
10. Radiation

10 Radiation

The number of objects directly detected via gravitational waves can be counted
on two hands and a toe (11 as of early 2019). In contrast, billions and bil-
lions of astronomical objects have been detected via electromagnetic radiation.
Throughout history and up to today, astronomy is almost completely depen-
dent on EM radiation, as photons and/or waves, to carry the information we
need to observatories on or near Earth.

To motivate us, let’s compare two spectra of similarly hot sources, shown
in Fig. 11.

Figure 11: Toy spectra of two hot sources, ∼ 104 K. Left: a nearly-blackbody
A0 star with a few absorption lines. Right: central regions of Orion Nebula,
showing only emission lines and no continuum.

In a sense we’re moving backward: we’ll deal later with how these pho-
tons are actually created. For now, our focus is on the radiative transfer from
source to observer. We want to develop the language to explain and describe
the difference between these spectra of two hot gas masses.

10.1 Radiation from Space

The light emitted from or passing through objects in space is almost the only
way that we have to probe the vast majority of the universe we live in. The
most distant object to which we have traveled and brought back samples,
besides the moon, is a single asteroid. Collecting solar wind gives us some
insight into the most tenuous outer layers of our nearby star, and meteorites
on earth provide insight into planets as far away as Mars, but these are the
only things from space that we can study in laboratories on earth. Beyond this,
we have sent unmanned missions to land on Venus, Mars, and asteroids and
comets. To study anything else in space we have to interpret the radiation we
get from that source. As a result, understanding the properties of radiation,
including the variables and quantities it depends on and how it behaves as it
moves through space, is then key to interpreting almost all of the fundamental
observations we make as astronomers.
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10.1. Radiation from Space

Energy

To begin to define the properties of radiation from astronomical objects, we
will start with the energy that we receive from an emitting source somewhere
in space. Consider a source of radiation in the vacuum of space (for familiarity,
you can think of the sun). At some point in space away from our source of
radiation we want to understand the amount of energy dE that is received
from this source. What is this energy proportional to?
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Figure 12: Description of the energy detected at a location in space for a period
of time dt over an area dA arriving at an angle θ from an object with intensity
I0, an angular size dΩ, through a frequency range dν (in this case, only the
green light).

As shown in Figure 12, our source of radiation has an intensity I0 (we will
get come back to this in a moment) over an apparent angular size (solid angle)
of dΩ. Though it may give off radiation over a wide range of frequencies, as
is often the case in astronomy we only concern ourselves with the energy
emitted in a specific frequency range ν+dν (think of using a filter to restrict
the colors of light you see, or even just looking at something with your eyeball,
which only detects radiation in the visible range). At the location of detection,
the radiation passes through some area dA in space (an area perhaps like
a spot on the surface of Earth) at an angle θ away from the normal to that
surface. The last property of the radiation that we might want to consider is
that we are detecting it over a given window of time (and many astronomical
sources are time-variable). You might be wondering why the distance between
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10. Radiation

our detector and the source is not being mentioned yet: we will get to this.
Considering these variables, the amount of energy that we detect will be

proportional to the apparent angular size of our object, the range of frequen-
cies over which we are sensitive, the time over which we collect the radiation,
and the area over which we do this collection. The constant of proportionality
is the specific intensity of our source: I0. Technically, as this is the intensity
just over a limited frequency range, we will write this as I0,ν.

In equation form, we can write all of this as:

(90) dEν = I0,ν cosθ dA dΩ dν dt

Here, the cos θ dA term accounts for the fact that the area that matters is
actually the area “seen” from the emitting source. If the radiation is coming
straight down toward our unit of area dA, it “sees” an area equal to that of
the full dA (cos θ = 1). However, if the radiation comes in at a different angle
θ, then it “sees” our area dA as being tilted: as a result, the apparent area is
smaller (cos θ < 1). You can test this for yourself by thinking of the area dA
as a sheet of paper, and observing how its apparent size changes as you tilt it
toward or away from you.

Intensity

Looking at Equation 90, we can figure out the units that the specific intensity
must have: energy per time per frequency per area per solid angle. In SI units,
this would be W Hz−1 m−2 sr−1. Specific intensity is also sometimes referred
to as surface brightness, as this quantity refers to the brightness over a fixed
angular size on the source (in O/IR astronomy, surface brightness is measured
in magnitudes per square arcsec). Technically, the specific intensity is a 7-
dimensional quantity: it depends on position (3 space coordinates), direction
(two more coordinates), frequency (or wavelength), and time. As we’ll see
below, we can equivalently parameterize the radiation with three coordinates
of position, three of momentum (for direction, and energy/frequency), and
time.

Flux

The flux density from a source is defined as the total energy of radiation
received from all directions at a point in space, per unit area, per unit time,
per frequency. Given this definition, we can modify equation 90 to give the
flux density at a frequency ν:

(91) Fν =
�

Ω

dEν

dA dt dν
=

�

Ω

IνcosθdΩ

The total flux at all frequencies (the bolometric flux) is then:

(92) F =
�

ν

Fν dν
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10.2. Conservation of Specific Intensity

As expected the SI units of flux are W m−2; e.g., the aforementioned Solar
Constant (the flux incident on the Earth from the Sun) is roughly 1400 W m−2.

The last, related property that one should consider (particularly for spa-
tially well-defined objects like stars) is the Luminosity. The luminosity of a
source is the total energy emitted per unit time. The SI unit of luminosity is
just Watts. Luminosity can be determined from the flux of an object by inte-
grating over its entire surface:

(93) L =
�

F dA

As with flux, there is also an equivalent luminosity density, Lν, defined anal-
ogously to Eq. 92.

Having defined these quantities, we now ask how the flux you detect from
a source varies as you increase the distance to the source. Looking at Figure
13, we take the example of our happy sun and imagine two spherical shells
or bubbles around the sun: one at a distance R1, and one at a distance R2.
The amount of energy passing through each of these shells per unit time is
the same: in each case, it is equal to the luminosity of the sun, L�. However,
as R2 >R1, the surface area of the second shell is greater than the first shell.
Thus, the energy is spread thinner over this larger area, and the flux (which
by definition is the energy per unit area) must be smaller for the second shell.
Comparing the equations for surface area, we see that flux decreases propor-
tionally to 1/d2.

R2

R1

Figure 13: A depiction of the flux detected from our sun as a function of
distance from the sun. Imagining shells that fully enclose the sun, we know
that the energy passing through each shell per unit time must be the same
(equal to the total luminosity of the sun). As a result, the flux must be less in
the larger outer shell: reduced proportionally to 1/d2

10.2 Conservation of Specific Intensity

We have shown that the flux obeys an inverse square law with distance from
a source. How does the specific intensity change with distance? The specific
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10. Radiation

intensity can be described as the flux divided by the angular size of the source,
or Iν ∝ Fν/ΔΩ. We have just shown that the flux decreases with distance,
proportional to 1/d2. What about the angular source size? It happens that the
source size also decreases with distance, proportional to 1/d2. As a result, the
specific intensity (just another name for surface brightness) is independent of
distance.

Let’s now consider in a bit more detail this idea that Iν is conserved in
empty space – this is a key property of radiative transfer. This means that in
the absence of any material (the least interesting case!) we have dIν/ds = 0,
where s measures the path length along the traveling ray. And we also know
from electrodynamics that a monochromatic plane wave in free space has a
single, constant frequency ν. Ultimately our goal will be to connect Iν to the
flow of energy dE – this will eventually come by linking the energy flow to
the number flow dN and the energy per photon,

(94) dE = dN(hν)

We mentioned above that Iν can be parameterized with three coordinates
of position, three of momentum (for direction, and energy/frequency), and
time. So Iν = Iν(�r,�p, t). For now we’ll neglect the dependence on t, assum-
ing a constant radiation field – so our radiation field fills a particular six-
dimensional phase space of�r and �p.

This means that the particle distribution N is proportional to the phase
space density f :

(95) dN = f (�r,�p)d3rd3 p

By Liouville’s Theorem, given a system of particles interacting with con-
servative forces, the phase space density f (�r,�p) is conserved along the flow of
particles; Fig. 14 shows a toy example in 2D (since 6D monitors and printers
aren’t yet mainstream).

Figure 14: Toy example of Liouville’s Theorem as applied to a 2D phase space
of (x, px). As the system evolves from t1 at left to t2 at right, the density in
phase space remains constant.

In our case, the particles relevant to Liouville are the photons in our ra-
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10.2. Conservation of Specific Intensity

Figure 15: Geometry of the incident radiation field on a small patch of area
dA.

diation field. Fig. 15 shows the relevant geometry. This converts Eq. 95 into

(96) dN = f (�r,�p)cdtdA cos θd3 p

As noted previously, �p encodes the radiation field’s direction and energy
(equivalent to frequency, and to linear momentum p) of the radiation field. So
we can expand d3 p around the propagation axis, such that

(97) d3 p = p2dpdΩ

This means we then have

(98) dN = f (�r,�p)cdtdA cos θp2dpdΩ

Finally recalling that p = hν/c, and throwing everything into the mix
along with Eq. 94, we have

(99) dE = (hν) f (�r,�p)cdtdA cos θ

�
hν

c

�2 � hdν

c

�
dΩ

We can combine this with Eq. 90 above, to show that specific intensity is di-
rectly proportional to the phase space density:

(100) Iν =
h4ν3

c2 f (�r,�p)

Therefore whenever phase space density is conserved, Iν/ν3 is conserved.
And since ν is constant in free space, Iν is conserved as well.
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10. Radiation

10.3 Blackbody Radiation

For radiation in thermal equilibrium, the usual statistical mechanics references
show that the Bose-Einstein distribution function, applicable for photons, is:

(101) n =
1

ehν/kBT − 1

The phase space density is then

(102) f (�r,�p) =
2
h3 n

where the factor of two comes from two photon polarizations and h3 is the
elementary phase space volume. Combining Eqs. 100, 101, and 102 we find
that in empty space

(103) Iν =
2hν3

c2
1

ehν/kBT − 1
≡ Bν(T)

Where we have now defined Bν(T), the Planck blackbody function. The
Planck function says that the specific intensity (i.e., the surface brightness)
of an object with perfect emissivity depends only on its temperature, T.

Finally, let’s define a few related quantities for good measure:

Jν = specific mean intensity

(104)

=
1

4π

�
IνdΩ

(105)

= Bν(T)
(106)

uν = specific energy intensity

(107)

=
� Iν

c
dΩ

(108)

=
4π

c
Bν(T)

(109)
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10.4. Radiation, Luminosity, and Temperature

Pν = specific radiation pressure

(110)

=
� Iν

c
cos2 θdΩ

(111)

=
4π

3c
Bν(T)

(112)

The last quantity in each of the above is of course only valid in empty
space, when Iν = Bν. Note also that the correlation Pν = uν/3 is valid when-
ever Iν is isotropic, regardless of whether we have a blackbody radiation.

10.4 Radiation, Luminosity, and Temperature

(See Sec. 4).
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