UNIVERSITY OF KANSAS

Department of Physics and Astronomy Physical Astronomy (ASTR 391) — Prof. Crossfield — Spring 2020

Problem Set 4

Due: Wed, May 11, 2019, in class This problem set is worth **63 points**.

As always, be sure to: show your work, circle your final answer, and use the appropriate number of significant figures.

- 1. Taking the Temperature of a Planet [14 pts]. Consider an arbitrary exoplanet with as-yet unspecified parameters. Its host star has luminosity L_* , temperature T_* , and radius R_* , while the planet has radius R_P , temperature T_P , and it's on a nearly-circular orbit with semimajor axis a.
 - (a) What is the luminosity of the *planet* (not the star), in terms of the given quantities? [2 pts]
 - (b) What is the flux of the star at the planet's orbit, in terms of L_* and other relevant quantities? [2 pts]
 - (c) What fraction of the star's emitted energy hits the planet and is absorbed by it? (Assume the planet has zero albedo, so all light hitting it is absorbed). [3 pts]
 - (d) [4 pts] Show that by equating the planet's thermal emission (luminosity) and the stellar energy it absorbs, the approximate temperature of the planet is

$$T_P = \left(\frac{R_*}{a}\right)^{1/2} T_*.$$
(1)

- (e) If the star is our Sun, estimate the planetary temperature this relation gives for Venus, Earth, and Mars. [3 pts]
- 2. Observing a Star [13 pts]. As you see on your OoMA sheet, a star with $m_V = 0$ mag has a flux density (measured in photons/s, not J/s) of around 10^8 photons/s/m²/nm at visible wavelengths.
 - (a) What is the energy of a V-band photon, in Joules? [2 pts]
 - (b) Use your answer in part (a) to estimate the flux density F_{λ} of such a star in W/m²/nm. [3 pts]
 - (c) If the V photometric band spans roughly from 500–600 nm, use your answer for F_{λ} to estimate the visiblewavelength flux F from the star. How does this compare to the "solar constant" flux of ~1400 W m⁻²? [4 pts]
 - (d) If a second, fainter star with $m_V = 5$ were observed, by what factor would it be fainter than the first star? What would be its flux density (in photons/s/m²/nm)? [4 pts]

3. How Do You Say "Absorption" in Astrophysics? [12 pts]

- (a) Define α_{λ} , extinction coefficient (in words, not just an equation!), and give its typical units. [3 pts]
- (b) Define σ_{λ} , cross-section (in words, not just an equation!), and give its typical units. [3 pts]
- (c) Define κ_{λ} , opacity (in words, not just an equation!), and give its typical units. [3 pts]
- (d) Define τ_{λ} , the optical depth (in words, not just an equation!), and give its typical units. [3 pts]
- 4. A Hazy Morning [11 pts] On a given day the weather report mentions that visibility is about one km. Take that as the distance at which $\tau_{\lambda} \approx 1$:
 - (a) Estimate the atmosphere's extinction coefficient α_{λ} that morning. [3 pts]
 - (b) If the visibility is mainly limited by smoke from nearby fires, estimate the effective cross-section σ_{λ} of the smoke particles and the number density *n* of these particles in the atmosphere. [4 pts]
 - (c) Given the typical density ρ of air at sea level, estimate the opacity κ_{λ} of the smoky air. [4 pts]

5. Basic Radiative Transfer [13 pts]

- (a) How does the specific intensity (I_{λ}) of light change as the light passes through empty space? [3 pts]
- (b) How does I_{λ} change as light passes through an absorbing medium (e.g., dust, fog, etc.)? Assume the medium emits no light of its own. [3 pts]
- (c) How does I_{λ} change as light passes through a hot, incandescent medium? Assume the medium absorbs none of the light passing through it. [3 pts]
- (d) How does I_{λ} change as light passes through material that is hot & incandescent, but that also absorbs some of the light passing through it? [4 pts]