UNIVERSITY OF KANSAS

Department of Physics and Astronomy
Physical Astronomy (ASTR 391) — Prof. Crossfield — Spring 2020

Problem Set 1

Due: Friday, February 15, 2019, in class
This problem set is worth $\mathbf{5 1}$ points.

1. Astronomical Coordinates [12 pts].

(a) What are the RA and Dec of Polaris? [2 pts]
(b) If you were observing Polaris from Santa's Workshop at the North Pole, what would be the star's approximate elevation angle θ (i.e., the angle one would measure from the horizon directly up to the star)? [3 pts]
(c) If you were observing Polaris from KU (as you can on a clear night), what would be its approximate elevation angle? [3 pts]
(d) The star Gamma Velorum (or $\gamma \mathrm{Vel}$) is an especially large, hot, and massive star called a Wolf-Rayet star. Where would be a good idea to observe this star? Why (or why not) would it be a good idea to observe this star from KU? [4 pts]

2. Astronomical Magnitudes [$\mathbf{9} \mathbf{~ p t s}$].

(a) You observe a star ("Star 2") and find that compared to γ Vel, $m_{\text {Star2 }}-m_{\gamma}$ Vel $=5$ mag. By what factor does γ Vel appear brighter or fainter than Star 2? [3 pts]
(b) Your colleague tells you that Star 2 is roughly $30 \times$ closer than γ Vel. How are the two stars' absolute magnitudes related, and what is the approximate ratio of their luminosities? [6 pts]

3. Astronomical Concepts [13 pts].

(a) In a galaxy far, far away, the gas giant Endor orbits a Sun-like star at a distance of a_{E}. Endor (mass m_{E}) is orbited by a Forest Moon $\left(m_{m}\right)$ with the same separation as found in the Earth-Moon system (a_{D}). What is the ratio of the gravitational forces between Endor and its star (mass m_{*}) and between Endor and its moon? Which Force is stronger? [6 pts]
(b) You have invented a matter-antimatter reactor with 100% efficiency. Congratulations: you're a shoo-in for the Nobel Prize. (a) If you put 0.5 kg of matter (and an equal amount of antimatter) in your reactor, approximately how much energy ($E_{\text {reactor }}$) is released? (b) If the reactor takes 0.5 s to use that fuel, what was its approximate power output in Solar Luminosities $\left(L_{\odot}\right)$? (c) How does $E_{\text {reactor }}$ compare to the total amount of energy used on Earth in a year? [7 pts]
4. The Simplest Star [12 pts.] You are studying a star with mass M_{*} and radius R_{*} has uniform density and is composed entirely of hydrogen atoms (mass m_{H}). (This is a very crude approximation for a star, as we will learn later!)
(a) What is the number density n inside the star? [3 pts]
(b) Assume the hydrogen in the star is an ideal gas, and furthermore that pressure increases linearly from the surface toward the central core, such that $P(r)=P_{c}\left(1-r / R_{*}\right)$. What is the thermal profile of the star, i.e. what is $T(r)$? Write your answer in terms of M_{*}, R_{*}, P_{c}, and r (not n or $P(r)$). [5 pts]
(c) Plot n, P, and T for $0 \leq r \leq 2 R_{*}$. [4 pts]
5. City on a Hill [5 pts.] Calculate an order-of-magnitude estimate of the mass of Mount Oread, in kg and in M_{\oplus} (Earth masses).

