
4 Temperature, Luminosity, and Energy

Blackbody Emission

The stellar spectra plotted in Fig. are distinct but qualitatively similar in some
respects. For example, if one squints at them to blur out the details of the var-
ious spectral absorption features, all the stellar spectra start out fairly faint at
short wavelengths, rise to a maximum brightness at some intermediate wave-
length, and then fade again toward longer wavelengths. This behavior is char-
acteristic of a blackbody emission spectrum. Stars are not perfect blackbodies
(they have spectral features, after all) but they are often reasonably close.

The particular shape of a blackbody spectrum is given by the Planck black-
body function

(15) Bν(T) =
2hν3

c2
1

ehν/kBT − 1

is of critical importance in astrophysics. The Planck function tells how bright
an object with temperature T is as a function of frequency ν. Note that the
Planck function can also be written in terms of wavelength λ, but you can’t
just replace the ν’s in Eq. 15 with λ’s: instead one must write the identity
λBλ = νBν and calculate Bλ(T) from there.

It’s worth plotting B(T) for a range of temperatures to see how the curve
behaves, as shown in Fig. 3. One interesting result is that the wavelength of
maximal intensity turns out to scale linearly with T. This so-called Wien Peak
is approximately

(16) λmaxT ≈ 3000µm K

So radiation from a human body peaks at roughly 10µm in the mid-infrared,
while that from a 6000 K, roughly Sun-like star peaks at 0.5µm = 500 nm —
right in the response range of the human eye.

Another important correlation is the link between a blackbody’s luminos-
ity L and its temperature T. For any specific intensity Iν, the bolometric flux
F is given by Eqs. 91 and 92. When Iν = Bν(T), the Stefan-Boltzmann Law
directly follows:

(17) F = σSBT4

where σSB, the Stefan-Boltzmann constant, is

(18) σSB =
2π5k4

B
15c2h3

(or ∼ 5.67 × 10−8 W m−2 K−4).
Assuming isotropic emission (i.e., that the star shines equally brightly in

all directions), the luminosity of a sphere with radius R and temperature T is

(19) L = 4πR2F = 4πσSBR2T4
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.
If we assume that the Sun is a blackbody with R� ≈ 7 × 108 m and T ≈

6000 K, then we would calculate

L� ≈ 4 × 3 × (6 × 10−8)× (7 × 108)2 × (6 × 103)4(20)

= 72 × 10−8 × (50 × 1016)× (1000 × 1012)(21)

= 3600 × 1023(22)

which is surprisingly close to the IAU definition of L� = 3.828 × 1026 W s−1.
Soon we will discuss the detailed structure of stars. Again, their spectra

(Fig. 4) show that they are not perfect blackbodies, but they are often pretty
close. This leads to the common definition of an effective temperature linked
to a star’s size and luminosity by the Stefan-Boltzmann law, as shown by
rearranging Eq. 19 to find Eq. 13. In other words, the effective temperature is
the temperature of a blackbody with the same size and luminosity of the star.

4.1 Units of Luminosity, Flux, and Blackbody Emission

An important note on the units of these various quantities. Luminosity is the
quantity that should be most familiar to you: this is just a power (energy per
time) and measured in W=J s−1. Specifically, the luminosity is the total power
emitted by an object integrated over all wavelengths (or frequencies), from
X-rays to radio waves.

We will also often talk about flux, which is the amount of power passing
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Figure 3: Blackbody spectra Bλ(T) for a range of temperatures T. The temper-
atures used here correspond roughly to the range of Teff spanned by the stars
shown in Fig. 4. The circular points indicate Wien peak of each blackbody.
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4.1. Units of Luminosity, Flux, and Blackbody Emission

through some area. If you know the luminosity of an object, the flux we mea-
sure from it is just the power spread out over some large surface area. For a
star or similar object that radiates equally in all directions, the radiation goes
out spherically and so the flux at some distance r is just

(23) F =
L

4πr2 .

The SI units of flux are W m−2. One common example is the so-called solar
constant (the flux incident on the Earth from the Sun). This is approximately

(24) F⊕ =
L�

4π(1 au)2 ≈ 4 × 1026

12 × (1.5 × 1011)
2 ≈ 104

6
W m−2.

A more precise value is about 1400 W m−2; this is a critical value for modeling
weather, environmental behavior, and solar power generation.

As for the Planck function, it is measured in neither luminosity nor flux;
instead its units are something called specific intensity that we will come back
to later.
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