
24 Compact Objects

24.1 Useful references

• Prialnik, 2nd ed., Ch. 10

• Choudhuri, Secs. 5.3–5.6

• Hansen, Kawaler, and Trimble, Ch. 10

24.2 Introduction

As we have discussed up to this point, mass is destiny when describing the
evolution and final fates of single stars. Fig. 46 breaks down the ultimate states
of stars of a range of initial masses. Furthermore, the mass of an object’s final
remnant (after AGB mass loss, supernova, etc.) is similarly deterministic.

Figure 49: Mass is destiny: final fates of single stars. (Fig. 2.4 of Hansen,
Kawaler, and Trimble, 2nd Ed.).
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24. Compact Objects

• Mfin < 1.4M�: White dwarf, supported by electron degeneracy pres-
sure.

• 1.4M� < Mfin � 3M�: Neutron star, supported by neutron degeneracy
pressure. The upper limit here is not known with great precision.

• Mfin � 3M�: No known support can hold up the remnant; it collapses
into a gravitational singularity, a black hole.

Fig. 47 shows the masses of known stellar remnants, emphasizing that we
know almost nothing about compact objects with masses between 2–5 M�.
But before we examine these most massive of remnants, let’s first reconsider
white dwarfs in a bit more detail.

24.3 White Dwarfs Redux

Let’s construct a more detailed model of a white dwarf than what we’ve man-
aged before. For example, we’ve talked before about the WD equation of state
and qualitatively estimated their radii, but we can do better.

Figure 50: Masses of known extremely compact objects: black holes (above)
and neutron stars (below), as of early 2019. Objects joined by arrows indicate
mergers observed via gravitational waves.
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24.3. White Dwarfs Redux

White dwarf mass-radius relations

Assume we have N electrons that supply the supporting degeneracy pres-
sure, and N protons supplying the mass. Gravity packs the particles closely
together (though not as tightly as in a neutron star!). By the Heisenberg un-
certainty principle,

(541) ΔxΔp � h̄

the tight constraints on position imply a correspondingly large momentum
dispersion, and so the total kinetic energy will increase.

So the Fermi momentum of the electrons will be approximately

(542) pF ≈ h̄
Δx

≈ h̄n1/3.

And thus the total Fermi energy will be

(543) EF =
�

p2
Fc2 + m2

e c4.

Depending on whether or not the electrons are strongly relativistic, we will
have either

EF,NR ≈ mec2 +
p2

F
2me

(544)

≈ C +
h̄2

2me

�
N
R3

�2/3
(545)

or

EF,UR ≈ pFc

(546)

≈ h̄N1/3c
R

�
N
R3

�2/3
(547)

The total gravitational energy will be dominated by the more massive pro-
ton, and will be roughly

(548) EG ≈ −GM2

R
= −N

GMmp

R
.

Thus in the non-relativistic limit, the total energy of the system will be

(549) ENR ≈ C +
h̄2

2me

�
N5/3

R2

�
− GM2

R
.
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24. Compact Objects

This expression shows a clear minimum when plotted vs R (see Fig. 48) – this
minimum is the equilibrium point, and corresponds to the radius at which a
white dwarf is stable. This minimum radius occurs when

dE
dR

= 0

(550)

− h̄2N5/3

meR3 +
GM2

R2 = 0

(551)

or equivalently, when

(552) R =
h̄2

Gmem5/3
p M1/3

.

Thus a typical white dwarf with mass 1M� will have a radius of just about
1R⊕. Furthermore, note that R ∝ M−1/3 – so white dwarfs get smaller as we
add more mass, as we saw in Sec. 21.4. (We already encountered this while
discussing shell burning: as fusion ‘ash’ is steadily added to a core, it contracts
despite its mass having increased.)

Alternatively, in the ultra-relativistic case the total energy of the white

Figure 51: Total energy of a white dwarf in the non-relativistic limit (see
Eq. 520). The energy minimum implies an equilibrium point: this will be the
radius of the white dwarf.
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24.3. White Dwarfs Redux

dwarf will be

EUR ≈ h̄cN4/3

R
− GM2

R

(553)

=
N2

R

�
h̄cN−2/3 − Gm2

p

�
(554)

XXXXXXXXXXXXXXX clarify where the above relation comes from
This expression, in contrast to Eq. 520, has no extremum with radius. So

rather than a relation between mass and radius, a white dwarf in the ultra-
relativistic has a single, limiting mass, given when E = 0:

(555) h̄cN−2/3 = Gm2
p.

This limiting mass is the aforementioned Chandrasekhar Mass, which is ap-
proximately

MCh ≈ Nmaxmp

(556)

≈ mp

�
h̄c

Gm2
p

�3/2
(557)

≈ 1.7M�
(558)

This is actually not too far off from what a further refinement would predict;
we will consider this next.

Polytropic White Dwarf

The next level of refinement is to return to our polytropic model of a white
dwarf, which we have discussed previously. As we’ve seen many times, for
white dwarfs we have either

• Non-relativistic degenerate gas: γ = 5/3, n = 3/2.

• Ultra-relativistic degenerate gas: γ = 4/3, n = 3.

And as you just saw in Problem Set 7, the mass of a polytropic white dwarf
is

(559) M = 4πρcλ3
nξ2

sur f
dφn

dξ

����
ξsur f
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24. Compact Objects

where

(560) λn

�
(n + 1)Kρ1−n/n

c
4πG

�1/2

and where ξsur f is the Lane-Emden surface coordinate, introduced in Sec. 17.
This means that we have either
M ∝ ρ1/2

c (for n=3/2), or
M ∝ ρ0

c =const (for n=3)
and so the mass will steadily increase up to some maximum value, as

shown in Fig. 49. To find the transition point and calculate the maximum
mass, we need more details. Of particular import is the polytropic constant
KUR. The full equation of state turns out to be

(561) P =

�
3
π

�1/3 hc
8m4/3

p

�
ρ

µe

�4/3

which leads to a more accurate version of the Chandrasekhar Mass,

(562) MCh = 1.4M�
�µe

2

�−2
.

Observations of White Dwarfs

The observational history of white dwarfs is much messier – possibly even
more complicated than solving polytropic equations of state. Observations
established the existence of unusual celestial objects, but their natures weren’t
known for some time.

We now know that the first white dwarf was identified in 1783 by William
Herschel. He noticed a dim companion to the V = 4.4 mag star 40 Eri. The
colors of the faint companion indicated that it must be hot (we know now it’s
∼ 104 K, hotter than 40 Eri), but it is 5 mag fainter. Thus it must be tiny.

Another, similar object was identified four-score years later; this was Sir-
ius B, discovered using a telescope in Cambridgeport, Massachusetts. Its grav-
itational connection to Sirius was quickly recognized, and using the tools dis-

Figure 52: Mass of a white dwarf as its central density increases.
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24.4. White Dwarf Cooling Models

cussed in Sec. 7.3 its mass, luminosity, and (after a “high-contrast” spectrum
was obtained in 1915) its temperature were all measured. These indicated
M ≈ M�, Teff ≈ 25, 000 K, and R ≈ 0.01R� — implying ρ ≈ 106 g cm−3.

These numbers were nonsense according to 19th century astrophysics. Quan-
tum mechanics was needed to understand such a bizarre object. It wasn’t until
1926 that electron degeneracy pressure was described, and only in 1931 did
Chandrasekhar identify his eponymous mass limit. Even so, conservative as-
tronomers resisted for many years.

Other bibs and bobs about white dwarfs:

• As discussed in Sec. 21.7, the final composition of a white dwarf de-
pends on its formation history. If it reached the 3α process, it should
be carbon-oxygen. Otherwise, it’s probably just a helium white dwarf.
(There may be a chance to have O-Ne-Mg WDs, but there’s no strong
empirical evidence.)

• Some white dwarfs pulsate, permitting asteroseismology to more pre-
cisely determine their interior structure from the Fourier spectrum of
oscillation modes.

• Gravitational redshifts have been measured from some stars. Since a
photon’s energy as it leaves a gravitational well changes by

(563) ΔE = hνΔΦg/c2 = hν
GM
c2

�
1
∞

− 1
RWD

�

one can measure the wavelength/frequency/energy of a known line rel-
ative to its expected location

(564)
ΔE
E

= −GMWD

RWDc2

and so directly measure the WD’s mass-to-radius ratio.

• As has been alluded to before, white dwarfs gradually cool down on
cosmic timescales. By modeling this, we can estimate the ages of indi-
vidual (isolated) WDs and also of star clusters. WDs in globular clusters
provided one of the first signs that the universe was >10 Gyr old!

• Analysis of white dwarf spectra reveals rotational broadening due to
short rotation periods of just ∼1000 s, as well as strong magnetic fields
of ∼ 106 G (from Zeeman splitting).

24.4 White Dwarf Cooling Models

White dwarfs start out extremely hot as the cores of giant stars, but once the
stellar envelope is ejected they cool down: first rapidly, then slowly.

White Dwarfs: The Simple Model

In the simplest model of white dwarf cooling, the WD is an isothermal object
radiating at temperature T, and its total internal energy is the kinetic energy
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24. Compact Objects

of its constituent particles. Thus the total energy available to the WD is

(565) Etot ≈ NkT =
M
mp

kT

and its luminosity is

(566) L = −dEtot

dt
= 4πR2σT4.

Since the white dwarf is degenerate we will assume that its radius is con-
stant throughout its evolution. Then we have

(567) − M
mp

k
dT
dt

= 4πR2σT4

which, after some algebraic manipulation, yields

(568) −T−4dT =
4πR2σmp

Mk
dt

Thus

(569) −
T�

Thot

T�−4dT� =
t�

0

4πR2σmp

Mk
dt�

where the temperature starts at Thot at t = 0 and evolves from there.
The solution is

(570)
3

T3 − 3
T3

hot
=

4πR2σmp

Mk
t

but because of the rapid cooling, the second term is negligible after a very
short time. So after further rearranging, we have

T(t) =
�

3Mk
4πR2σmp

t
�1/3

(571)

= 5600 K
�

R
R⊕

�−2/3 � M
M�

�1/3 � t
1 Gyr

�−1/3
(572)

This isn’t crazy, but it isn’t terribly accurate either (and its predicted L(t)
will be even further off). We can do better by considering a two-component
WD model: the degenerate object remains the same, but its outermost veneer
must have sufficiently low density that it is non-degenerate; this outer layer
acts like an insulating blanket and slows heat loss from the nearly isother-
mal interior. Finally, we’ll assume that the transition from degenerate to non-
degenerate occurs at a transition radius rtr.
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24.4. White Dwarf Cooling Models

The pressure must be continuous at rtr; recall from Eq. 431 that the condi-
tion for this transition is

ρtr ≈ 750 g cm−3µe

�
T

107 K

�3/2
.

So the polytropic and ideal-gas equations of state must be equal:

K�T1+n
tr = ρtr

k
µ

Ttr

(573)

≈ 2 × 10−8µe
k
µ

T1+3/2
tr

(574)

If we assume that the envelope opacity follows Kramer’s Law (Eq. 226),

κ ≈ 4 × 1025ρT−7/2 cm2 g−1

then the polytropic coefficient becomes

(575) K� ≈ 8 × 10−15µ−1/2
�

M/M�
L/L�

�1/2

for n = 3.25. The result is

(576)
L

L�
≈ 7 × 10−29µ

M
M�

T7/2
tr .

How does this two-layer white dwarf evolve with time? The specific heat
of a mixed (degenerate+ideal gas) is

(577) cV =
3NAk
2µI

where µI is the mean molecular weight of the ions. So the energy output will
then be

(578) L = −dEions

dt
= −cV M

dTtr

dt
.

The final solution to all this (see Iben & Tutukov 1984) is

(579)
L

L�
=

�
A
12

�−7/5 �µ

2

�−2/5
�

M
M�

��
t

9 Myr

�−7/5
.

This is the Mestel cooling model for white dwarfs – not the latest state-of-the-
art, but not too bad either. Note that since we have L ∝ t−7/5 and we know
L ∝ T4, this implies T ∝ t−7/20 — remarkably close to the power of 1/3 we
found in our simple model in Eq. 543.

In practice, a number of other factors beyond radiative considerations will
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24. Compact Objects

affect white dwarf cooling. E.g., see the Physics Today article on the course
website about crystallization effects.
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25 Neutron Stars

If a stellar remnant exceeds the Chandrasekhar mass, then even fully rela-
tivistic electron degeneracy pressure will be insufficient to support it. As we
discussed in Sec. 23.4, only neutron degeneracy pressure can possible halt its
final and inevitable collapse. Let’s now consider the astrophysics of neutron
stars in more detail.

25.1 Neutronic Chemistry

For starters: why don’t all the neutrons just decay away? An isolated neutron
undergoes the decay

(580) n → p + e− + ν̄e

because

(581) (mn − mp)c2 = 1.3 MeV.

The excess energy will be carried away by the electron and antineutrino.
But in a degenerate medium, the Fermi energy may exceed this 1.3 MeV

limit. When this happens, there are no accessible low-energy states for the
electron to occupy after decay – so the neutron decay is suppressed (alterna-
tively, imagine the neutron decays but it is energetically favorable for the new
electron to immediately recombine with an available proton). We expect this
beta-decay suppression to set in when

EF � (mn − mp)c2 = 1.3 MeV

(582)

�
p2

Fc2 + m2
e c4 � (mn − mp)c2

(583)

mec2

�
p2

F
m2

e c2 + 1

�1/2

� (mn − mp)c2.

(584)

So to keep the neutrons around, the Fermi momentum must satisfy

(585) pF � mec

��
mn − mp

me

�2
− 1

�1/2

or roughly pFc � 1.2 MeV. In terms of density, we refer to Eq. 418,

pF =

�
3n3ρ

8πmp

�1/3

.
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25. Neutron Stars

So combining this with Eq. 556 we see that neutron decay is suppressed for

(586) ρ � 107 g cm−3.

As ρc reaches and exceeds this critical density, the neutron star establishes
an equilibrium between neutrons, protons, and electrons. One can develop a
Saha-like equation (recall Sec. 12.4) relating the populations of each type of
particle; see Sec. 2.6 of Shapiro & Teukolsky for further details. Above the crit-
ical density, the so-called neutron drip sets in and neutrons slowly leave the
individual nuclei. In the extreme end case, the star is indeed entirely neutrons.

25.2 Tolman-Oppenheimer-Volkoff

Note also that for neutron stars,

(587)
GM
rc2 ≈ 0.1 − 0.3

and so we are definitely in a range where Newtonian gravity alone will not
suffice. General relativity must be used instead.

Recall from Sec. 9 that gravity determines the geometry of spacetime, so
that the interval (or distance) ds between two events is

(588) ds2 = gµνdxµdxν

where gµν is the metric and dxµ is the coordinate displacement between two
events (see Eqs. 67 and 69).

For a spherical, static body, general relativity shows that the appropriate
metric is

(589) ds2 = −e2Φ(r)/c2
(cdt)2 +

dr2

1 = 2GM/rc2 + r2(dθ2 + sin2 θdφ2)

where as usual

(590) M(r) =
r�

0

= 4π(r�)2ρ(r�)dr�

and

(591)
dΦ
dr

= −G[M(r) + rπr2P(r)/c2]

r(r − 2GM(r)/c2)
.

The boundary conditions are that

e2Φ/c2
= 1 − 2GM

rc2 (r > R∗)

(592)

ρ(r) = 0 (r ≥ R∗)
(593)
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25.3. Neutron star interior models

These equations build in the relativity of distance and time, plus the fact
that all forms of energy (including pressure) contribute to gravity. Ultimately
the new, relativistic equation of hydrostatic equilibrium is

(594)
dP
dr

= −
�

G
r2

� �
M + 4πr3P/c2

1 − 2GM(r)/rc2

� �
ρ + P/c2

�
.

This is the Tolman-Oppenheimer-Volkoff equation (or TOV). Note that in
the limit of low densities and pressures, all terms with 1/c2 drop out and we
recover Eq. 239,

dP
dr

= −
�

G
r2

�
Mρ = −ρg.

25.3 Neutron star interior models

To make a neutron star model, we need to solve the TOV equation – but we
also need to have an equation of state to work with. The trouble is that neutron
stars push us into a regime where the physics is not accurately known! But
we can still consider a few limiting cases.

The first of these is to assume that the neutron star equation of state is so
stiff that it is incompressible, i.e., ρ(r) = ρ0 = constant. Then (as Problem Set
8 demonstrates),

(595) P(r) = ρ0c2

�
(1 − RSr2/R3∗)1/2 − (1 − RS/R∗)1/2

3(1 − RS/R∗)1/2 − (1 − RSr2/R3∗)1/2

�

where R∗ is the radius of the neutron star and

(596) RS =
2GM

c2

is the Schwarzschild radius. This incompressible model shows that P(r =
0) → ∞ if R∗ is too small (i.e., if the NS is too compact). The denominator of
Eq. 566 must be > 0, so we obtain the constraint that

(597) R∗ >
9
8

RS = 2.25
GM
c2 .

The implication is that a star more compact than this cannot be supported
even by infinite pressure; it will collapse instead.

In reality, no fluid can be truly incompressible, since this would require an
infinite (and super-luminal) sound speed. Rhoades & Ruffini (1974) developed
as stiff a NS model as possible that was still consistent with relativity. Their
result was that neutron stars must have M < 3.2M�.

25.4 A bit more neutron star structure

More typically in modern studies, one chooses an equation of state – or at
least, builds up P(ρ) based on your favorite knowledge/assumptions about
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25. Neutron Stars

dense matter. One picks a central density (informed by your previous model,
perhaps) and integrates Eq. 565 until P = 0 is reached; this is the surface. One
tabulates M∗ and R∗ for different equations of state; Fig. 50 shows the range
of possible models.

Inspection of Fig. 50 shows that predicted radii and maximum masses vary
by ∼50% for neutron stars. Typical models (plotted in black) assume “normal”
nuclear matter – just standard neutrons at low densities, but at higher densi-
ties condensations of hyperons, kaons, pions, etc. may all become important.
Different models make different choices for when various mesons (and other
particles) play a role. Until the critical density is reached, these models scale
roughly as R∗ ∝ M−1/3

∗ (as we saw for white dwarfs in Sec. 24.3) since the stars
are still explained decently well by straightforward degeneracy calculations.

Another family of models assumes that (under other assumptions) neutron
stars may be composed of so-called strange quark matter. These objects would
instead be hypothetical condensates of up, down, and strange quarks that
would be more stable than normal matter at the high densities involved. In
grossly simplified terms, these models amount to a uniform density fluid – so
R∗ ∝ M1/3

∗ .
There are also several forbidden regions:

• General Relativity: If a neutron star is to avoid becoming a black hole,
it must always satisfy R > 2GM/c2.

• Causality: This is the requirement that the soundspeed cs must satisfy
dP/dρ = cs < c2.

• Rotation: Neutron stars rotate (like stars and other stellar remnants). To
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Figure 53: Predicted masses and radii (black curves) for various suggested
neutron star equations of state. Orange curves show contours of R∞ = R(1 −
2GM/Rc2)−1/2. Adapted from Lattimer (2012), Ann. Rev. Nuc. Part. Sci..
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25.5. Neutron Star Observations

hold together, they must satisfy

(598) ω2R <
GM
R2

or equivalently

(599) ω2 <
GM
R3

and so a spinning neutron star must always satisfy

(600) Gρavg ≥ 3ω2

4π
.

Thus the “rotation” line corresponds to constant average density. In
Fig. 50, the particular line plotted corresponds to the fastest-known ro-
tation rate for any neutron star, f = ω/2π = 716 Hz.

The orange curves in Fig. 50 indicate lines of constant radiation radius
R∞. In principle one could observe the thermal (typically X-ray) spectrum of
a young neutron star of known distance, assume a blackbody, and estimate
the radius directly. But for such massive, compact objects general relativistic
effects will come into play: the temperature, size, and so luminosity observed
at large distances are not the “true” values that would be observed in the
neutron star’s rest frame. In particular, the radiation radius is

(601) R∞ = R∗(1 + zg)

where zg is the gravitational redshift (see Eq. 534). Similarly, the temperature
that will be inferred is

(602) T∞
eff =

Teff
1 + zg

.

25.5 Neutron Star Observations

Neutron stars are fairly unique among objects discussed thus far. Planets,
stars, nebulae, and galaxies were all observed for millennia before the true
natures of these objects were uncovered. In contrast, neutron stars (along with
black holes) were discussed theoretically long before any observational evi-
dence was found.

Unfortunately the observational measurements are frustratingly sparse.
Even the fastest spin rates don’t much push the physical limits. As far as max-
imum masses go, Fig. 47 shows that most measured NS masses are around
1.4M�. The few especially massive examples (M∗ � 2M�) do help kill quite a
few models, though. And for radii it’s worse: while some masses are measured
to � 2%, there are no comparably precise NS radius measurements (despite
many efforts). Anyway, only ∼10 neutron stars are close enough that we can
study their thermal emission (in X-rays; kT � 50 keV) — if they are more than
� 500 pc away then the ISM absorbs most of the radiation; and even when
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detections are made, detailed atmospheric modeling (with many unknowns)
is needed to accurately infer radii.

Most observational data of neutron stars come from pulsars – neither truly
pulsating nor truly stars, but rapidly-rotating neutron stars that emit periodic
radio (or other EM) emission. These were first discovered in 1967 by Jocelyn
Bell, a 2nd year graduate student.

25.6 Pulsars

First discovered in 1967, thousands of pulsars are now known (see Fig. 51).
Most are detected in radio, but a subset are also seen in X-rays and even
gamma rays. The period of the EM emission ranges from as long as 10 s in a
few cases to just 1–2 ms at the other extreme.

It was recognized almost immediately that these objects must be very
small. E.g., the Crab nebular pulsar (the remnant of SN 1054) has a period
of P = 33 msec, implying a maximum diameter of

(603) L � cP = (3 × 105 km s−1)(0.033) ≈ 105 km.

The size is consistent with a white dwarf but the period isn’t. From Eq. 570

Figure 54: Pulsar observations in the traditional P-Ṗ plane. Straight lines indi-
cate characteristic ages, spin-down luminosities, and maximum magnetic field
strengths. (from https://www.cv.nrao.edu/~sransom/web/Ch6.html).
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25.6. Pulsars

a white dwarf spinning that fast couldn’t hold together, and the timescale for
pulsations (whether freefall, Eq. 245, or sound-crossing, Eq. 248) shouldn’t be
lower than a few seconds. And a black hole shouldn’t have any surface with
which to anchor coherent, precisely-repeatable EM radiation. Thus by process
of elimination, a neutron star is the most likely culprit.

The phenomenological view is that an intense beam of EM radiation is
misaligned with the neutron star’s rotation axis. This presumably arises from
a magnetic dipole misaligned with the NS’s spin axis; nonetheless many de-
tails remain unclear, and pulsar emission mechanisms remain an active area of
research. But it must somehow involve a rotating magnetic field generating a
large electric field from equator to pole. This in turn accelerates electrons and
generates synchrotron radiation that is highly coherent and highly polarized.

Rotation and Magnetic Fields

To explain the observed emission requires rapid rotation and an extremely
strong magnetic field; both can be understood from basic conservation prin-
ciples. As noted previously, white dwarfs typically have PWD ∼ 1000 s and
B ∼ 106 G (the Earth and Sun both have magnetic fields of just ∼1 G). Assum-
ing angular momentum is conserved during the collapse from white dwarf to
neutron star, then we should expect

(604) IWDΩWD = INSΩNS

and so

(605)
PNS
PWD

=
MNSR2

NS
MWDR2

WD
∼

�
10−3

�2
.

Thus we should expect

(606) PNS ∼ 10−6PWD ∼ 10−3 sec

which is roughly consistent with the shortest periods seen in Fig. 51.
As for the strong magnetic field, that can also be inferred from the known

field strengths of white dwarfs. Magnetohydrodynamics tells us that magnetic
flux ΦB is conserved through any surface moving with a plasma. Thus the
magnetic flux through a loop enclosing solid angle ΔΩ around either the WD
progenitor or NS progeny should be

(607) ΦB = BWDΔΩR2
WD ≈ BNSΔΩR2

NS

and so

(608)
BNS
BWD

≈
�

RWD
RNS

�2
≈ 106.

Thus, we expect neutron stars to have surface magnetic field strengths of order
1012 G.

These strong magnetic fields induce an electromagnetic “backreaction,”
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slowing the rotation over time. Unlike most stellar objects, which are in quasi-
steady state, this spindown is precisely measured in many pulsars. The tradi-
tional value is the time derivative of the period, or Ṗ (i.e., P-dot), a dimension-
less quantity plotted as the vertical axis of Fig. 51. Because neutron stars spin
down we almost always see Ṗ > 0 (i.e., spin period increasing). Occasionally
some neutron stars will show transitory “glitches” indicating sudden rear-
rangements of their moments of inertia (like a spinning ice skater rearranging
their limbs). Glitches are usually seen in young, relatively hot neutron stars
whose interiors are still stabilizing and reaching a more stable equilibrium.

When P and Ṗ are plotted against each other as in Fig. 51, we obtain
the observational equivalent of the HR diagram – but for neutron stars. The
periods span a range of 10−3 − 10 s, with a peak near 0.5 s; meanwhile Ṗ has
a much broader range, from 10−20 − 10−10 with a peak near 10−15. For the
lowest values of Ṗ, the emission from these pulsars is more stable than the
most precise atomic clocks (which have comparable stabilities of ∼ 10−16).

Pulsar luminosity

Fig. 51 also lets us estimate the energy loss rate of pulsars. Assuming that
their energy reservoir is mainly rotational kinetic energy, then (in the classical
approximation)

Erot =
1
2

Iω2

(609)

= 2π2 I
P2

(610)

≈ 4π2

5
M

�
R
P

�2
(611)

and so

dE
dt

=
d
dt

�
1
2

Iω2
�(612)

= Iωω̇
(613)

=
8π2

5
M

R2

P3 Ṗ.

(614)

For the Crab Nebula (P = 33 ms, Ṗ ∼ 10−13, M∗ ≈ 1.5M�, R∗ ≈ 10 km) we
find

(615) L = −dE
dt

≈ 1038 erg s−1
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which is comparable to the bolometric luminosity of the entire Crab Nebula;
pulsars essentially convert their rotational energy into light. (Also, note that
this power far outstrips the Solar luminosity of L� ≈ 4 × 1033 erg s−1).

The mechanism of that radiation, as previously noted, is the strong, rapidly
rotating magnetic field. For a given magnetic moment m, the magnetic equiv-
alent of the Larmor formula gives the emitted power as

(616) P =
2|m̈|2
3c3 .

Following Rybicki & Lightman (pp. 323–324), the surface magnetic field is

(617) B0 =
2m
R3 .

The component of �m along the rotation axis is constant; given an angle α
between the rotation and magnetic dipole axes,

(618) |�̈m| = ω2|�m| sin α.

Thus the total radiated power is

(619) L =
sin2 α

6c3 B2
0ω4R6.

Setting Eqs. 585 and 590 equal to each other, we see that

(620) B2
0 ∝ PṖ

and so the P-Ṗ diagram of Fig. 51 should allow us to directly estimate the
magnetic field strength of a pulsar. Typical values are 108 − 1015 G; objects
with the strongest fields are termed magnetars. These sometimes exhibit huge
outbursts, affecting terrestrial satellites and modifying the Earth’s ionosphere
from kpc away.

Pulsar ages and the braking index

Most importantly, the combination of P and Ṗ allows us to estimate the age
of a pulsar. If we assume that the spindown rate depends on the current spin
rate to the nth power, then

(621) ω̇ = aωn.

If we fold in information about the second derivative,

(622) ω̈ = anωn−1ω̇,

then

(623) ω̈ω = anωnω̇2
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25. Neutron Stars

Figure 55: Period evolution of the famous Hulse-Taylor pulsar, with P =
7.75 hr.

and so

(624) n =
ωω̈

ω̇2

is defined as the braking index of the pulsar. For magnetic dipole radiation
as described by Eqs. 585 and 590, we have

(625) Iωω̇ ∝ ω4

and so the braking index n = 3 for pure magnetic dipole radiation.

Traditionally, one then models the period evolution as

(626) P(t) = ct1/(n−1)

which yields

(627) Ṗ =
c

n − 1
t1/(n−1)−1 =

P
t(n − 1)

190



25.6. Pulsars

and so the characteristic age of a pulsar is given by

(628) τpulsar =
1

n − 1
P
Ṗ
=

P
2Ṗ

(for n = 3).

Note from Eq. 597 that τpulsar actually corresponds to the time for the period
to increase by a factor of two. Nonetheless it’s a pretty good age indicator: for
the Crab pulsar (P = 33 ms, Ṗ = 4.2 × 10−13) we find τ = 1200 yr. Since this
pulsar formed in SN 1054, our estimate is in pretty good agreement.

As seen for the Crab, characteristic ages are only approximate. Note from
Fig. 51 that many millisecond pulsars have inferred ages > 10 Gyr, older than
the universe! These are thought to have massively spun up by accreting high-
angular-momentum material that inspiraled from a neighboring star (note that
almost all ms pulsars are in binary systems). For other stars, the ages seem
reasonable but the measured braking index (from P, Ṗ, and P̈) is not 3.0 – for
example, ncrab = 2.515 ± 0.005. This reflects the fact that the radiation is only
approximately dipolar.

Other tidbits, bibs, and bobs about pulsars:

• Binary neutron stars. When one (or both) of the objects in a binary is a
neutron star, we can use the variations in the pulse arrival times to pre-
cisely map the orbit. Fig. 52 shows 40 years of data on the Hulse-Taylor
pulsar, indicating inexorable inspiral of the binary due to emission of
gravitational radiation. These provide excellent tests of GR, and also
provide some of the most precise NS masses known.

• Pulsar planets. A diminutive, multibody of binary pulsars. It is not com-
monly known that the first confirmed planets beyond the Solar system
were discovered by pulsar timing measurements. These revealed a three-
planet system with orbital periods of 25, 66, and 98 days and masses of
0.02 (!!), 3.9, and 4.3 M⊕, respectively. These have withstood the test of
time, but they are not representative of the general population of extra-
solar planets. Only ∼ 6 such planets are known, in 3–4 systems.
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26. Black Holes

26 Black Holes

26.1 Useful references

• Kippenhahn, Weiger, and Weiss, 2nd ed., Ch. 39

26.2 Introduction

We’ve almost completed our astrophysical survey of stars, their evolution, and
the final end products. Just to recap:

Initial Mass Fate Final Mass
� 13MJup Planet same
∼ 13MJup− ∼ 0.08M� Brown dwarf same
� 0.08M� Brown dwarf same
0.08M� − 0.8M� Lives on MS for > tHubble same
0.8M�− 7M� White dwarf 0.6M� − 1.4M�
7M� − 20M� Neutron star 1.4M�− 3M� (?)

� 20M� Black hole � 3M� (?)

In this table, initial masses in boxes are uncertain due to poorly under-
stood aspects of mass loss during stellar evolution. On the other hand, final
masses that are underlined above are uncertain because the equation of state
of neutron stars is only poorly known. But at final masses � 3M�, no known
physics provides a pressure that can hold up a star. The increase in pressure
itself is ultimately self-defeating: it gravitates! Eventually the point is reached
where support would require infinite pressure; nothing can hold it up. Gen-
eral relativity tells us that it must collapse, leaving a black hole behind.

26.3 Observations of Black Holes

Like neutron stars, the concept of black holes was invented before any obser-
vational evidence arose. Even 18th-century natural philosophers considered
the impact of sufficient gravity on corpuscular light (i.e., photons). Relativity
put the discussion on firmer and more accurate footing, but decades passed
before the impact of event horizons, rotating black holes, etc. were recognized.
In the last half-century observers have steadily built up a catalog of objects that
are

• Massive — i.e., > 3M� and so more massive than any plausible neutron
star equation-of-state can support;

• Compact

• Dark.

This catalog includes many objects of masses M ∼ 5− 25M� (stellar remnants;
see Fig. 47), along with objects with M ∼ 106 − 109M� (supermassive black
holes) at the centers of our and other galaxies. Evidence for intermediate-
mass black holes remains inconclusive despite considerable searches.
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Many of the first such stellar-mass black holes were discovered as bright X-
ray sources. One of the earliest was Cygnus X-1 (i.e., the brightest X-ray source
in the constellation Cygnus), over which Steven Hawking lost a bet with Kip
Thorne. Another was V404 Cygni (a variable star in the same constellation),
identified earlier but which underwent a massive outburst in 2015 – at peak
brightness, the system was 50× brighter than the Crab Nebula (supernova
remnant) in X-rays. In all these systems, the X-rays arise from hot gas (at mil-
lions of K) in an accretion disk spiraling down into the black hole. Most of
these systems are binaries, and the accreting material is stripped from a “nor-
mal” star (pre-collapse, pre-supernova) by the black hole. Thus the component
masses can be measured using the tools discussed in Sec. 7.

For V404 Cyg, the binary mass function (Eq. 62) is

(629) fm =
(MX sin I)3

(MX + Mc)2 = 6.26 ± 0.31M�.

The companion star is a K giant with M ∼ M�, implying that

(630) Mx sin3 I ∼ 6.3M�

and so

(631) MX � 6.3M�.

However, from the binary period (P = 6.4 d) we find only that

(632) a � 0.12 AU

which is far larger than the Schwarzschild radius for a black hole of this mass.
Thus it was some time before evidence for V404 Cyg’s black hole nature was
widely accepted.

Observational evidence for supermassive black holes came initially from
the velocity dispersion of stars near the centers of nearby galaxies. More re-
cently, unambiguous evidence for these beasts came from orbital monitor-
ing of stars around Sagittarius A* (in the Milky Way, M ∼ 4 × 106M�) and
an image of the accretion disk and black hole shadow in the center of M87
(M ∼ 6 × 109M�); both are shown in Fig. 53.

26.4 Non-Newtonian Orbits

In general, sufficient evidence for a black hole requires demonstrating that too
much mass is in too small of a volume, such that the mass much be enclosed
within one Schwarzschild radius:

(633) RS =
2GM

c2 .

But another key sign can be orbits with strongly non-Keplerian features that
encode the nature of strong (relativistic) gravity.

Recall that the Keplerian two-body problem (Sec. 2) can be reduced to a
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26. Black Holes

Figure 56: Left: Stellar orbits around Sgr A*, the supermassive black hole at the
center of the Milky Way. Star S0-2 has a period of 16 yr, while other orbits are
longer-period. (From http://www.astro.ucla.edu/~ghezgroup/gc/). Right:
Accretion disk and shadow of the supermassive black hole at the center of
nearby galaxy M87. The bright ring’s diameter is 42µas, or ∼ 2000× smaller
than the scale bar at left.

one-dimensional effective potential:

(634) E =
1
2

m
�

dr
dt

�2
+

L2

2mr2 − GMm
r

or

� =
1
2

ṙ2 +
l2

2r2 − GM
r

(635)

=
1
2

ṙ2 + Veff

(636)

where � and � are the energy and angular momentum per mass, respectively.
Fig. 54 recalls this scenario, with different values of � corresponding to un-
bound, elliptical, or circular orbits.

The equivalent for orbits in general relativity looks more interesting. If we
have a non-spinning black hole, then

(637)
�

dr
dt

�2
=

�2

c2 −
�

1 − 2GM
rc2

��
c2 +

�2

r2

�

where � and � have the same meanings (but � now includes the full relativistic
energy, including rest mass energy). But one can again define a relativistic
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effective potential,

(638) Veff,rel =

�
1 − 2GM

rc2

��
c2 +

�2

r2

�
.

For a particular value of �2, the orbital dynamics are determined by Veff,rel
(analogously to the Newtonian case). Fig. 54 compares this case to the classical
Keplerian case. A few interesting features that distinguish this new scenario:

• Circular orbits still exist if �2 is tangent to and just touches Veff at a local
minimum.

• Now there is an extra “hump” in the profile whose height depends on �.
This means that for certain values of �2, no local minimum exists – and
thus in these cases there are no stable circular orbits.

• If � is high enough for a given �, the trajectory can reach r = 0 (this never
happens in the classical case for nonzero angular momentum). This is
a singularity: here tidal forces become infinitely strong, and anything
approaching it will be shredded.

The local minimum disappears for

(639) � =
√

12
GM

c

which corresponds to a stable circular orbit at r = 3Rs. We therefore expect no
orbits inside of this radius. So even inside an accretion disk, we should have

Figure 57: Effective potential vs. separation. Top: in a classical, Keplerian two-
body system; Bottom: in the relativistic limit.
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Figure 58: Gravitational wave event GW150914, indicating the inspiral and
merger of two black holes.

a hole a few times larger than any black hole’s event horizon.
Note that things get even more exciting once we bring rotation into the

picture. The spin of a black hole has several interesting effects:

• The event horizon changes size and shape

• Orbits have a much more complicated (non-spherical) potential.

• Orbital frequencies become affected by “frame-dragging” as the spin-
ning black hole twists spacetime around itself.

Thanks to the no-hair theorem, it turns out that everything about a black hole
(including the orbits around it) can be described by just three parameters:
mass, angular momentum (spin), and electric charge.

26.5 Gravitational Waves and Black Holes

Black holes must solve the Einstein equations in vacuum, Gµν = 0. This is true
even if two black holes are close together. In this case, they emit gravitational
waves – potentially with a much higher GW luminosity than the neutron star
binaries whose inspiral also indicates GW emission (Sec. 25.6). It wasn’t until
the mid-2000s that computational relativity calculations first predicted what
happens when two black holes orbit each other. The result, later spectacu-
larly verified by gravitational wave measurements (see Fig. 55) includes three
epochs:

1. Inspiral: Long before the merger, the binary is on a nearly-periodic orbit
- but energy is being lost due to GW emission, so the semimajor axis
(and period) steadily shrinks. Motion here is determined by the effective
potential Veff,rel, but with � and � slowly evolving.

2. Plunge and Merger: As the gravitational field grows in strength, even-
tually the orbits become unstable and the binary members rapidly come
together, forming a single object.

3. Ringdown: A few, last oscillations are seen as the merged remnant set-
tles down to the exact Kerr solution for a rotating black hole (enforcing
the no-hair theorem).

196
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This structure matches most of the gravitational wave events found so far
(see e.g. Fig. 47). Only a black hole model, including all the necessary (very!)
strong gravity physics, is able to explain these observations.
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