

13.3.3 Singularity and horizon

It should be clear from the expression (13.13) of the Schwarzschild metric that
gtt becomes infinite at r = 0 and grr becomes infinite at the Schwarzschild
radius rS given by (13.14). This is the case when we use (t, r, θ, φ) coordinates.
One can think of making transformations to other coordinate systems. It is found
that some component of the metric tensor always has to become infinite at r = 0
in any coordinate system, whereas it is possible to find coordinate systems
in which the metric tensor remains well defined at the Schwarzschild radius
r = rS. We believe that the singularity at r = 0 is a real essential singularity.
On the other hand, the metric becomes singular at r = rS only in certain coor-
dinate systems. This is, therefore, a coordinate singularity and not an essential
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singularity. One particularly convenient coordinate system in which there is no
singularity at r = rS was discovered by Kruskal (1960).

Apart from a black hole, any other self-gravitating system (even a neutron
star) would have a physical radius larger than the Schwarzschild radius rS. In
such a situation, the free space where the Schwarzschild metric holds will not
include r = rS. Only in the case of a black hole, do we need to worry about the
physical significance of the radius r = rS. An observer falling in a black hole
will not feel anything unusual when crossing the Schwarzschild radius r = rS.
Let us consider an observer falling radially in a black hole starting from rest at
infinity. It easily follows from (13.18) and (13.19) that e = 1 and l = 0 in this
case. From (13.20) and (13.21), we then have

1

2

(
dr

dτ

)2

− M

r
= 0,

which leads to
√

r dr = −√
2M dτ. (13.51)

It should be kept in mind that dτ is the time interval measured by the clock
carried with the falling observer. Suppose we take τ = 0 when the falling
observer is at r = r0. Then (13.51) can be integrated to give

2

3
(r3/2 − r3/2

0 ) = −√
2Mτ. (13.52)

It is easy to see that the falling observer will reach the central singularity r = 0
in a finite time measured by his own clock.

Since the falling observer passes through the Schwarzschild radius r = rS

without feeling anything special there, does it mean that the Schwarzschild
radius has no particular physical significance? The physical significance of the
Schwarzschild radius becomes clear as soon as we consider an observer who
is trying to come out rather than an observer who is falling in. Not only an
observer, but no signal including light can escape outside from r < rS. Hence
the surface r = rS is called the horizon of the black hole. A signal from the
inside of the horizon can never come out, although things from the outside can
fall through the horizon. The result that a light signal can escape outward only
if it starts from r > rS can be shown by extending the analysis presented in
§13.3.2. The reader is asked to do this calculation in Exercise 13.5.

Instead of considering the proper time τ measured by the clock of the
observer falling in the black hole, if we consider the world time t , then we
get a surprising result. Since we are considering e = 1, it follows from (13.18)
that

dt

dτ
=
(

1 − 2M

r

)−1

. (13.53)
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Then

dt

dr
= dt

dτ

dτ

dr
= −
(

2M

r

)−1/2 (
1 − 2M

r

)−1

(13.54)

on using (13.51) and (13.53). The solution of (13.54) is

t = t0 + 2M

[
−2

3

( r

2M

)3/2 − 2
( r

2M

)1/2 + log

∣∣∣∣(r/2M)1/2 + 1

(r/2M)1/2 − 1

∣∣∣∣
]

,

(13.55)
which can be verified by substituting (13.55) into (13.54). It follows from
(13.55) that t goes to infinity when r = 2M . In other words, an infinite amount
of world time has to lapse before the falling observer reaches the horizon. To
understand the significance of this result, let us consider another observer at
rest far away from the black hole. The proper time and the world time of
this faraway observer will be approximately the same. We have also argued
in §13.1 that events taking place in different locations at the same world time
are simultaneous. It then follows that, according to the faraway observer, the
falling observer will take infinite time to reach the horizon at the Schwarzschild
radius. It would appear to the faraway observer that the falling observer is
forever hovering around the horizon, although the falling observer reaches
r = 0 in a finite time according to his clock. To understand exactly how the
falling observer appears to the faraway observer, it is necessary to analyse the
propagation of light signals from the falling observer to the faraway observer.
We shall not get into those details here.

13.4 Linearized theory of gravity

We pointed out in §10.2 that one of the implications of an action-at-a-distance
theory is that the interaction has to propagate at an infinite speed. Our hope is
that this problem would be rectified in a field theory. It is indeed a consequence
of general relativity that gravitational interaction propagates at speed c. We
now demonstrate this for a region where the gravitational field is weak so that
the metric differs only slightly from the special relativistic metric ηik given by
(12.60). We write

gik = ηik + hik (13.56)

and assume that

|hik | � 1. (13.57)

As a consequence of (13.57), we shall throw away terms quadratic or of higher
order in hi j compared to the first order terms. General relativity is basically a
nonlinear field theory. On throwing away terms quadratic in hi j , it reduces to a
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linear theory and will be seen to have many similarities with the electromagnetic
theory.

We want to find out what happens to Einstein’s equation (12.96) when we
have a metric tensor of the form (13.56). For this purpose, we need to calculate
the Einstein tensor Gi j arising out of the metric tensor (13.56). The first step is
to calculate the Christoffel symbols by using (12.31). On substituting (13.56)
into (12.31), we get

�m
ik = 1

2
ηml
(

∂hli

∂xk
+ ∂hlk

∂xi
− ∂hik

∂xl

)
(13.58)

if we throw away the terms quadratic in hi j . The next step is to calculate the
Ricci curvature tensor Rkm by using (12.41). Since it follows from (13.58) that
the Christoffel symbols are linear in hi j , we can throw away terms quadratic in
the Christoffel symbols in (12.41) and then substitute from (13.58), which gives

Rik = ∂�l
ik

∂xl
− ∂�l

il

∂xk
= 1

2
ηlm
(

∂2hkm

∂xi∂xl
− ∂2hik

∂xl∂xm
− ∂2hlm

∂xi∂xk
+ ∂hil

∂xk∂xm

)
.

(13.59)
We now use the fact that ηlmhkm = hl

k and

ηlm ∂2

∂xl∂xm
= − 1

c2

∂2

∂t2
+ ∇2 = �2.

Then (13.59) becomes

Rik = 1

2

(
∂2hl

k

∂xi∂xl
− �2hik − ∂2h

∂xi∂xk
+ ∂hm

i

∂xk∂xm

)
. (13.60)

It now follows that the scalar curvature is given by

R = ηik Rik =
(

∂2hkm

∂xk∂xm
− �2h

)
. (13.61)

Substituting (13.60) and (13.61) in (12.44), the Einstein tensor is given by

Gik = 1

2

(
∂2hl

k

∂xi∂xl
+ ∂hm

i

∂xk∂xm
− �2hik − ∂2h

∂xi∂xk
− ηik

∂2hlm

∂xl∂xm
+ ηik�2h

)
.

(13.62)
This is the expression of the Einstein tensor for the metric (13.56) if we throw
away the quadratic and higher powers of hik . This looks like a complicated
expression which becomes somewhat simplified if we introduce the variable

hik = hik − 1

2
ηikh, (13.63)

from which it readily follows that

hik = hik − 1

2
ηikh (13.64)
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on making use of the fact that ηi
i = 4. Substituting (13.64) in (13.62), we get

Gik = 1

2

(
∂2h

l
k

∂xi∂xl
+ ∂h

m
i

∂xk∂xm
− ηik

∂2h
lm

∂xl∂xm
− �2hik

)
. (13.65)

The expression (13.65) for the Einstein tensor is still rather complicated.
However, if we could choose a coordinate system in which the divergence of hik

is zero, then the first three terms on the right-hand side of (13.65) will become
zero and the expression of the Einstein tensor will become very simple. We now
show that any coordinate system can be slightly adjusted to make the divergence
of hik zero. Let us consider introducing a new coordinate system in which

x ′i = xi + ξ i . (13.66)

The introduction of such a new coordinate system is called a gauge transfor-
mation in general relativity. From (12.5), it follows that the metric tensor gik

should get transformed in the new coordinate system to

g′
ik = glm

∂xl

∂x ′i
∂xm

∂x ′k = glm

(
δl

i − ∂ξ l

∂x ′i

)(
δm

k − ∂ξm

∂x ′k

)
(13.67)

on using (13.66). We shall see soon that ξ i will be of order hik in our analysis.
So we can throw away terms quadratic in them and replace ∂ξ l/∂x ′i by ∂ξ l/∂xi .
Then (13.67) becomes

g′
ik = gik − ∂ξk

∂xi
− ∂ξi

∂xk
. (13.68)

Using (13.56) and writing g′
ik in the same way as gik , we get

h′
ik = hik − ∂ξk

∂xi
− ∂ξi

∂xk
, (13.69)

if we require ηik to be the same in both coordinate systems. Note that hik itself
does not transform like a tensor. If hik or hik transformed like tensors, then
their divergences would transform like vectors, and it will not be possible to
make this divergence zero in a frame when it is non-zero in other frames. Our
aim now is to choose a coordinate system in which

∂h
′
ik

∂x ′
k

= 0, (13.70)

which is equivalent to

∂h′
ik

∂xk
− 1

2

∂h′

∂xi
= 0
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by virtue of (13.63). On substituting from (13.69) in this equation, we find after
some easy algebra that

�2ξi = ∂hik

∂xk
. (13.71)

Let us now try to understand the significance of this result. Suppose we have a
coordinate system xi in which hik or hik are known. By solving (13.71) we find
ξi and then transform to a new coordinate system in accordance with (13.66).
We shall have (13.70) satisfied in that coordinate system. Thus, by a suitable
choice of gauge, we can find a coordinate system in which the divergence of hik

vanishes. If we use such a coordinate system, then the Einstein tensor given by
(13.65) should have a simple form

Gik = −1

2
�2hik . (13.72)

On substituting (13.72) in Einstein’s equation (12.96), we find

− �2hik = 16πG

c4
Tik, (13.73)

which is the inhomogeneous wave equation. This is an equation which appears
in electromagnetic theory and its solution is discussed in all standard textbooks
of advanced electromagnetic theory (see, for example, Panofsky and Phillips,
1962, §14–2; Jackson, 2001, §6.4). We assume that readers know how to
solve the inhomogeneous wave equation and merely quote the final result. The
solution of (13.73) is

hik(t, x) = 4G

c4

∫ Tik(t − |x − x′|/c, x′)
|x − x′| d3x ′, (13.74)

where x and x′ are spatial coordinates of a field point and a source point. It
is clear that Tik acts as the source for hik , which makes the metric different
from a flat special relativistic metric. The solution (13.74) also implies that the
information from the source to the field travels at speed c. Thus the gravitational
interaction is restricted to propagate at speed c, which we enlisted in §10.2 as a
requirement for a field theory of gravity.

We have seen that the metric tensor for a weak gravitational field is given by
(12.70). We end our discussion of the linearized theory by showing that (13.74)
is consistent with (12.70) for the case of a mass distribution at rest. It follows
from (12.88) that

T00 = ρc2

for a static mass distribution, whereas the other components of T are zero. Then
it follows from (13.74) that

h00(x) = 4G

c2

∫
ρ(x′)

|x − x′|d
3x ′, (13.75)



13.5 Gravitational waves 411

where we have not indicated the time dependence, since we are considering
a static problem. All the other components of hik are zero. We know that the
gravitational potential in the Newtonian theory of gravity is given by

�(x) = −G
∫

ρ(x′)
|x − x′|d

3x ′.

Comparing this with (13.75), we conclude that

h00(x) = −4�(x)

c2
. (13.76)

It follows from (13.64) and (13.76) that

h00(x) = −2�(x)

c2
,

which implies the metric (12.70).

13.5 Gravitational waves

It is clear from (13.74) that a sudden change in the energy-momentum tensor
Tik would give rise to a signal propagating away at speed c. We also note that
in a region of empty space (13.73) reduces to the wave equation

�2hlm = 0

suggesting the possibility of gravitational waves. We now work out some
properties of such waves.

It follows from (13.64) that hlm also satisfies the wave equation

�2hlm = 0. (13.77)

We also have to keep in mind that we are using a coordinate system in which
hlm should be divergence-free as in (13.70). Then (13.63) implies

∂hlm

∂xm
= 1

2

∂h

∂xl
. (13.78)

We can choose the propagation direction as the x3 direction without any loss of
generality. Since we are now considering a linearized theory, any arbitrary wave
can be treated as a superposition of the various Fourier modes. A Fourier mode
travelling in the x3 direction can be written as

hlm = Almeik(ct−x3). (13.79)

The symmetric tensor Alm has 10 components. Some of them have to be
related, as we can see on substituting (13.79) in (13.78). For the four values
of l = 0, 1, 2, 3, we get the following four conditions
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A00 + A03 = −1

2
A, A10 + A13 = 0, A20 + A23 = 0, A30 + A33 = 1

2
A,

(13.80)

where A is the trace

A = −A00 + A11 + A22 + A33. (13.81)

Because of the four conditions (13.80), only six components of Alm are indepen-
dent. Let us take A11, A12, A13, A23, A33, A00 as the independent components.
The other components can be expressed in terms of them with the help of
(13.80) and (13.81). We need not concern ourselves with the exact expressions,
except to note that

A22 = −A11, (13.82)

which follows from (13.80) and (13.81). We now think of carrying out another
gauge transformation such that the divergence of hlm will be zero in the new
frame also. Since the divergence of hlm is already zero in the frame we are
using, (13.71) reduces to

�2ξl = 0,

of which a solution is

ξl = i fle
ik(ct−x3). (13.83)

If we now make a coordinate transformation (13.66) with ξl given by (13.83),
then whatever we have been discussing should be valid in the new coordinate
system as well. It follows from (13.69) that

A′
11 = A11, A′

12 = A12,

A′
13 = A13 − k f1, A′

23 = A23 − k f2,

A′
33 = A33 − 2k f3, A′

00 = A00 + 2k f0.

It is obvious that fl can be chosen in such a way that A13, A23, A33, A00 turn out
to be zero in the new frame. It follows from (13.80) that A10, A20 and A30 also
must be zero. The only non-zero components left are A11 = −A22, which we
call a, and A12 = A21, which we call b. This means that, in our chosen gauge,
(13.79) can be written as

hlm = eik(ct−x3)

⎛
⎜⎜⎝

0 0 0 0
0 a b 0
0 b −a 0
0 0 0 0

⎞
⎟⎟⎠ . (13.84)

Since the amplitude of the wave involves only two independent variables a and
b, we can conclude that the gravitational wave has two possible polarizations.
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We now want to figure out the physical characteristics of the two possible
polarization modes of a gravitational wave. For this purpose, let us discuss
what happens when the gravitational wave impinges on a set of particles. If
a gravitational disturbance makes all the particles in a region, along with the
observer, move in exactly the same way, then it will be difficult to ascertain
the presence of the gravitational disturbance. On the other hand, if the gravita-
tional disturbance causes a relative motion amongst different particles, then this
relative motion can be used to detect the disturbance. We shall now study the
relative motions amongst particles induced by a gravitational wave. Let xi and
xi + δxi be the spacetime coordinates of two nearby particles. They would both
satisfy the geodesic equation (12.51). By subtracting the one geodesic equation
from the other, one can show that the relative separation δxi would satisfy

D2

Dτ 2
δxi = −Ri

klm δxl dxk

dτ

dxm

dτ
. (13.85)

This is called the geodesic deviation equation, which readers were asked to
derive in Exercise 12.4. For slow motions in a region of weak gravity, we have
(12.74), which implies that

dx0

dτ
≈ c,

whereas the other spatial components are essentially the components of veloc-
ity which are much smaller. Hence the spatial components of (13.85) can be
written as

d2

dt2
δxα = −Rα

0β0 δxβ c2. (13.86)

Remember that the Greek indices like α and β run over only values 1, 2, 3,
corresponding to the spatial components. Here we are interested in finding the
separation between the two particles by considering them at the same instant of
time. So we take δx0 = 0, which is used in obtaining (13.86). It now follows
from (12.37) that

Rα
0β0 = ∂�α

00

∂xβ
− ∂�α

0β

∂x0

on neglecting the terms quadratic in Christoffel symbols in our linearized ana-
lysis. Let us consider particles lying on the wavefront of the gravitational wave,
which is assumed to propagate in the x3 direction. Then δxβ in (13.86) has to
lie in the (x1, x2) plane, which means that β can have values 1 or 2. It should
be clear that differentiation with respect to xβ gives zero and we can write

Rα
0β0 = −∂�α

0β

∂x0
. (13.87)
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The expression for the Christoffel symbol for the weak gravitational field is
given by (13.58). Keeping in mind that h0β = 0 according to (13.84), we find
from (13.58) that

�α
0β = 1

2

∂hα
β

∂x0
. (13.88)

On using (13.87) and (13.88), we obtain from (13.86) that

d2

dt2
δxα = 1

2

∂2hαβ

∂t2
δxβ. (13.89)

This is finally the equation giving the relative motion amongst particles lying
on the wavefront of a gravitational wave.

The obvious solution of (13.89) is

δxα = δxα,0 + 1

2
hαβ δxβ. (13.90)

Let us consider the first polarization mode of the gravitational wave for which
b = 0 in (13.84). On substituting from (13.84) into (13.90) with b = 0, we get

δx1 = δx1,0

[
1 + 1

2
aeikct
]

,

δx2 = δx2,0

[
1 − 1

2
aeikct
]

, (13.91)

if we take x3 = 0 on the wavefront where the particles are located. Let us
consider a ring of particles in the (x1, x2) plane. It is clear from (11.90) that
the particles on the x1 axis move outward when the particles on the x2 axis
move inward. This means that the ring of particles would oscillate as shown
in the upper row of Figure 13.7. Next we consider the other polarization mode
for which we take a = 0 in (13.84). Again, on substituting from (13.84) into
(13.90), we get

δx1 = δx1,0 + 1

2
beikctδx2,0,

δx2 = δx2,0 + 1

2
beikctδx1,0. (13.92)

The lower row of Figure 13.7 indicates how the ring of particles will oscillate
in this case.

Apart from making the physical nature of the two polarization modes
clear, Figure 13.7 suggests how gravitational waves may be detected. Sup-
pose we have a gravitational wave with the first kind of polarization falling
perpendicularly on a Michelson interferometer (see, for example, Born and
Wolf, 1980, §7.5.4), of which the arms are along x1 and x2 directions. When
one arm expands, the other arm contracts, causing a shift in the fringes. A
periodically oscillating shift in the fringes will be the signal that a gravitational
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Fig. 13.7 A sketch indicating how a ring of particles will oscillate with time when

gravitational waves of two kinds of polarization fall perpendicularly on the ring. The

two rows correspond to the two polarizations.

wave is falling on the Michelson interferometer. It follows from (13.91) that
the displacements of the arms will have the amplitude δxα,0a. Apart from
being proportional to a, which is a measure of the strength of the wave, the
amplitude is also proportional to the length of the arm. Other things being equal,
a larger Michelson interferometer should have a larger displacement, causing
a bigger fringe shift. If we want to detect a very faint signal, the Michelson
interferometer has to be of a gigantic size.

There are several gravitational wave detection experiments under way. All
of them essentially are huge Michelson interferometers with arm lengths of
the order of kilometres. The most ambitious of these experiments is the Laser
Interferometer Gravity-wave Observatory (LIGO) in the USA. At the time of
writing this book, there is not yet any report of a positive detection. Only very
violent motions involving large masses are expected to produce gravitational
waves of sufficient intensity in faraway systems that would have a chance of
being detected on the Earth by our present-day technologies. For example, a
supernova in our Galaxy is likely to produce gravitational waves which should
be detectable by the present generation of gravitational wave experiments.

Although we do not yet have an indisputable direct detection of gravita-
tional waves, we pointed out in §5.5.1 that the binary pulsar provides indirect
proof of the existence of gravitational waves. The continuous decrease in the
orbital period implies a steady rate of energy loss, which agrees very well with
the theoretical estimate of energy loss due to gravitational waves and provides
another strong confirmation of general relativity. Anybody familiar with electro-
magnetic theory would know that an analysis of electromagnetic wave emission
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is much more complicated than an analysis of its properties. The same holds for
the gravitational wave in general relativity. We have discussed the polarization
characteristics and other properties of gravitational waves. But a calculation of
gravitational wave emission by a system like the binary pulsar is a much more
complicated problem and is beyond the scope of this elementary book.

Exercises

13.1 In a certain spacetime geometry, the metric is

ds2 = −(1 − Ar2) dt2 + (1 − Ar2) dr2 + r2(dθ2 + sin2 θ dφ2).

(a) Calculate the proper distance along a radial line from the centre

r = 0 to a coordinate radius r = R. (b) Calculate the area of the sphere of

coordinate radius r = R. (c) Calculate the 3-volume bounded inside the sphere

of coordinate radius r = R. (d) Calculate the 4-volume of the four-dimensional

tube bounded by a sphere of coordinate radius R and two t = constant planes

separated by T .

13.2 Show that the Schwarzschild metric (13.13) satisfies all the components

of Einstein’s equation in vacuum at all points other than r = 0.

13.3 If the general relativistic correction term in the analysis of particle

motion in Schwarzschild geometry is neglected, show by substituting (13.32)

in (13.28) that the eccentricity of the orbit is given by

ε =
√

1 + (e2 − 1)l2

M2

and figure out the condition for the orbit to be elliptical. If the orbit is elliptical,

show that the semimajor axis is given by

a = l2

M(1 − ε2)

and we have

e2 − 1

2
= − M

2a
.

What is the significance of this last result?

13.4 (a) Calculate the perihelion precession in arc seconds per century for

Mercury (semimajor axis = 5.79 × 107 km, eccentricity = 0.206, period of

revolution = 88.0 days). (b) Evaluate the maximum deflection of light by the

Sun in seconds of arc.
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13.5 Consider a light signal being emitted at a position r = ri satisfying

2M < ri < 3M in Schwarzschild geometry, making an angle α with respect

to the radial direction. Show that the light signal will be able to escape to

infinity only if the following condition (in units G = 1, c = 1) is satisfied:

sin α <
3
√

3M

ri

(
1 − 2M

ri

)1/2

.

Note that light can escape from the Schwarzschild radius r = 2M only if it is

emitted in the radially outward direction. [Hint: First argue that

tan α =
(

1 − 2M

ri

)1/2

ri

(
dφ

dr

)
i
,

where (dφ/dr)i is the initial value of dφ/dr along the light path when the

light signal starts at ri . Then you have to relate α to b = l/e by making use

of (13.38). Finally use the idea that a signal starting from the left side of the

Qeff(r) curve in Figure 13.2 will be able to escape only if 1/b2 has a value

higher than the maximum of the curve.]

13.6 Far away from a spherical star the gravitational field is weak and the

linear theory should hold. (a) Find hik (i.e. the difference of the metric from a

flat metric) at a far point in a suitable gauge. (b) Show that there is no gauge

transformation which will cast this hik in a transverse traceless form (like the

form in (13.84)).

13.7 A source of gravitational radiation is turned on for a finite time after

which it no longer emits. A distant observer detects the radiation by watching

the motion of two free particles initially at rest. Show that after the passage of

the wave the observer finds the particles back in their original positions and at

rest with respect to each other (to linear order in amplitude).





14

Relativistic cosmology

14.1 The basic equations

We have seen in Chapter 10 that certain aspects of spacetime dynamics of the
Universe can be studied without a detailed technical knowledge of general rela-
tivity. However, some important topics in cosmology – especially those dealing
with the analysis of high redshift observations – require general relativity for a
proper understanding. After giving an introduction to general relativity in the
previous two chapters, we are now ready to apply it to cosmology.

As pointed out in §10.3, it is convenient to use the co-moving coordinates
in cosmology. If we neglect the motions which galaxies may have with respect
to the expanding space, then a galaxy is at rest in this coordinate system
and space is supposed to expand uniformly, carrying the galaxies with it. If
matter is at rest in a coordinate system, then the energy-momentum tensor T i

k
in that system is given by (12.88). We clearly expect this to be the energy-
momentum tensor of the Universe in the co-moving coordinates. Since we had
tacitly assumed the coordinate system to be Cartesian when putting the classical
hydrodynamic equations in the form (12.78), one may wonder if (12.88) is the
expression of the energy-momentum tensor only in Cartesian coordinates. A
little reflection should convince the reader that we can use (12.81) to intro-
duce the generalized velocity in any coordinate system and (12.84) should
give the general expression of the energy-momentum tensor in any coordinate
system, leading to (12.88) in the special case when matter is at rest. It is
easy to see that the energy-momentum tensor defined by (12.84) in different
coordinate systems should transform according to the tensor transformation
law (12.5).

We now want to apply Einstein’s equation (12.96) to the Universe, which
we write in the form

Gi
k = 8πG

c4
T i

k . (14.1)

419
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Since we already know that T i
k is given by (12.88), we only need to obtain the

Einstein tensor Gi
k of the Universe. For this we have to start from the expression

of the metric. The metric of the Universe in the co-moving coordinates is
the Robertson–Walker metric given by (10.19) or (10.20). Our job now is to
calculate the Einstein tensor for this metric. This involves a large amount of
straightforward algebra, since we first have to calculate the various Christoffel
symbols by using (12.31) and then we have to calculate the Ricci tensor Rik by
using (12.41). It will be instructive for the reader to go through this algebra. We
give the final result:

Rtt = −3
ä

a
, Rαβ =

(
ä

a
+ 2

ȧ2

a2
+ 2

kc2

a2

)
gαβ

c2
, (14.2)

where the Greek indices α or β can have values 1, 2, 3, which we take to be
r, θ, φ in the present case. It follows from (14.2) that the scalar curvature is
given by

R = Ri
i = 6

c2

(
ä

a
+ ȧ2

a2
+ kc2

a2

)
. (14.3)

By substituting (14.2) and (14.3) in (12.44), we finally get

Gt
t = − 3

c2

(
ȧ2

a2
+ kc2

a2

)
, Gr

r = Gθ
θ = Gφ

φ = − 1

c2

(
2

ä

a
+ ȧ2

a2
+ kc2

a2

)
,

(14.4)
whereas all the off-diagonal elements of the Einstein tensor are zero. Note that
we have to raise an index in accordance with (12.18) and use (12.16) in these
calculations. Finally we have to substitute (12.88) and (14.4) in (14.1). The t t
component gives

ȧ2

a2
+ kc2

a2
= 8πG

3
ρ, (14.5)

whereas the other three diagonal components give the identical equation

2
ä

a
+ ȧ2

a2
+ kc2

a2
= −8πG

c2
P. (14.6)

The above two equations are the basic equations giving the dynamics of
spacetime.

From considerations of Newtonian cosmology in §10.4, we could write
down the Friedmann equation (10.27), which is identical with (14.5). As we
pointed out earlier, it is an astounding coincidence that we get exactly the same
equation from a full general relativistic analysis and from very simple consider-
ations of Newtonian cosmology (with some ad hoc assumptions). We now need
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to figure out the significance of the other equation (14.6). On differentiating
(14.5) with respect to t , we get

2ȧä

a
− 2ȧ3

a2
− 2kc2ȧ

a2
= 8πG

3
ρ̇a. (14.7)

Assuming the expansion of the Universe to be adiabatic, the first law of thermo-
dynamics d Q = dU + P dV suggests

d

dt
(ρc2a3) + P

d

dt
(a3) = 0, (14.8)

from which
c2(ρ̇a + 3ρȧ) = −3Pȧ.

Multiplying this by 8πG/3c2, we get

8πG

3
ρ̇a + 3ȧ

8πG

3
ρ = −8πG

c2
Pȧ.

We now substitute from (14.7) in the first term of this equation and substitute
from (14.5) for (8πG/3)ρ in the second term. One or two steps of algebra then
lead to (14.6). This means that (14.6) can be obtained from (14.5) and (14.8).
We can, therefore, regard (14.5) and (14.8) as our basic equations rather than
regarding (14.5) and (14.6) as the basic equations.

We have already pointed out in §10.5 that (14.8) would lead to (10.37)
if P is given by (10.36). For a Universe filled with matter and radiation,
(10.37) becomes (10.50). In other words, the expression (10.50) for the density
is equivalent to (14.8) for a Universe filled with matter and radiation. We
are thus finally led to the conclusion that (14.5) and (10.50) constitute our
basic equations. We have already discussed the solutions of these equations
in §10.6 and §10.7 for the cases of the matter-dominated and the radiation-
dominated Universe, corresponding respectively to the later and earlier epochs
in the thermal history of the Universe. So we need not discuss again how the
Universe expands with time. There was one important topic which could not be
discussed satisfactorily within the framework of Newtonian cosmology. It is the
propagation of light. We merely quoted (10.24) as an explanation of the redshift
without proving it. We shall now study the propagation of light systematically
and prove (10.24). Before taking up this subject in §14.3, we make a digression
in §14.2 to a topic which suddenly seems to be taking centre stage in cosmology
research in the last few years.

14.2 The cosmological constant and its significance

It is possible to put an extra term in Einstein’s equation, which would make it

Gik = 8πG

c4
Tik − �

c2
gik . (14.9)
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It follows from (12.27) that gik is also a divergenceless tensor like Gik or Tik .
So, on taking the divergence of (14.9), each term will give zero if � is a constant.
It is thus mathematically consistent to add the last term in (14.9). The constant
� is called the cosmological constant because of the role it plays in cosmology
as we shall see below.

If Einstein’s equation is extended to (14.9) by including the cosmological
constant term, then (14.5) and (14.6) also get modified to

ȧ2

a2
+ kc2

a2
= 8πG

3
ρ + �

3
, (14.10)

2
ä

a
+ ȧ2

a2
+ kc2

a2
= −8πG

c2
P + �. (14.11)

On subtracting (14.10) from (14.11), we get

ä

a
= −4πG

3

(
ρ + 3P

c2

)
+ �

3
. (14.12)

If � = 0, it is clear from (14.12) that a static solution in which a does not
change with time is not possible.

Einstein (1917) first applied general relativity to cosmology at a time when
the expansion of the Universe had not yet been discovered by Hubble (1929).
Einstein (1917) wanted to construct a static solution of the Universe which is
possible only with a non-zero �. Assuming P � ρc2, if the density has the
value

ρ0 = �

4πG
, (14.13)

it is easily seen from (14.12) that we get a static solution. One, however, finds
that this static solution is unstable (Exercise 14.3). In other words, if this static
Universe is disturbed from its initial static state, it will run away from this
static state. After the expansion of the Universe was reported (Hubble, 1929),
Einstein is said to have remarked that introducing the cosmological constant
was the ‘biggest blunder’ of his life. Thereafter, the cosmological constant was
almost banished from the literature of astrophysically motivated cosmology for
several decades. Standard textbooks of cosmology would either ignore it or at
most devote a small section to the cosmological constant as an odd curiosity.
Some intriguing recent observations which will be discussed in §14.5, however,
suggest that the cosmological constant may after all be non-zero. This is one
of the most dramatic new developments in cosmology, leading to renewed
interest in the cosmological constant. Here we present a brief discussion of how
cosmological solutions get modified on including the cosmological constant.

Substituting for ρ from (10.50) in (14.10), we get

ȧ2

a2
+ kc2

a2
= 8πG

3

[
ρM,0

(a0

a

)3 + ρR,0

(a0

a

)4 + ρ�

]
, (14.14)
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where we have written

ρ� = �

8πG
. (14.15)

It follows from (10.28) that we can write

8πG

3
= H2

0

ρc,0
. (14.16)

Then (14.14) can be put in the form

ȧ2

a2
+ kc2

a2
= H2

0

[

M,0

(a0

a

)3 + 
R,0

(a0

a

)4 + 
�,0

]
, (14.17)

where


M,0 = ρM,0

ρc,0
, 
R,0 = ρR,0

ρc,0
, 
�,0 = ρ�

ρc,0
(14.18)

give the fractional contributions at the present time of matter, radiation and the
cosmological constant to the critical density. It should be clear from (14.14)
that the effect of the cosmological constant is like a fluid whose density ρ�

does not change with the expansion of the Universe. It follows from (10.37)
that we should have w = −1 for such a fluid, suggesting a negative pressure
P = −ρc2 on the basis of (10.36). This strange fluid-like entity with a negative
pressure is often referred to as the dark energy.

We know that the contribution of radiation density has been negligible ever
since the Universe became matter-dominated. We shall discuss some observa-
tions in §14.5 which additionally suggest that the Universe is nearly flat. If
we neglect the radiation density and the curvature terms, then (14.17) can be
written as

ȧ2

a2
= H2

0

[

M,0

(a0

a

)3 + 
�,0

]
. (14.19)

It is possible to write down an analytical solution of this equation, which is

a

a0
=
(


M,0


�,0

)1/3

sinh2/3
(

3

2

√

�,0 H0t

)
. (14.20)

This can be verified by substituting this solution (14.20) into (14.19). It is
instructive to consider the early time and the late time limits of the solution
(14.20), which are

a

a0
≈
(

3

2



1/2
M,0 H0t

)2/3

if
√


�,0 H0t � 1, (14.21)

a

a0
≈
(


M,0

4
�,0

)1/3

e
√


�,0 H0t if
√


�,0 H0t � 1. (14.22)
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Fig. 14.1 A plot showing how the expansion rate ȧ of a flat Universe (k = 0) with

matter and a non-zero cosmological constant � changes with time.

To understand the significance of these limiting solutions, we look at (14.19).
Since the matter density falls off as a−3, it becomes less important with time as
the Universe expands, whereas the term involving the cosmological constant �

grows in relative importance. The solution (14.21) at early times is the matter-
dominated Universe solution in the limit of early times, which was obtained
earlier in (10.60). The fact that 
�,0 cancels out of the equation justifies our
assertion at the end of §10.6.2 that, even if � is non-zero, we do not make
too much error in many calculations involving earlier times if we use the
cosmological solution with � = 0. The values of 
M,0 and 
�,0 to be presented
in §14.5 suggest that the present epoch of the Universe may actually be the
epoch when the cosmological solution is making the transition from (14.21) to
(14.22). The solution (14.22) for late times is essentially what we would get on
neglecting the matter density term in (14.19) and keeping only the cosmological
constant term. This exponential part of (14.22) follows directly from (14.10) if
we neglect the curvature and the density terms, noting that

√

�,0 H0 =

√
�

3
(14.23)

by virtue of (14.15), (14.16) and (14.18). It is clear from (14.22) that the
cosmological constant is of the nature of a cosmic repulsion which makes the
Universe expand exponentially when it is the dominant term over density and
curvature. The different behaviours at early and late times can be understood by
considering how ȧ changes with time. Figure 14.1 shows a plot of ȧ obtained
from the solution (14.20) plotted against the time t . At early times, the matter
density is dominant and pulls back on the expanding Universe, making the
expansion rate ȧ decrease with time. On the other hand, when the � term
dominates at late times, the Universe accelerates, making ȧ increase with time.
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The observations to be discussed in §14.5 suggest that at the present time the
Universe may be making a transition from the matter-dominated era to the �-
dominated era.

14.3 Propagation of light in the expanding Universe

We have already pointed out in §13.3.2 that a light signal travels along a null
geodesic, i.e. a special geodesic along which ds2 = 0. We now want to consider
the propagation of a light signal from a distant galaxy to us. Let us take our
position to be the origin of our coordinate system and let the position of the
distant galaxy be at the radial co-moving coordinate r = S(χ), the metric of
the Universe being the Robertson–Walker metric given by (10.19) or (10.20).
Remember that S(χ) has to be χ , sin χ or sinh χ corresponding to the values
0, +1 or −1 of k. From considerations of symmetry, we expect the light signal to
propagate in the negative radial direction to reach us from the distant galaxy so
that dθ = dφ = 0 along the path of light propagation. Putting further ds2 = 0,
we conclude from (10.20) that the light signal propagation is given by

−c2dt2 + a(t)2dχ2 = 0.

If we now replace t by the coordinate η defined through (10.33), then we have

a(t)2[−dη2 + dχ2] = 0, (14.24)

from which

dχ = ±dη.

As the light signal propagates towards us, the radial coordinate χ decreases with
the increasing time. So we choose the minus sign and write the solution

χ = η0 − η, (14.25)

where η0 is the constant of integration. To understand the significance of this
constant of integration, note that (14.25) gives the position χ of the light signal
at time η. Since χ = 0 at the time η = η0, we easily see that η0 is the time when
the light signal reaches us.

We now consider a monochromatic light wave starting from the galaxy at
χ . Let the two successive crests of the sinusoidal light wave leave the galaxy at
times η and η + �η. Suppose these successive crests reach us at η0 and η0 +
�η0. For the second crest, it follows from (14.25) that

χ = (η0 + �η0) − (η − �η).

Let us subtract from this (14.25) which is satisfied by the first crest. Then
we get

�η0 = �η. (14.26)
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In other words, if we were to use the time-like coordinate η to measure time,
then the period of the wave would be the same when it was emitted and when
it was received. But η does not give the physical time. For a stationary observer
somewhere in the Universe, we have

ds2 = −c2dτ 2 = −c2dt2

from (10.18). Thus the proper time τ at which the observer’s clock runs coin-
cides with t . Suppose �t and �t0 are the periods measured by physical clocks
when the light was emitted and when the light was received, the scale factors
of the Universe being a and a0 respectively at those times. It then follows from
(10.33) that

c�t = a�η, c�t0 = a0�η0,

from which

�t0
�t

= a0

a
(14.27)

on making use of (14.26). Since an observer in any location in the Universe
would think that light propagates at speed c, (14.27) obviously suggests (10.24).
The significance of (10.24) is that light propagating in the expanding Universe
gets stretched proportionately so that the wavelength of light expands the same
way as the scale factor. The frequency of a photon should fall as a−1.

We can now prove a very important result which we have been using
throughout our discussion of cosmology. Blackbody radiation filling the
expanding Universe continues to remain blackbody radiation even when there
is no interaction with matter. We consider radiation within the frequency range
ν to ν + dν when the scale factor is a. If this radiation is initially blackbody
radiation, then the energy Uνdν in unit volume is given by the Planck distribu-
tion (2.1). After the Universe has expanded to scale factor a′, the theory of light
propagation suggests that the frequencies will change to

ν → ν′ = ν
a

a′ , ν + dν → ν′ + dν′ = (ν + dν)
a

a′ .

The radiation initially lying between frequencies ν, ν + dν would now lie
between frequencies ν′, ν′ + dν′ and the radiation initially occupying unit
volume would now occupy a volume (a′/a)3, having lost some energy in the
work done for expansion. Exactly like what we have done at the beginning of
§10.5, we can write down the dU + P dV = 0 relation for this radiation, which
will lead to something like (10.37) with w = 1/3. In other words, we must have
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U ′
ν′dν′ = Uνdν

( a

a′
)4

,

where U ′
ν′dν′ is the energy in unit volume lying in the frequency range from ν′

to ν′ + dν′ when the Universe has expanded to scale factor a′. If we substitute
ν = ν′ (a′/a) along with T = T ′ (a′/a) in the expression of Uν as given by
(2.1), it is straightforward to see that U ′

ν′ will have the same functional depen-
dence on ν′ that Uν had on ν. This completes our proof that the radiation
continues to remain blackbody radiation in the expanding Universe with the
temperature falling as T ∝ a−1.

It is clear that light arriving from a galaxy at a certain location r = S(χ)

would show a certain redshift z. We now try to find a functional relationship
between r and z, which will be very useful in §14.4 where we shall consider
various observational tests of cosmology. What we have discussed so far in this
section holds whether the cosmological constant � is zero or non-zero. Now
we shall consider the case of a matter-dominated Universe with � = 0, since it
is possible to derive an elegant analytical expression relating r with z only in
this case and it is useful to discuss this case before we get into a more general
discussion with non-zero �.

Let us first consider a matter-dominated � = 0 Universe with positive
curvature, i.e. k = +1. This case was discussed in §10.6.1 with the solution
given by (10.56) which, in conjunction with (10.24), gives

1

1 + z
= 
M,0

2(
M,0 − 1)
(1 − cos η).

From this, we get

cos η = 
M,0(z − 1) + 2


M,0(1 + z)
. (14.28)

Applying the rule sin2 η + cos2 η = 1, we then find

sin η = 2
√


M,0 − 1
√


M,0z + 1


M,0(1 + z)
. (14.29)

The light signal reaches us at time η0, which means that z = 0 when η = η0.
Then (14.28) and (14.29) imply

cos η0 = 2 − 
M,0


M,0
, sin η0 = 2

√

M,0 − 1


M,0
. (14.30)

In the k = +1 case we are considering, we have r = sin χ . Then (14.25) implies

r = sin(η0 − η) = sin η0 cos η − sin η cos η0.
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Substituting from (14.28), (14.29) and (14.30), we get

r = 2
√


M,0 − 1[
M,0(z − 1) + 2 −√
M,0z + 1(2 − 
M,0)]

2

M,0(1 + z)
. (14.31)

From (10.31), we can write

√

M,0 − 1 = c

a0 H0
.

Substituting this in (14.31), we finally get

r = 2
M,0z + (2
M,0 − 4)(
√


M,0z + 1 − 1)

a0 H0

2
M,0(1 + z)/c

. (14.32)

If one carries out a similar calculation for the k = −1 case starting from the
solution (10.58) and taking r = sinh χ , then also one ends up with exactly
the same relation (14.32) between r and z (Exercise 14.5). Hence we can take
(14.32) as the general relation between r and z for a matter-dominated Universe
with zero �. This relation (14.32) is known as Mattig’s formula (Mattig, 1958).

When � is non-zero, it is not possible to derive such a nice analytical
relation between r and z. The relation between r and z has to be expressed
in the form of an integral in that case, as we shall see in §14.4.2.

14.4 Important cosmological tests

One of the most important observational laws in cosmology is Hubble’s law
(9.13). This law was established from the study of galaxies having z � 1 and we
find that the linear relationship between distance and recession velocity holds
at redshifts small compared to 1. An important question is whether we would
theoretically expect any departures from this linear relationship at redshifts
z ≈ 1. The first hurdle before us is to pose the question properly. As pointed out
in §9.3, only in the case of low redshifts can we interpret the redshifts in terms
of recession velocities given by (9.12). Even the concept of distance involves
complex issues when we consider faraway objects in the Universe. We pointed
out in §13.1 that, when the metric tensor is a function of time as in the case of
the Robertson–Walker metric, only length elements (given by (13.7)) and not
finite lengths have proper meaning. So we first have to restate Hubble’s law
in terms of quantities which have precise meanings even when z ≈ 1, before
we can talk about departures from linearity. After restating Hubble’s law in
terms of suitable quantities, we shall see that the departures from linearity can
give us clues about the values of important cosmological parameters like 
M,0

and 
�,0.
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We shall first present our analysis for the case � = 0 where all the calcula-
tions can be done analytically. Then we shall discuss the case � �= 0 which is
more complicated.

14.4.1 Results for the case � = 0

To simplify our life, let us assume that all galaxies have the same intrinsic
brightness and the same size. Then a galaxy at a certain radial co-moving
coordinate r , which would correspond to a certain redshift z, will appear to
have a certain definite apparent luminosity and apparent size. We thus expect
the apparent luminosity and the apparent size to be functions of the redshift z.
We can compare the theoretically derived functional relationships with observa-
tional data to put constraints on the parameters in the theoretical model. Since
not all galaxies have the same intrinsic luminosity and intrinsic size, we expect
the observational data points to show some scatter around the theoretically cal-
culated functional relationships. However, an analysis involving a large number
of galaxies should have a good statistical significance and should allow us to
constrain the theoretical model.

The Hubble test

Consider a galaxy at position r . When light from this galaxy reaches us, the light
passes through a spherical surface on which we lie and of which the galaxy is the
centre. We first have to find the area of this spherical surface. By extending the
discussion of length measurement presented in §13.1, we can easily conclude
that an element of area on the spherical surface is a(t)2r2 sin θ dθ dφ if the
metric of the Universe is given by (10.19). An integration of this over the entire
spherical surface gives 4πa(t)2r2. Since we are considering light falling on this
surface at the present time, we have to take a(t) to be the present value a0 of the
scale factor. If L is the intrinsic luminosity of the galaxy (i.e. the rate of energy
emission per unit time), then we may think that the flux received by us should
be given by

F = L
4πa2

0r2
. (14.33)

But this is not yet the final correct answer. A photon which originally had energy
hc/λ at the time of emission undergoes redshift and has energy hc/λ(1 + z)
when it reaches us. So we need to divide (14.33) by the factor 1 + z to get
the flux corrected for photon redshifts. Another cause for concern is the time
dilation given by (14.27). So the energy which was emitted by the galaxy in
time �t reaches us in time �t0 = �t (1 + z). This would further reduce the
flux by another factor of 1 + z. The correct expression of flux is then given by



430 Relativistic cosmology

F = L
4πa2

0r2(1 + z)2
(14.34)

rather than (14.33).
We can write (14.34) in the form

F = L
4πd2

L

, (14.35)

where

dL = a0r(1 + z) (14.36)

is called the luminosity distance. This is an observationally measurable quantity.
Once you measure the apparent luminosity, you can get dL from (14.35) by
assuming an average intrinsic luminosity L for all galaxies. When measuring
the apparent luminosity, there is one other factor about which one has to be
careful. Suppose you are measuring the apparent luminosity with the help of
the energy flux reaching you in the optical band of the spectrum. For a galaxy
at a significant redshift z, the original photons which were emitted in the optical
band may now be redshifted to the infrared, whereas the photons which were
originally emitted in the ultraviolet may now appear in the optical band and be
detected by you. If the galaxy is intrinsically less luminous in the ultraviolet
compared to the optical band, then this shifting of photon wavelengths may
make it appear dimmer if you are measuring only the photons in the optical
band. Assuming a standard shape for the typical galactic spectrum, one can cor-
rect for this. This is called the K correction. Whenever we talk about luminosity
distance, it should be assumed that we are talking about K corrected luminosity
distance.

Substituting for r from (14.32) in (14.36), we get

H0dL = c


2
M,0

[2
M,0z + (2
M,0 − 4)(
√


M,0z + 1 − 1)]. (14.37)

This is the functional relationship between dL and z, telling us what would be
the redshift z of a galaxy which is located at luminosity distance dL. To see that
Hubble’s law follows from it at low redshifts, we consider 
M,0z < 1. Then we
can expand the square root by applying the binomial theorem. On keeping terms
till z2, it follows from (14.37) after a little algebra that

H0dL ≈ c

[
z + 1

4
(2 − 
M,0)z

2
]

. (14.38)

At low redshifts where we can neglect the z2 term, we have a linear relation
which is a restatement of Hubble’s law in terms of the measurable quantities
dL and z. Theoretical considerations tell us that there should be a departure
from the linear law at higher redshifts (unless 
M,0 = 2) and the amount of
departure should depend on 
M,0. Figure 14.2 shows theoretical plots showing
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Fig. 14.2 The relation between the luminosity distance dL and the redshift z of galaxies

having the same intrinsic luminosity, for different values of 
M,0, with � = 0.

the relation between dL and z for various values of 
M,0, as obtained from
(14.37).

It may now seem that it would be straightforward to estimate 
M,0. We
have to determine the luminosity distances dL of many galaxies having different
redshifts z. Then we have to check if the observational data points lie close to
one of the curves in Figure 14.2. We shall present some recent observational
data in §14.5. Here let us just mention that the observational data seem not to
fit any of the curves in Figure 14.2. In other words, a theoretical model with
� = 0 does not provide a good fit to the observational data, urging astronomers
to bring back the cosmological constant again to centre stage in cosmology.

The angular size test

Suppose a galaxy at redshift z has linear size D. The galaxy will make up an arc
of a circle passing through the galaxy with us at the centre. The angular size �θ

of the galaxy as seen by us can be obtained by equating �θ/2π to the ratio of D
to the circumference of this circle. From the metric (10.19), it is easy to argue
that the circumference should be equal to 2πa(t)r . Since we are considering the
circle to pass through the galaxy, the appropriate value of a(t) will be the scale
factor a when light started from the galaxy. This is equal to a0/(1 + z) so that
the circumference is 2πa0r/(1 + z). It is now easy to see that the angular size
is given by
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Fig. 14.3 The relation between the angular size �θ and the redshift z of galaxies having

the same intrinsic size, for different values of 
M,0, with � = 0.

�θ = D(1 + z)

a0r
. (14.39)

We can write this as

�θ = D
dA

, (14.40)

where

dA = a0r

1 + z
(14.41)

is called the angular size distance.
If we substitute for r from (14.32) in (14.39), it is easy to see that a0 cancels

out and we get an expression of �θ as a function of z. Figure 14.3 shows
�θ as a function of z for different 
M,0. This provides another possible test
for the determination of 
M,0. If we measure the angular sizes �θ of many
galaxies having different z, then we can try to fit the observational data with the
theoretical curves in Figure 14.3, thereby allowing us to estimate 
M,0.

The surface brightness test

Assuming that all galaxies have the same intrinsic surface brightness, we now
ask the question as to what would be the apparent surface brightness of a galaxy
at redshift z. The apparent surface brightness as seen by us is given by the
quotient of the total flux received by us from the galaxy and the angular area of
the galaxy as seen by us. Since the total flux received by us goes as ∝ d−2

L and
the angular area goes as ∝ d−2

A , we expect that the surface brightness should
go as
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S ∝ d2
A

d2
L

.

From (14.36) and (14.41), we then conclude

S ∝ 1

(1 + z)4
. (14.42)

This is a model-independent relation, which should hold if our basic ideas of
the expanding Universe are correct and if galaxies are standard candles (i.e. if
intrinsic brightnesses of galaxies systematically do not change with time and
hence with redshift). In §2.2.2 we derived the constancy of specific intensity in
a region free of matter, which implies that the surface brightness of an object
should be independent of distance. This result certainly has to be modified when
we consider general relativistic effects in an expanding Universe. In different
portions of the book, we have mainly discussed the application of the radiative
transfer equation (2.12) to interiors of stars or to interstellar medium within
a galaxy – situations where the general relativistic effect given by (14.42)
is utterly negligible. However, when we venture into the extragalactic world,
(14.42) indicates that more distant galaxies should be dimmer. This also allows
us to get around the Olbers paradox discussed in §6.1.1. Because of the inverse
fourth law dependence seen in (14.42), the dimming of faraway galaxies is
a rather drastic effect at high redshifts. Even a galaxy at a redshift of z = 1
would appear 16 times dimmer. If we want to study galaxies at redshift z ≈ 6
as discussed in §11.8.1, we need very long exposure times due to the extremely
low value of the apparent surface brightness.

14.4.2 Results for the case � �= 0

Some of the results for the � = 0 case get carried over to the � �= 0 case. For
example, we define the luminosity distance dL and the angular size distance dA

through (14.35) and (14.40) respectively even when the cosmological constant
is non-zero (taking F as the observed flux and �θ as the observed angular size).
The expressions for dL and dA will also still be given by (14.36) and (14.41)
respectively. However, r will no longer be related to the redshift z by (14.32)
and hence a relation like (14.37), based on (14.32), will no longer hold. Before
discussing how we relate r to z when � �= 0, we point out that the surface
brightness would still fall as (1 + z)−4 in accordance with (14.42).

When the cosmological constant � is non-zero, it is not possible to write
down an analytical expression relating r with z. The relation between them has
to be expressed in the form of an integral, which we now derive. Remember that

r = S(χ), (14.43)
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where S(χ) has to be equal to sin χ , sinh χ or χ , depending on whether k
appearing in the Friedmann equation (10.27) is +1, −1 or 0. Since (14.24) and
(14.25) describing the propagation of light are valid even when � �= 0, we note
from (14.25) that the position χ of a distant source of light is equal to the lapse
in the time-like variable η between the emission of light by this source and its
reception by us. From (10.33), it follows that

η0 − η = c
∫ tr

te

dt

a(t)
, (14.44)

where te and tr are the values of time t when the light was emitted and when it
was received. Using (14.25), we can put (14.44) in the form

χ

c
=
∫ 0

z

dz′

a

dt

da

da

dz′ , (14.45)

where the limits of the integration over the redshift denoted by z′ are z and 0
corresponding to the emission and the reception of the light signal. From the
relation (10.24) between the redshift and the scale factor a, it follows that

da

dz′ = −a2

a0
.

Substituting this in (14.45), we get

χ

c
= 1

a0

∫ z

0

dz′

(ȧ/a)
. (14.46)

For (ȧ/a) in (14.46) we now have to substitute a general expression with
non-zero �. We use (14.17), in which we neglect the term involving 
R,0

which is very small compared to the other terms when the Universe is matter-
dominated. By making use of (10.24), we write (14.17) in the form

ȧ2

a2
= H2

0

[

M,0(1 + z)3 + 
�,0

]
+ κ H2

0 (1 + z)2, (14.47)

where we have written κ H2
0 for −kc2/a2

0 so that

|κ| = c2

a2
0 H2

0

. (14.48)

Since (14.47) is valid in our present epoch when z = 0 and ȧ/a = H0, it easily
follows from (14.47) that

κ = 1 − 
M,0 − 
�,0. (14.49)

We can use (14.49) to determine κ when 
M,0 and 
�,0 are given. From (14.46)
and (14.47), we have

χ = c

a0 H0

∫ z

0
[
M,0(1 + z′)3 + 
�,0 + κ(1 + z′)2]−1/2dz′. (14.50)
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From (14.36), (14.43) and (14.50), we get

dL = a0(1 + z)S

(
c

a0 H0

∫ z

0
[
M,0(1 + z′)3 + 
�,0 + κ(1 + z′)2]−1/2dz′

)
.

If we use (14.48) to eliminate a0 which is not directly observable, then we
finally get

dL = (1 + z)c

H0
√|κ| S

(√|κ|
∫ z

0
[
M,0(1 + z′)3 + 
�,0 + κ(1 + z′)2]−1/2dz′

)
.

(14.51)
For given values of 
M,0 and 
�,0, we can evaluate (14.51) numerically to

determine H0dL as a function of redshift z. Observationally we can measure
the redshifts z of a large number of galaxies and then determine their dL

from their observed apparent brightnesses by using (14.35). By comparing the
observational data with the theoretical results, we can hope to determine the
values of 
M,0 and 
�,0. We shall discuss the outcome of this exercise in
the next section.

14.5 Cosmological parameters from observational data

Data of distant supernovae

As we pointed out in §4.7, Type Ia supernovae are believed to be caused by
matter accreting onto a white dwarf having mass close to the Chandrasekhar
mass. So we expect the maximum luminosity of a Type Ia supernova to have
the same value everywhere and at all times. Hence such a supernova can be
used as a standard candle. With the Hubble Space Telescope (HST), it has been
possible to resolve and study Type Ia supernovae in distant galaxies. Once we
measure the maximum apparent luminosity of the supernova when it is bright-
est, we can use (14.35) to calculate the luminosity distance dL if we know the
maximum absolute luminosity. From a knowledge of the redshift z of the galaxy
in which the supernova took place, we get the z corresponding to this luminosity
distance dL. Hence, in a plot of dL against z, each supernova will contribute one
data point.

Sometimes, instead of dL, one plots the equivalent quantity m − M which
is the difference between the apparent and absolute magnitudes of the Type Ia
supernova (when it was brightest). By substituting dL for d in (1.8), we can
easily find how dL is related to m − M . In a plot of m − M against z in which
the supernova data are represented by points, we can also put theoretical curves
calculated from (14.51) for different combinations of 
M,0 and 
�,0, to find out
which curve fits the observational data best. High-z supernova data from HST
were analysed by two independent groups who carried out this exercise (Riess
et al., 1998; Perlmutter et al., 1999). Figure 14.4 shows the result. The top panel
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Fig. 14.4 The apparent luminosities of distant supernovae against redshifts z, along

with theoretical curves for different combinations of the cosmological parameters. The

cosmological parameters used for the different curves are: (i) solid line for 
M,0 = 0,


�,0 = 0; (ii) long dashes for 
M,0 = 1, 
�,0 = 0; (iii) short dashes for 
M,0 = 0,


�,0 = 1; (iv) dotted line for 
M,0 = 0.3, 
�,0 = 0.7. The lower two panels plot the

deviation of m − M from the solid line for 
M,0 = 0, 
�,0 = 0, showing the data of

two groups separately: filled squares for the data of Riess et al. (1998) and open squares

for the data of Perlmutter et al. (1999). From Leibundgut (2001). ( c©Annual Reviews

Inc. Reproduced with permission from Annual Reviews of Astronomy and Astrophysics.)

shows data of both the groups along with some theoretical curves, the curve
corresponding to the empty Universe (
M,0 = 0, 
�,0 = 0) being indicated by
the solid line. To make things clearer, the two bottom panels show the data of the
two groups separately, with the vertical axis giving the differential �(m − M)
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with respect to the solid line for the empty Universe. It appears that the dotted
line corresponding to 
M,0 = 0.3 and 
�,0 = 0.7 is the best theoretical fit to
the observational data. This value of 
M,0 agrees with what observers estimated
from dynamical mass determinations of clusters of galaxies, as given by (10.42).
However, the possibility that 
�,0 may be non-zero sent a shock wave through
the entire astrophysics community of the world, since it was generally believed
for several decades that the cosmological constant � is zero.

Data of temperature anisotropies in CMBR

We now turn to a different kind of data. In §11.7.1 we discussed primary
anisotropies in CMBR, as measured by the mission WMAP. The measured
temperature variation as a function of the galactic coordinates is shown in
Figure 11.3. Let us consider the temperature variation �T/T in a direction
ψ . The temperature variation �T/T in a nearby direction ψ + θ is expected
to be very similar if θ is sufficiently small, but will not be correlated with the
temperature variation in direction ψ if θ is large. The angular correlation of the
CMBR anisotropy is clearly given by

C(θ) =
〈
�T

T
(ψ)

�T

T
(ψ + θ)

〉
, (14.52)

where the averaging is supposed to have been done for all possible values of ψ

and possible values of θ around them. Since this correlation function C(θ) is
a function of θ , we can expand it in Legendre polynomials (see, for example,
Mathews and Walker, 1979, §7–1; Jackson, 1999, §3.2), i.e.

C(θ) =
∑

l

(2l + 1)

4π
Cl Pl(cos θ), (14.53)

where Cl is the coefficient of the l-th Legendre polynomial. Figure 14.5 plots
Cl as a function of l. It is clear that there is a maximum around l ≈ 250. To
understand the significance of the maximum, note that Pl(cos θ) has l nodes
between 0 and π . When l is large, the first node is approximately located at
�θ ≈ π/ l. A value of l ≈ 250 would give a value of �θ somewhat less than
1◦. This is the typical angular scale of the temperature anisotropies in CMBR.
We now come to the question of what determines this angular scale.

Let us consider an object of linear size D on the last scattering surface from
where the CMBR photons come and which, as we pointed out in §11.7, is at
redshift zdec ≈ 1100. We now figure out the angular size �θ which this object
of size D will produce in the sky. The relation between D and �θ is given by
(14.39). Since we are considering the possibility of � not being zero, we should
substitute for r from (14.43) and (14.50). To have a rough idea of how things
go, let us substitute for r from (14.32) appropriate for the � = 0 case, since this
will allow us to make some estimates analytically and a non-zero � does not
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Fig. 14.5 The values of the coefficients Cl in the Legendre polynomial expansion of the

angular correlation C(θ) of temperature anisotropies in the CMBR. Data for l < 800

come from WMAP, whereas data for higher l come from other experiments. The top of

the figure indicates angular sizes corresponding to different values of l. Adapted from

Bennett et al. (2003).

introduce too much error when calculating quantities relevant for early epochs.
When z � 1, it follows from (14.32) that

r → 2c

a0 H0
M,0
.

Substituting this for r , we obtain from (14.39) that

�θ ≈ 
M,0

2
.
Dz

cH−1
0

.

On substituting for H0 from (9.17), this becomes

�θ ≈ 34.4′′(
M,0h)

( D z

1 Mpc

)
. (14.54)

By putting zdec ≈ 1100 in (14.54), we can determine the linear size D of an
object on the last scattering surface which would subtend an angle slightly less
than 1◦ in the sky.

As we pointed out in §11.9, only perturbations larger than the Jeans length
grow. So we may expect the Jeans length to give sizes of the typical perturba-
tions on the last scattering surface. According to (11.40), the Jeans length was
of the order of the horizon size ct till the decoupling of matter and radiation
at zdec ≈ 1100. We now estimate the angle �θ which the horizon on the last
scattering surface would subtend to us today. We can use (10.60) to get the time
when the decoupling took place, which turns out to be of order

tdec ≈ H−1
0 


−1/2
M,0 z−3/2

dec . (14.55)
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We would get the horizon by multiplying this by c. On substituting ctdec for D
in (14.54), we get

�θ ≈ 0.87◦ 

1/2
M,0

( zdec

1100

)−1/2
. (14.56)

If we take 
M,0 of order 1, then (14.56) gives an angular size comparable to
the angular scale of anisotropies in the WMAP data. This suggests that the
irregularities that we see on the last scattering surface correspond to the Jeans
length, which was of the same order as the horizon till that time. It follows from
(14.56) that a larger value of 
M,0 would make �θ larger, causing the peak in
Figure 14.5 to shift leftward. The position of the peak would thus give the value
of 
M,0.

When we assume � �= 0, the analysis becomes much more complicated
and has to be done numerically. We shall not present that analysis here. The
more complicated analysis with � �= 0 suggests that the position of the peak in
Figure 14.5 depends on 
�,0 + 
M,0. The observed position of the peak turns
out to be consistent with


�,0 + 
M,0 = 1. (14.57)

If 
�,0 + 
M,0 were larger, then the peak would have shifted more towards
the left.

The combined constraints

Figure 14.6 indicates the likely values of 
�,0 and 
M,0. The straight line
corresponds to 
�,0 + 
M,0 = 1 concluded from the WMAP data of temper-
ature anisotropies of CMBR. On the other hand, the ellipses indicate the best
possible combinations of 
�,0 and 
M,0 which fit the data of distant super-
novae. Constraints arising out of these two different sets of observational data
are simultaneously satisfied if the values of our basic cosmological parameters
are around


�,0 ≈ 0.7, 
M,0 ≈ 0.3. (14.58)

At the present time, these seem to be the values of these parameters accepted
by most cosmologists. As we already pointed out, another independent confir-
mation of the above value of 
M,0 comes from the virial mass estimates of
clusters of galaxies. Two important conclusions follow from the values quoted
in (14.58). Firstly, it follows from (14.49) that κ ≈ 0, which means that our
Universe must be nearly flat with very little curvature. Secondly, since 
�,0

and 
M,0 are of comparable values at the present time, it follows from (14.17)
that the matter density was more dominant in the past when a was smaller than
a0, whereas the cosmological constant term will be more dominant in the future.
It thus seems that we live in a flat Universe which is at present in the process of
making a transition from a matter-dominated epoch to a �-dominated epoch.
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Fig. 14.6 Constraints on 
�,0 and 
M,0 jointly coming from the temperature

anisotropies of the CMBR (the straight line corresponding to 
�,0 + 
M,0 = 1) and

the data of distant Type Ia supernovae (the ellipses within which the values would lie at

particular confidence levels). Adapted from Riess et al. (2004).

Exercises

14.1 Find the scalar curvature for the following three-dimensional metrics

ds2 = a2[dχ2 + sin2 χ(dθ2 + sin2 θ dφ2)],
ds2 = a2[dχ2 + sinh2 χ(dθ2 + sin2 θ dφ2)].

14.2 Calculate all the components of the Ricci tensor Rik for the Robertson–

Walker metric and verify (14.2).

14.3 Consider the static solution of the Universe when the cosmological

constant � is assumed to be non-zero and the pressure is considered negligible

(i.e. take P = 0). Let a0 be the value of the scale factor a corresponding

to this static solution. Assume that the scale factor is suddenly changed to

a0 + a1. Show that a1 will grow exponentially, implying that the static solution

is unstable.

14.4 (a) Consider a free particle moving with respect to the co-moving coordi-

nates in the Robertson–Walker metric without interacting with other particles.

Without any loss of generality, we can choose the origin on the particle path
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such that χ changes along the path, but not θ or φ. By considering the

extremum of
∫

ds, show that a2(dχ/dτ) will be a constant of motion. Argue

from this that the physical velocity of the particle (with respect to the co-

moving frame) will decrease with the expansion of the Universe as a−1.

(b) Now consider a type of particles filling the Universe. If they are

initially relativistic (κBT � mc2) and are in thermodynamic equilibrium,

we expect (11.7) to hold. If the particles then fall out of thermodynamic

equilibrium and eventually become non-relativistic with the expansion of the

Universe, show that (11.7) continues to hold if we assume T to fall as a−1. This

essentially implies that the distribution of the particles continues to look like

Bose–Einstein or Fermi–Dirac distributions with energy given by pc (which is

not true after the particles become non-relativistic). Discuss whether T appear-

ing in the expressions of these distributions will have the usual significance of

temperature. Should (11.8) also continue to hold after the particles become

non-relativistic? If not, then how will you calculate the contribution of these

particles to the density of the Universe?

14.5 For the case k = −1, derive the relation between the coordinate distance

r and the redshift z of a galaxy (assuming � = 0). Show that the relation is the

same as (14.32) derived for the k = +1 case.

14.6 If there are n galaxies per unit co-moving volume of the Robertson–

Walker metric, find the number of galaxies which will be found within solid

angle d
 having redshifts in the range z to z + dz.

14.7 Using the integral relation (14.51), numerically evaluate and graphically

plot the apparent luminosities of standard candles against their redshifts z for

the following models: (i) 
M = 1.0, 
� = 0.0; (ii) 
M = 0.0, 
� = 1.0; (iii)


M = 0.3, 
� = 0.7.

14.8 Consider an angular function

C(θ) = �e−(θ/θ0)
2
.

This function can be expanded in Legendre polynomials Pl(cos θ) as in

(14.53). Show that the coefficients Cl in the expansion are given by

Cl = 2π

∫ +1

−1
C(θ)Pl(cos θ) d(cos θ).

Develop a numerical code to calculate these coefficients Cl . Run the code for

a few selected values of θ0 and find the corresponding values of l for which Cl

is maximum (by plotting the values of Cl against l).
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Values of various quantities

A.1 Physical constants

Speed of light c = 3.00 × 108 m s−1

Gravitational constant G = 6.67 × 10−11 m3 kg−1 s−2

Planck constant h = 6.63 × 10−34 J s
Boltzmann constant κB = 1.38 × 10−23 J K−1

Permeability of free space μ0 = 1.26 × 10−6 H m−1

Permittivity of free space ε0 = 8.85 × 10−12 F m−1

Charge of electron e = −1.60 × 10−19 C
Mass of electron me = 9.11 × 10−31 kg
Mass of hydrogen atom mH = 1.67 × 10−27 kg
Stefan–Boltzmann constant σ = 5.67 × 10−8 W m−2 K−4

Constant in Wien’s law λm T = 2.90 × 10−3 m K
Standard atmospheric pressure = 1.01 × 105 N m−2

1 electron volt eV = 1.60 × 10−19 J
1 angstrom Å = 10−10 m
1 calorie = 4.19 J

A.2 Astronomical constants

1 astronomical unit AU = 1.50 × 1011 m
1 parsec pc = 3.09 × 1016 m
1 year yr = 3.16 × 107 s
Mass of Sun M� = 1.99 × 1030 kg
Radius of Sun R� = 6.96 × 108 m
Luminosity of Sun L� = 3.84 × 1026 W
Mass of Earth M⊕ = 5.98 × 1024 kg
Radius of Earth R⊕ = 6.37 × 106 m
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Appendix B

Astrophysics and the Nobel Prize

The Nobel Prize was not awarded to astrophysicists in the early decades of the twentieth
century. The most impact-making astrophysicists of that period such as Eddington and
Hubble did not win Nobel Prizes. From the middle of the twentieth century, several
Nobel Prizes have been given for important discoveries in astrophysics. We list those
Nobel Prizes below. It should, however, be emphasized that this list of Nobel laureates
should not be considered to be some kind of list of greatest astrophysicists of our time. A
few of the Nobel Prizes were given for serendipitous discoveries which had tremendous
impact. On the other hand, some astrophysicists who are regarded amongst the greatest
and most impact-making by common consent have not been honoured with the Nobel
Prize. A reader of this book may be interested in making up a list of astrophysicists
who, according to his/her opinion, should have been awarded the Nobel Prize.

1967 H. A. Bethe Contributions to the theory of nuclear
reactions, especially discoveries concerning
energy production in stars

1970 H. Alfvén Discoveries in magnetohydrodynamics
1974 M. Ryle Observations and inventions of aperture-

synthesis technique in radio astrophysics
A. Hewish Discovery of pulsars

1978 A. A. Penzias and Discovery of cosmic microwave background
R. W. Wilson radiation

1983 S. Chandrasekhar Theoretical studies of the structure and
evolution of stars

W. A. Fowler Theoretical and experimental studies of nuclear
reactions of importance in the formation of
chemical elements in the Universe

1993 R. A. Hulse and Discovery of a new type of pulsar
J. H. Taylor

2002 R. Davis and Detection of cosmic neutrinos
M. Koshiba
R. Giacconi Discovery of cosmic X-ray sources

2006 J. C. Mather and Discovery of the blackbody form and
G. F. Smoot anisotropy of cosmic microwave background

radiation
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The following is a list of Nobel laureates who had made important contributions in
astrophysics, although they won Nobel Prizes for their works in other areas of physics.

1921 A. Einstein
1938 E. Fermi
1952 E. M. Purcell
1964 C. H. Townes
1980 J. W. Cronin



Suggestions for further reading

The reader of this book is assumed to have a background of physics appropriate for
the advanced undergraduate or the beginning graduate level. Knowledge is assumed of
all the standard branches of physics which are usually covered at that level – classical
mechanics, electromagnetic theory, special relativity, optics, thermal physics, statistical
mechanics, quantum mechanics, atomic physics, nuclear physics and the standard math-
ematical tools often known collectively as the methods of mathematical physics. Since
a reader of this book would be familiar with the standard textbooks on these different
branches of physics and would have his/her own favourites, I do not make an attempt of
listing textbooks of basic physics.

After giving some general references covering the whole of astrophysics, I provide
references on the material covered in different chapters. The main aim of the references
for different chapters is to help those readers of this book who want to go beyond what
is covered here. No attempt at completeness is made here. It is not possible for an
individual to be acquainted with everything written on all the topics covered in this
book. I have mainly included those references which I myself have found useful and
which are of the nature of pedagogical works at the immediate next level beyond this
book, intentionally leaving out advanced monographs on specialized research topics.
Some suitable references may not have been included merely due to the accident of
my not knowing about them. I apologize to those authors who may feel that something
written by them ought to have been referenced.

General references

There are several excellent elementary astronomy textbooks suitable for beginning
undergraduate students where the authors assume very little knowledge of physics and
not even a knowledge of calculus, since elementary astronomy courses at this level
are popular in many undergraduate programmes. The pioneering classic astronomy text
at this level was written by Abell (1964), which has later been updated by Morrison,
Wolff and Fraknoi (1995). The other classic in this field is by Shu (1982). Although
somewhat outdated by now, this amazing book manages to discuss many important
physics aspects of basic astrophysics very clearly and at considerable depth with only
high school mathematics. One of the more recent books is Gregory and Zeilik (1997).
At a more advanced level (assuming more background of physics and mathematics),
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an outstanding textbook suitable for senior undergraduates is Carroll and Ostlie (2006).
Although the descriptive and phenomenological topics are covered extremely well in
this book, the treatment of conceptual topics is not always so satisfactory or adequate.
The size of the book (more than 1300 pages) also makes it unsuitable for use in a one-
semester astrophysics course.

After the elementary books mentioned above (there are many more elementary
astronomy texts!), one can mention the many excellent graduate textbooks dealing
with specific branches of astrophysics. However, there are not too many books which
attempt to bridge the gap between these two kinds of books, by presenting the whole of
astrophysics comprehensively in one volume assuming an advanced undergraduate or
elementary graduate level of physics. The very few books of this kind include Unsöld
and Baschek (2001), Harwit (2006), Shore (2002) and Maoz (2007). Since these authors
more or less attempt the same thing which I attempt in this book, it is best that I do not
comment on these books and leave it for readers to judge how successful which author
has been. There is a two-volume introduction to astrophysics by Bowers and Deeming
(1984a, 1984b) as well as a three-volume introduction to theoretical astrophysics by
Padmanabhan (2000, 2001, 2002).

Apart from textbooks, one may mention other kinds of books which can be useful
for students of astrophysics. A classic handbook compiling all kinds of astrophysical
data was first brought out by Allen (1955) and is now updated by Cox (2000). Lang
(1999) has collected many of the important astrophysical formulae in two volumes.
The excellent glossary of astronomical terms compiled by Hopkins (1980) has unfortu-
nately not been updated in many years. A collection of essays on several astrophysical
topics by some of the world’s leading astrophysicists has been edited by Bahcall and
Ostriker (1997). One can question whether the title of the volume Unsolved Problems
in Astrophysics is justified and whether it discusses unsolved problems from all areas
of astrophysics which such a pretentious title would imply, but one cannot question the
scholarship and authority of the essays included in this volume. At a more elementary
level, articles on different aspects of astrophysics published in Scientific American till
the mid-1970s were put together by Gingerich (1975). Several leading astrophysicists
have written about their research fields in non-technical language in this volume.

Chapter 1

Since books on different astrophysical systems will be mentioned in the references for
the various following chapters, here we only mention books which discuss how we
obtain astronomical data with the help of the appropriate instruments. Perhaps Kitchin
(2003), Roy and Clarke (2003) and Léna (1988) are amongst the most outstanding
graduate level textbooks of this kind. There are also many books devoted specifically
to optical, radio or X-ray telescopes. The present author, as a theoretician, is not very
qualified to judge the relative merits and demerits of these books. So we do not attempt
to provide a detailed bibliography of observational astronomy.

Chapter 2

The standard graduate textbook on radiative processes in astrophysics is the superbly
written volume by Rybicki and Lightman (1979), which is justly regarded as a classic.
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Since this book mainly deals with well-established principles, it has not dated with time.
Other books covering this field are Tucker (1975) and Shu (1991). Serious students
wishing to learn about radiative transfer in more detail should consult the famous
monograph by Chandrasekhar (1950). The standard work on stellar atmospheres is
Mihalas (1978).

Chapters 3–4

Since the study of stars has been the central theme in modern astrophysics for several
decades, it is no wonder that there are many excellent books on stellar astrophysics.
The classic volumes by Eddington (1930) and Chandrasekhar (1939), which played
very important roles in the historical development of astrophysics, are not suitable
for use as textbooks in modern courses on this subject. However, the other classic
by Schwarzschild (1958) is still useful for pedagogical purposes, because the first
two chapters of this book provide one of the clearest presentations of the basics of
stellar astrophysics, although the later chapters dealing with details of stellar models are
completely outdated now. One of the first books written after computers revolutionized
the study of stellar structure is Clayton (1968), which has been used as the standard
graduate textbook for many years. Amongst the more modern books on this subject,
Kippenhahn and Weigert (1994) and Böhm-Vitense (1989a, 1989b, 1992) are very
clearly written and are highly recommended. The beautifully written volume by Tayler
(1994) introduces the subject at a more elementary level than the levels of the books
cited earlier.

We now come to books dealing with specialized aspects of stellar astrophysics.
Stix (2004) has written an excellent book on the Sun. Arnett (1996) discusses nuclear
reactions during the advanced stages of stellar evolution and the physics of supernovae.
The standard work on neutrino astrophysics is by Bahcall (1989).

Chapter 5

Shapiro and Teukolsky (1983) wrote the definitive graduate textbook on compact
objects resulting from the end states of stellar collapse. In spite of the fact that many
important developments have taken place in this field afterwards, this book is still highly
recommended for the very clear discussion of the basics of both theory and observations.
A more recent book on this subject is by Glendenning (2000). Although Longair (1994)
covers many topics, a large part of his book is devoted to topics related to advanced
stellar evolution and stellar collapse.

Chapter 6

The standard graduate textbook on galactic astronomy by Binney and Merrifield (1998)
is supposed to be a replacement of the earlier volume by Mihalas and Binney (1981).
In order to make room for the discussion of external galaxies, Binney and Merrifield
(1998) condensed or deleted some topics pertaining to our Galaxy which were discussed
by Mihalas and Binney (1981) at length. Mihalas and Binney (1981) may therefore be
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more useful than Binney and Merrifield (1998) for learning about our Galaxy. Another
good book covering galaxies and interstellar matter is Scheffler and Elsässer (1988).
The superb elementary book by Tayler (1993) would provide a good starting point to
get into this subject.

There are several books dealing specifically with the interstellar matter. The famous
classic by Spitzer (1978) is rather compactly written and beginners may find it a difficult
book, although a perusal of this book can be a very rewarding experience. Osterbrock
and Ferland (2005) cover many aspects of the subject, although one of the important
components of interstellar matter – the HI component – is not discussed in this book.
Other books dealing with the interstellar medium are Dyson and Williams (1997) and
Dopita and Sutherland (2003).

Chapter 7

Very surprisingly, there seems to be only one really satisfactory modern textbook on
the important subject of stellar dynamics. It is the monumental volume by Binney and
Tremaine (1987). Readers may want to look at a classic – an old review article by Oort
(1965). The dynamics of globular clusters is treated in a monograph by Spitzer (1987).

Chapter 8

Shu (1992) and Choudhuri (1998) are standard introductory texts on plasma astro-
physics. Serious students may want to look up the classic in this field by Parker (1979).
The topic of relativistic particles in astrophysics is covered thoroughly by Longair
(1994). The applications of MHD to the Sun are discussed by Priest (1982). See Mestel
(1999) for a masterly discussion of the role of magnetic fields in stellar astronomy.

Chapter 9

Several of the references for Chapter 6 cover external galaxies as well. We espe-
cially recommend Binney and Merrifield (1998). Another recent book on this rapidly
developing subject is Schneider (2006). We recommend Peterson (1997) and Krolik
(1999) as good introductions to the subject of active galaxies. Sarazin (1986) provides
a comprehensive coverage of galaxy clusters.

Chapters 10–11

The brilliant small volume by Weinberg (1977) is a masterpiece of popular science
and may be read profitably before delving into the more technical tomes. Somehow
cosmology has been a popular subject for textbook writers and there is probably no other
branch of astrophysics in which so many textbooks have been written and are still being
written. We certainly cannot provide a complete bibliography of cosmology books here.
So we selectively mention a few books in which authors stress the astrophysical aspects.
After developing the necessary tools of general relativity, Narlikar (2002) gives a very
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clear introduction to the main themes of modern cosmology. In spite of the author’s bias
for the steady state theory, all the standard topics are covered satisfactorily. The volume
by Peebles (1993) is a work of great scholarship and insight, but it is not particularly
coherently written and beginners may get lost in this large book. Peacock (1999) covers
various physics and astronomy topics which one needs to master in order to become a
professional cosmologist. We recommend Kolb and Turner (1990) for topics pertaining
to the early Universe.

Chapters 12–14

While general relativity also has been a favourite subject for textbook writers, the last
few chapters of Landau and Lifshitz (1975) still provide one of the most beautiful
and elegant introductions to this subject. Schutz (1985) and Hartle (2003) are two
particularly user-friendly books in a subject generally regarded as difficult and abstruse.
One famous (and bulky) introductory textbook is by Misner, Thorne and Wheeler
(1973). But be cautioned that this book is not for you if you do not like very verbose
and wordy presentations! Weinberg (1972) also wrote a famous book in which his aim
was to develop general relativity without stressing the geometrical aspects of the theory.
Readers desirous of learning the more formal aspects of general relativity may turn to
Wald (1984).
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Riess, A. G. et al. 1998, Astron. J. 116, 1009. [§14.5, Fig. 14.4]
Riess, A. G. et al. 2004, Astrophys. J. 607, 665. [Fig. 14.6]
Roberts, M. S. and Whitehurst, R. N. 1975, Astrophys. J. 201, 327. [§9.2.2]
Robertson, H. P. 1935, Astrophys. J. 82, 248. [§10.3]
Rosseland, S. 1924, Mon. Not. Roy. Astron. Soc. 84, 525. [§2.5]
Rots, A. H. 1975, Astron. Astrophys. 45, 43. [Fig. 8.7]
Roy, A. E. and Clarke, C. 2003, Astronomy: Principles and Practice, 4th edn. Taylor &

Francis. [S. f. r.]
Rubin, V. C. and Ford, W. K. 1970, Astrophys. J. 159, L379. [§9.2.2]
Rubin, V. C., Ford, W. K. and Thonnard, N. 1978, Astrophys. J. Lett. 225, L107. [§9.2.2,

Fig. 9.7]
Russell, H. N. 1913, Observatory 36, 324. [§3.4]
Russell, H. N. 1929, Astrophys. J. 70, 11. [§4.3]
Russell, H. N., Dugan, R. S. and Stewart, R. M. 1927, Astronomy, Vol. 2. [§3.3]
Rybicki, G. B. and Lightman, A. P. 1979, Radiative Processes in Astrophysics. John

Wiley & Sons. [§2.3.1, §2.6.1, §8.11, §8.12, S. f. r.]
Saha, M. N. 1920, Phil. Mag. (6) 40, 472. [§2.3.1, §3.5.1]
Saha, M. N. 1921, Proc. Roy. Soc. A 99, 697. [§3.5.1]
Saha, M. N. and Srivastava, B. N. 1965, A Treatise on Heat, 5th edn. The Indian Press,

Allahabad. [§2.2.1, §2.4.1, §8.10, §10.5]
Salpeter, E. E. 1952, Astrophys. J. 115, 326. [§4.3]
Salpeter, E. E. 1955, Astrophys. J. 121, 161. [§6.8]
Salpeter, E. E. 1964, Astrophys. J. 140, 796. [§9.4.3]
Sandage, A. R. 1957, Astrophys. J. 125, 435. [Fig. 3.9]
Sarazin, C. L. 1986, Rev. Mod. Phys. 88, 1. [Fig. 9.17, S. f. r.]
Schechter, P. 1976, Astrophys. J. 203, 297. [§9.2.1]
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21 cm line 175, 181–184, 266–269
2dF Survey 293
3C 273 21, 278, 280–281
γ -ray burst (GRB) 295–296
�, see cosmological constant

absolute bolometric magnitude 79, 82–83
absolute magnitude 9
absolute visual magnitude 79, 81–83
absorption coefficient 23, 28, 31, 48, 53–54
absorption cross-section 53
absorption line, see spectral line
accelerated particles, see cosmic rays
accretion 112, 114, 145–149
accretion disk 145–149, 282–286
acoustic wave 104–105, 224, 226
action-at-a-distance 299
active galactic nucleus (AGN) 276–278,

283–286, 345–346
active galaxies 219, 276–286, 345–346
adaptive optics 17
affine parameter 399
afterglow (of gamma-ray burst) 295
age of Universe 3, 89, 198, 203, 275, 321–322
AGN (active galactic nucleus) 276–278,

283–286, 345–346
Alfvén wave 258
Alfvén’s theorem of flux freezing 230–234
Almagest 4
ancient astronomy 4
Andromeda Galaxy (M31) 2, 21, 157–158,

261, 273, 287
angular size distance 432
angular size test 431–432
apparent magnitude 8–9
Aries constellation 6
Aristotle 5
astronomical unit (AU) 1

asymmetric drift 213–215
AU (astronomical unit) 1

B band 9
B − V 9, 78, 80–83, 159
Balmer lines 78
Barnard’s star 5
barred spiral galaxies 263–264
baryogenesis 340–341
bending of light 401–404
Bernoulli’s principle 257, 292
Bianchi identity 369, 371
Big Bang 314–315, 325–326, 331–334,

339–341
Big Bang nucleosynthesis 100–101, 326,

331–334, 337
binary pulsar 13, 143–145, 415
binary stars 79–80, 110–112
binary X-ray sources 20, 145–149
binding energy (of nuclei) 91–92
bipolar outflows (in star-forming

regions) 194
blackbody radiation 23–25, 30, 33–34, 57,

148, 314–315, 323, 342, 426–427
black hole 10–11

as central engine of active galaxies
282–286, 346

as stellar end state 110, 128, 149
general relativistic issues 392, 406–407
observations 149, 284

bolometric magnitude 8
Boltzmann distribution law 32–33, 48,

179–180, 333
Boltzmann equation 207–209, 217–218
Bose–Einstein statistics 328
bosons 328–330, 353
bound-bound transitions 48
bound-free transitions 48–49

463
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bremsstrahlung 187, 248, 253–254, 289–291,
344

broad-line region (BLR) 285
brown dwarfs 85, 151
Butcher–Oemler effect 292–293
butterfly diagram 122–123

cD galaxy 287
celestial coordinates 5–8
celestial equator 6–7
celestial poles 6–7
celestial sphere 6–7
Cepheid variables 156, 164–165, 261,

271, 273
CfA Survey 293–295
Chandra X-ray Observatory 19
Chandrasekhar mass limit 10, 85, 101, 127

derivation 135–137, 151
Type Ia supernova production 117, 435

chemical equilibrium 327–330, 332
chemical potential 327–329
Christoffel symbol 364–366
closed Universe 311, 318–319
clouds, see interstellar clouds
clusters of galaxies 253, 264, 270, 286–293,

296, 343–344, 353, 439
CMBR (cosmic microwave background

radiation) 315–317, 330, 336, 341–344,
437–440

CNO cycle 99–101, 103
CO lines 185, 195–196
COBE (Cosmic Background Explorer) 315,

342–343
cold dark matter 338, 351–353
colliding galaxies 287–288, 291–292
collisional excitation and de-excitation

179–180, 187
collisional relaxation (in stellar systems) 198,

201–203
collisional stellar dynamics 198, 204–207
collisionless Boltzmann equation 207–209,

217–218
collisionless stellar dynamics 198, 207–217
colour–magnitude diagram 81–82
Coma cluster 287, 289–292
co-moving coordinates 307–308
Compton effect 343–344
Compton Gamma Ray Observatory 21, 295
conduction 67, 113
constellations 6
contraction (of tensors) 359–360
contravariant vector 358–359
convection 67–70, 71, 90, 103–104
cooling flow 291

cooling function 191–192
Copernicus 4, 5
corona 113–114, 243–244, 253
coronal gas (in interstellar space) 187, 191,

193
cosmic microwave background radiation

(CMBR) 315–317, 330, 336, 341–344,
437–440

cosmic rays 14, 190–191, 220
acceleration mechanism 243–248
in external galaxies 266, 278, 296
radiation emission by 19, 250–252

cosmological constant 309–310, 320,
421–425, 427–428, 433–440

cosmological parameters (values of)
density parameters 439–440
Hubble constant 275

cosmological principle 294, 304–306
cosmological redshift 271, 275–276, 308, 321,

426–427
cosmological tests 428–435
cosmology, see Universe

Big Bang 314–315, 325–326, 331–334,
339–341

CMBR 315–317, 330, 336, 341–344,
437–440

early Universe, see early Universe
Newtonian cosmology 298, 306–311, 420
nucleosynthesis 100–101, 326, 331–334,

337
relativistic cosmology 12, 298, 304–309,

419–440
structure formation 349–353
time table 325–327

covariant derivative 364–365, 384
covariant vector 358–359
Cowsik–McClelland limit 337
Crab nebula 21, 115, 140, 141
Crab pulsar 140, 141, 143
critical density (of the Universe) 310
current sheet 241
curvature 300, 303–304, 367–370
curve of growth 54–55
Cygnus A 21, 276
Cygnus X-1 21, 149

dark energy 423
dark matter

detection by gravitational lensing 404–405
from rotation curves of spiral galaxies 269,

289
in clusters of galaxies 289
nature 334, 336–339
role in structure formation 351–353
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de Vaucouleurs law 265, 296
death line (of pulsars) 145
declination 6–7
decoupling, see matter-radiation decoupling
degeneracy pressure 71, 84–85, 117, 127–132,

139, 149
degenerate matter 71, 127
density parameter 311, 324
density wave theory 199
deuterium abundance 334
differential rotation 120, 161, 236
diffraction 16, 27
displacement current 228
Doppler shift 79, 161, 164, 175–176,

266–267, 271, 276, 308
dynamical friction 206–207, 287
dynamo theory 123, 191, 237–239

early Universe
baryogenesis 340–341
Big Bang 314–315, 325–326, 331–334,

339–341
formation of atoms 52, 341–343
horizon problem 339–340
inflation 340
nucleosynthesis 100–101, 326, 331–334,

337
spacetime dynamics 320–324, 423–424
time table 325–327

eclipsing binaries 80
ecliptic 6–7
Eddington approximation 41–44, 58
Eddington luminosity 86, 147–148, 283
effective radius (of elliptical galaxies) 265
Einstein coefficients 178–183, 195
Einstein ring 404–405
Einstein tensor 370–371, 378, 381–384
Einstein–de Sitter model 318
Einstein’s equation 303–304, 306, 309,

381–384, 390, 410, 419–422
elliptical galaxies 262–266, 270, 286, 287,

291–293
emission coefficient 23, 28, 31
emission line, see spectral line
energy-momentum tensor 379–381,

419–420
epicycle theory 166–169, 215
equation of continuity 222, 225, 229
equation of state 70–71, 127, 130–132, 139
equatorial mounting 7
equivalence principle 300
equivalent width 54
ether 5
Euler equation 223, 225, 229–230

Eulerian time derivative 221
extrasolar planets 123–124

Faber–Jackson relation 265, 270, 274
Faraday rotation 190
Faraday’s law of electromagnetic induction

229
Fermi acceleration 245–248
Fermi gas 127–132, 139, 328–330, 353
Fermi–Dirac statistics 71, 129, 139, 328
fermions, see Fermi gas
Fermi’s golden rule 48
first law of thermodynamics 313, 421
fluid mechanics 218, 220–223, 379–380
flux freezing 230–234
free-free transitions 48–49
Friedmann equation 309, 420

galactic cannibalism 287
galactic coordinates 7–8, 160
galaxies

active galaxies 219, 276–286, 345–346
at high redshift 345–349
collisional relaxation 198, 203
distances to 2–3, 261, 273–274
elliptical galaxies 262–266, 270, 286, 287,

291–293
interstellar medium (ISM) 239–241,

265–270, 291–292
large-scale distribution (superclusters and

voids) 293–295
magnetic field 239–241, 266
morphological classification 262–265
rotation 265–269
size 2, 263–264
spiral galaxies 157, 199, 262–270, 276,

286, 291–293
structure 197–199
surface brightness 27, 432–433

galaxy clusters, see clusters of galaxies
galaxy collisions 287–288, 291–292
galaxy formation 270, 349
Galaxy (our)

asymmetric drift 213–216
interstellar extinction and reddening

157–160, 194
interstellar medium (ISM), see interstellar

medium
magnetic field 14, 187–191, 243
orbits of stars 166–173
rotation 160–165
shape and size 2, 153, 155–157
solar neighbourhood 169–173, 211–217

Galileo 4, 16, 120
GALLEX 108
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gamma ray burst (GRB) 295–296
gauge transformation (in general relativity)

409
general relativity 10–12, 13, 357

formulation 378–384
gravitational redshift 389–390
gravitational wave 13–14, 143, 411–415,

417
linearized theory 407–410
metric, see metric
non-technical introduction 297–308
relativistic cosmology 419–435
singularity and horizon 405–407
time and length measurements 387–389

generalized coordinates 358
generalized force 358
generalized velocity 358
geodesic 301, 303–304, 371–373, 385
geodesic deviation equation 385, 413
gigaparsec (Gpc) 2–3
gigayear (Gyr) 3
glitches (of pulsars) 141–142
globular clusters 1

stellar dynamics of 198, 203
halo system of 155, 160–161, 173–174
HR diagrams of 86–89, 90

Gpc (gigaparsec) 2–3
granulation 104, 236
graphite 160, 181
gravitational lensing 404–405
gravitational redshift 389–390
gravitational wave 13–14, 143, 411–415, 417
GRB (gamma ray burst) 295–296
Great Bear 4
grey atmosphere 39–43, 58
guiding centre 170
Gunn–Peterson test 348–349
Gyr (gigayear) 3

HI clouds 180–183, 191–193
HII region 185–187, 191, 193
Hamiltonian dynamics 207–208
Hayashi region 109
heating function 191–192
helioseismology 104–105, 119–120
Henry Draper Catalogue 21
Henyey method 73
Hercules A 277
Hertzsprung–Russell (HR) diagram 76,

80–89, 109–111
Hipparchus 4, 7, 8, 168
Hipparcos astronomy satellite 79, 80, 164
homologous stellar models 74
horizon

in cosmology 339–340, 438
of black hole 406–407

horizon problem 339–340
hot coronal gas 187, 191, 193
hot dark matter 338
HR (Hertzsprung–Russell) diagram 76,

80–89, 109–111
Hubble constant 271, 274–275, 307, 344
Hubble Deep Field 346–347
Hubble Key Project 274–275
Hubble Space Telescope (HST) 17, 115, 116,

262–264, 284, 288, 345, 347, 435
Hubble test 429–431
Hubble time 145, 275
Hubble’s law 271–273, 314, 428–430
hydrodynamic equations, see fluid mechanics
hydrostatic equilibrium equation 63, 113

ideal fluid approximation 222
induced emission 48, 52, 54, 178–180
induction equation 229, 230
inflation 340
infrared astronomy 20
Infrared Astronomy Satellite (IRAS) 20
inhomogeneous wave equation 410
initial mass function 194
interferometric technique 18
intergalactic medium (IGM) 346–349
International Ultraviolet Explorer (IUE) 20
interstellar clouds 176, 180–185, 191–194,

245–248
interstellar dust 51, 158–160, 181, 184, 188
interstellar extinction 51, 157–160
interstellar medium (ISM) 53, 124, 158–160,

174–194, 254, 291–292
heating and cooling functions 191–192
in spiral galaxies 265–270, 291–292
loss of 291–292
magnetic field 187–191, 239–241
Oort limit 175, 212–213
phases 177–187, 191–193
star formation 20, 124, 185, 173, 193–194,

223, 227, 266, 353
interstellar reddening 51, 159–160
ionosphere 14, 256–257
irregular galaxies 262
ISM, see interstellar medium

Jeans equations 210–211
Jeans instability 193, 223–227, 350–352
Jeans length 351–352, 438
Jeans theorem 217
jets 277–286, 296
Jodrell Bank radio telescope 18
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K correction 430
K giants 213
Kamiokande 13, 107, 118
Kapteyn Universe 153, 155
Keck telescope 16, 17
Kelvin–Helmholtz hypothesis 65–66, 84, 85,

89, 91, 101, 109
Kepler 115
Keplerian motion 147, 268
Kerr metric 361, 387, 392
kiloparsec (kpc) 2–3
King model 218
Kirchhoff’s law 31, 52, 177
kpc (kiloparsec) 2–3
Kramers’s law 49–50, 103
Kronecker δ 360

Lagrange point 112
Lagrange’s equation 209, 371–372, 393
Lagrangian time derivative 221
Lane–Emden equation 133–136, 150
Langmuir oscillations 256
Large Magellanic Cloud 115, 404
Las Campanas Survey 293–295
last scattering surface 342, 437
last stable orbit (around black hole) 396
Lee–Weinberg limit 338
light curves (of supernovae) 117–118
light propagation

in expanding Universe 425–428
in Schwarzschild metric 399–404

light year 2
LIGO (Laser Interferometer Gravity-wave

Observatory) 415
limb-darkening law 43
Liouville’s theorem 207–208
Local Group (of galaxies) 273, 286–287
local standard of rest (LSR) 166
local thermodynamic equilibrium (LTE)

33–34
Lorentz equation 303
Lorentz transformation 249
Los Alamos opacity tables 48
lowering an index (of a tensor) 361
LSR (local standard of rest) 166
LTE (local thermodynamic equilibrium)

33–34
luminosity distance 430
Lyman-α forest 348–349

M1, see Crab nebula
M31, see Andromeda Galaxy
M51 262
M81 239–240

M87 287–288, 289
magnetic buoyancy 236, 258
magnetic field

galaxies 239–241, 266
Galaxy (our) 14, 187–191, 243
jets 277–278
neutron stars and pulsars 141–143,

144–145, 151, 234
stars 79, 119, 123
Sun 119, 120–123

magnetic flux tube 235
magnetic mirror 245–246
magnetic pressure 230
magnetic reconnection 242–243
magnetic Reynolds number 230
magnetic tension 230
magnetoconvection 234
magnetohydrodynamics (MHD) 220, 228–230
magnitude scale 6, 8–9
main sequence 81–89, 102
Malmquist bias 155
maser action 185, 195
mass–luminosity relation 75, 80–81
mass–radius relation (of white dwarfs) 135,

151
matter-dominated Universe 317–322,

350–352, 439
matter-radiation decoupling 327, 341,

351–352, 438
matter-radiation equality 317, 326
Mattig’s formula 428
Maxwellian velocity distribution 32–34,

93–94, 129, 149, 198, 204
Maxwell’s equations 228–229, 233, 254, 299,

303–304
mean free path 33, 56
mean molecular weight 71, 130
megaparsec (Mpc) 2–3
Mercury 11, 398
Messier Catalogue 21
metals 70, 174, 181
metric

for weak gravitational field 375–378
Kerr 361, 387, 392
Robertson–Walker 306, 309, 312, 420, 428
Schwarzschild, see Schwarzschild metric
two-dimensional 302, 357, 361–363,

366–367, 370, 372–373, 384
metric tensor 302, 357, 360–362
MHD (magnetohydrodynamics) 220, 228–230
Michelson interferometer 414–415
Milky Way, see Galaxy (our)
millisecond pulsar 144–145, 146
mixing length theory 69
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molecular clouds 183–185,193–194
morphological classification (of galaxies)

262–265
Mount Palomar Observatory 16
Mount Wilson Observatory 16, 261
Mpc (megaparsec) 2–3

narrow-line region (NLR) 285
Navier–Stokes equation 223
negative hydrogen ion 52–53
neutrinos 13, 105–108, 118–119, 334–338
neutron drip 138
neutron stars 10, 110, 127–128

formation in supernovae 117, 139–141
in binary systems 13, 143–149, 296
magnetic field 141–143, 144–145, 151, 234
observational confirmations 139–149
theoretical issues 137–139, 151, 406

New General Catalogue (NGC) 21
Newton 4, 5, 16
Newtonian cosmology 298, 306–311, 420
NGC (New General Catalogue) 21
NGC 1132 263
NGC 1300 264
NGC 4038 and NGC 4039 288
NGC 4261 284
NGC 5033 267
non-thermal radiation 19, 253
normal galaxies 261–270
nuclear burning 97
nuclear energy generation rate 67, 97, 101
nuclear fuel 97
nuclear fusion 92
nuclear reactions

in early Universe 100–101, 326, 331–334,
337

in stars 65–67, 85, 91–103, 105–108
in supernovae 117–118

nucleosynthesis, see nuclear reactions
null geodesic 399

O and B stars 78, 157, 173–174, 185, 191
Ohm’s law 228, 233
Olbers paradox 154–155, 433
Oort constants 164–165, 167–169, 172, 195
Oort limit 175, 212–213
opacity 47–53, 70, 101, 103
open cluster 86, 158, 203
open Universe 311, 319–320
optical astronomy 15–18
optical depth 28, 36
optical telescopes 7, 16–18
optically thick 29–30
optically thin 29–30

orbits of stars 166–173
oscillator strength 53, 183, 195

parallax 2, 5, 79
parallel transport 363
Parker instability 239–241
parsec (pc) 2–3
particle acceleration 243–248
Pauli’s exclusion principle 84, 127, 129, 139
pc (parsec) 2–3
perihelion precession (of planets) 398, 416
pinhole camera 57–58
Planck’s law 24, 33–34
plane parallel atmosphere 35–46
planetary nebula 114–115
planetary science 4, 123, 128
planets 4, 11, 123–124
plasma 219–220, 228–259, 277
plasma frequency 14, 255
plasma oscillations 256, 258
polarization of gravitational waves 412–415
polarization of starlight 187–189
pole star 6
polytropic relation 133
Poisson’s equation 204–205, 213, 224, 383
Population I 174
Population II 174, 265
pp (proton-proton) chain 98–101, 103,

106–108
precession 7
proper motion 5
proton-proton (pp) chain 98–101, 103,

106–108
Proxima Centauri 2
Ptolemy 4, 168
pulsars 3, 19, 128, 139–145, 148–149, 151

as probes of ISM 188, 190

quantum tunnelling 93–94, 124
quarks 325
quasars 19, 21, 278–286, 324, 345–349
quasi-stellar object (QSO) 280
QSO (quasi-stellar object) 280

R.A. (right ascension) 6–7
radiation field 24
radiation flux 24–25
radiation pressure 25–26, 71, 131–132, 150
radiation-dominated Universe 317, 322–324,

350–352
radiative equilibrium 41
radiative transfer 23, 26–30, 35–48
radiative transfer equation 28–30, 36
radio astronomy 18–19, 276
radio galaxies 276–280, 285–286
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radio jets 277–286, 296
radio telescopes 18–19
radio-loud quasars 280, 285–286
radio-quiet quasars 280, 285–286
raising an index (of a tensor) 361–362
ram pressure 292
Rayleigh scattering 51, 160
red giants 84, 87–88, 109–110, 112, 114, 117,

128, 145
redshift z (of galaxies) 271, 275–276, 308,

321, 426–427
reflecting telescope 16
refracting telescope 16
reionization 349
relativistic beaming 248–251, 282
relativistic electrons, see cosmic rays
resolving power 16, 22
resonance 95, 101
Ricci tensor 369
Riemann curvature tensor 368–369, 384
right ascension (R.A.) 6–7
Robertson–Walker metric 306, 309, 312, 420,

428
Roche lobe 112, 145, 146
Rosseland mean 47
rotation

Galaxy (our) 160–165
pulsars 140–141, 144–145
spiral galaxies 267–269
stars 119–120
Sun 119–120

rotation curves (of spiral galaxies) 267–269,
289

RR Lyrae stars 156–157

saddle surface 302–303, 360
SAGE 108
Sagittarius constellation 8, 18, 155
Saha equation 32–34, 48, 58, 219, 341, 354
Salpeter initial mass function 194
scale factor (of the Universe) 306
scattering 44, 50–52
Schechter’s law 263
Schwarzschild metric 390–391, 416

light motion 399–404, 417
particle motion 392–398, 416
singularity and horizon 405–407

Schwarzschild radius 283, 391–392, 405–407
Schwarzschild stability condition 69
Schwarzschild velocity ellipsoid 171–172,

211, 216
seeing 16–17
Seyfert galaxies 276–278, 285–286
signs of the zodiac 6

singularity (of black hole) 405–406
Sirius 9, 21
Sloan Digital Sky Survey 293
Small Magellanic Cloud 156
SN 1987A 13, 115–118
SNU (solar neutrino unit) 107
solar, see Sun
solar flare 241
solar mass 1
solar motion 169–171, 215
solar neighbourhood 169–173, 211–217
solar neutrinos 13, 105–108
solar system formation 118
solar wind 112–114, 254
sound speed 105, 226, 339, 351
sound wave, see acoustic wave
source function 29
Space Infrared Telescope Facility (SIRTF) 20
specific intensity 24
speckle imaging 17
spectral classification 78
spectral lines

galaxies and quasars 271, 276–79, 285–286,
293, 347–349, 435

hot gas in galaxy clusters 291–292
interstellar medium (ISM) 178–185,

266–267
Sun and stars 5, 28
theory from radiative transfer 28, 31,

43–46, 53–55, 178–182
spectroscopic binaries 80
spheroidal component 173
spiral arm 188, 239
spiral galaxies 157, 199, 262–270, 276, 286,

291–293
spontaneous emission 178–180
standard candle 273–274
standard solar model 102, 105, 106–108
star count analysis 153–155, 194
star formation 20, 124, 185, 173, 193–194,

223, 227, 266, 353
stars

colour 9, 80–81
evolution 108–112, 128
HR diagram 76, 80–89, 109–111
interior, see stellar interior
lifetime 76–77
magnetic field 79, 119, 123
mass 1, 79–80, 85–86
mass-luminosity relation 75, 80–81
nuclear reactions 65–67, 91–103, 105–108
rotation 119
spectral classification 78
virial theorem 65
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starspots 123
steady state cosmology 324
Stefan–Boltzmann law 39, 57, 76, 84
stellar atmosphere 35–46
stellar dynamics 197–218
stellar evolution 108–112, 128
stellar interior 35, 61, 91

convection 67–70
hydrostatic equilibrium 62–64
models 70–74, 101–103
nuclear reactions 65–67, 91–103, 105–108
opacity 47–53
radiative transfer 46–48, 67
virial theorem 65

stellar populations 173–174, 265
stellar structure, see stellar interior
stellar wind 112–114, 128
stimulated emission, see induced

emission
Stokes’s theorem (for tensors) 367–368
Strömgren sphere 186–187
structure formation 349–353
Sudbury Neutrino Observatory 108
summation convention 359
Sun

apparent magnitude 9
age 3, 102
convection inside 103–104
corona 113–114
distance 1
magnetic field 119, 120–123
mass 1
neutrinos from 13, 105–108
oscillations 104–105
rotation 119–120
standard model 102, 105, 106–108

sunspots 120–123, 234–236
Sunyaev–Zeldovich effect 343–344, 354
superclusters of galaxies 293
SuperKamiokande 107
superluminal motion 280–282
supernova 114, 128

and ISM 174, 187, 191, 291
and neutron stars 117, 139–141
nucleosynthesis in 117–118, 174, 291
observations 115–116, 118–119
particle acceleration 14, 190, 248
types and production mechanisms 116–117,

139
use as standard candle 274, 309, 435–436,

439–440
Supernova 1987A 13, 115–118
supersymmetry 338
surface brightness test 432–433

synchrotron radiation 19, 190, 220, 244, 266,
277, 285, 296

basic theory 248, 251–252

Taurus constellation 115
telescopes 7, 15–20
tensors 298, 302, 357–373

curvature 367–371
definition (contravariant and covariant)

358–360
differentiation 363–367
geodesics 371–373
metric tensor 302, 357, 360–362

thermal broadening 174, 183
thermal ionization 32, 58, 78
thermodynamic equilibrium 30–34, 177,

327–331
Third Cambridge Catalogue (3C) 21
third integral 210
Thomson cross-section 51, 148
Thomson scattering 50–52, 90, 147–148, 343

and matter-radiation decoupling 59,
326–327, 341

triple alpha reaction 100–101
Tully–Fisher relation 269, 270, 274
tuning fork diagram 263–264
Tycho 115
Type Ia supernova 116–117, 274, 435–436,

439–440
Type II supernova 116–117

U band 9
UBV (Ultraviolet–Blue–Visual) system 8–9
Uhuru 19, 146, 289
Ultraviolet–Blue–Visual (UBV ) system 8–9
Universe, see cosmology

age 3, 89, 198, 203, 275, 321–322
contents 313–317, 334–339, 423, 439–440
cosmological parameters, see cosmological

parameters
cosmological principle 294, 304–306
cosmological tests 428–435
density 310–311, 314, 439–440
early Universe, see early Universe
evolution 308–312, 317–326, 344–349,

423–424
expansion 271–276
light propagation 425–428
metric 304–308
thermal history 325–353

V band 9, 159
Vela pulsar 140
velocity 4-vector 380



Index 471

Very Large Array (VLA) 18, 19, 277, 405
Very Large Baseline Interferometry (VLBI)

18, 280–281
violent relaxation 203
Virgo cluster 287–288, 289
virial theorem

for stars 65
for stellar dynamics 199–201, 287–288,

296, 324, 439
viscosity 147, 222–223
VLA (Very Large Array) 18, 19, 277, 405
VLBI (Very Large Baseline Interferometry)

18, 280–281
Vogt–Russell theorem 73
voids (in galaxy distribution) 293

warm intercloud medium 183, 191–193
weak interaction 13, 332, 334–335, 338

Whirlpool Galaxy 262
white dwarfs 10, 67, 73, 127–128,

accretion onto (and Type Ia supernova)
116–117, 149, 435

position in HR diagram 84, 110
structure 84–85, 132–137, 151

WMAP (Wilkinson Microwave Anisotropy
Probe) 342–342, 436–439

world time 389

X-ray astronomy 19–20
X-ray telescope 19–20

Yerkes Observatory 16

Zeeman effect 79, 120
zodiac, signs of the 6
zone of avoidance 160
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