UNIVERSITY OF KANSAS

Department of Physics and Astronomy
Physical Astronomy (ASTR 391) — Prof. Crossfield - Spring 2020

Problem Set 3

Due: Wednesday, February 19, 2019, in class
This problem set is worth 61 points.

As always, be sure to: show your work, circle your final answer, and use the appropriate number of significant figures.

1. A Circumbinary Planet [13 pts]. A star system has two similar stars in an orbit with an apparent semimajor axis of 2 ", and the parallax to the system is 100 mas.
(a) Estimate the semimajor axis of the orbit in au. [4 pts]
(b) If the orbital period of the binary is estimated to be 100 yr , estimate the total mass in the binary and the approximate mass of each component. What kind of stars are these likely to be? [5 pts]
(c) The binary is seen to host a circumbinary planet - i.e., a planet in a wide orbit around the two stars - at a separation from the binary of $20 \prime$ ". Estimate the planet's orbital velocity in SI units. [4 pts]
2. Binaries [$\mathbf{4} \mathbf{~ p t s] . ~ S k e t c h ~ o r ~ p l o t ~ t h e ~ a p p r o x i m a t e ~ d i s t r i b u t i o n ~ o f ~ o r b i t a l ~ p e r i o d s ~ (i n ~ y e a r s) ~ f o r ~ S u n - l i k e ~ s t a r s ~ i n ~}$ binary systems. Indicate the orbital period of the binary described in Question 1. How does it compare to the overall distribution of binaries?
3. Orbital Energy [10 pts]. Assume a planet of mass m is in a circular orbit with semimajor axis a around a star of mass M_{*}.
(a) What is the gravitational potential energy of this two-body binary system? [1 pt]
(b) What is the kinetic energy of the system in terms of the planet's orbital velocity v ? [1 pt]
(c) Describe (or draw a diagram) indicating the direction and magnitude of the astronomically relevant forces acting on the planet. [2 pts]
(d) Using Newton's Second Law, derive an expression for the planet's orbital velocity v^{2} in terms of the other quantities given. [3 pts]
(e) Write an expression for the total energy in the system in terms of m, M_{*}, and a but not v. [3 pts]
4. What is a planet? [$\mathbf{1 0} \mathbf{~ p t s}$] Aside from the general IAU definition of a 'planet,' there are several proposals for more quantitative metrics to distinguish a planet from a pla-NOT (that last one is a joke). One is

$$
\begin{equation*}
\Pi=k_{\Pi} \frac{m}{M_{\oplus}}\left(\frac{M_{*}}{M_{\odot}}\right)^{-5 / 2}\left(\frac{a}{1 \mathrm{au}}\right)^{-9 / 8} \tag{1}
\end{equation*}
$$

where for the Solar System $k_{\Pi} \approx 800$. A second, alternative metric is

$$
\begin{equation*}
\Lambda=k_{\Lambda}\left(\frac{m}{M_{\oplus}}\right)^{2}\left(\frac{a}{1 \mathrm{au}}\right)^{-3 / 2} \tag{2}
\end{equation*}
$$

with $k_{\Lambda} \approx 1.5 \times 10^{5}$. Under either a proposal, an object is considered a planet when the metric (Π or Λ) exceeds unity.
(a) Plot both metrics vs. a for planets with $m=M_{\oplus}$ and $M_{\text {Pluto }}$. Discuss when such objects might be considered truly planets. [5 pts]
(b) Plot both metrics vs. m for planets with $a=1$ au and $a=100 \mathrm{au}$. Discuss. [5 pts]
5. Radiation Units [$6 \mathbf{~ p t s}$]. Define each of the following, and give the SI or 'astronomer's' units they are measured in: energy, luminosity, and flux.
6. Stellar Classification [12 pts]. Plot the following on a Hertzsprung-Russell diagram, with axes of $T_{\text {eff }} / \mathrm{K}$ and L / L_{\odot}.

- The Sun.
- An A0V star with typical $R_{*}=2 R_{\odot}$.
- A red dwarf with typical $R_{*}=0.5 R_{\odot}$.
- The Wolf-Rayet star γ Velorum.
- A red supergiant with $R_{*}=100 R_{\odot}$.
- A white dwarf (dead stellar remnant) roughly the size of the Earth but $10,000 \mathrm{~K}$.

7. Order of Magnitude [6 pts]. In SI units:
(a) Estimate the luminosity of an ice cube.
(b) Estimate the luminosity of your body.
(c) Estimate the luminosity of the Earth.
