UNIVERSITY OF KANSAS

Department of Physics and Astronomy
Physical Astronomy (ASTR 391) — Prof. Crossfield — Spring 2020

Problem Set 4

Due: Wed, May 11, 2019, in class
This problem set is worth $\mathbf{6 3}$ points.

As always, be sure to: show your work, circle your final answer, and use the appropriate number of significant figures.

1. Taking the Temperature of a Planet [$\mathbf{1 4} \mathbf{p t s}$]. Consider an arbitrary exoplanet with as-yet unspecified parameters. Its host star has luminosity L_{*}, temperature T_{*}, and radius R_{*}, while the planet has radius R_{P}, temperature T_{P}, and it's on a nearly-circular orbit with semimajor axis a.
(a) What is the luminosity of the planet (not the star), in terms of the given quantities? [2 pts]
(b) What is the flux of the star at the planet's orbit, in terms of L_{*} and other relevant quantities? [2 pts]
(c) What fraction of the star's emitted energy hits the planet and is absorbed by it? (Assume the planet has zero albedo, so all light hitting it is absorbed). [3 pts]
(d) [4 pts] Show that by equating the planet's thermal emission (luminosity) and the stellar energy it absorbs, the approximate temperature of the planet is

$$
\begin{equation*}
T_{P}=\left(\frac{R_{*}}{a}\right)^{1 / 2} T_{*} \tag{1}
\end{equation*}
$$

(e) If the star is our Sun, estimate the planetary temperature this relation gives for Venus, Earth, and Mars. [3 pts]
2. Observing a Star [13 pts]. As you see on your OoMA sheet, a star with $m_{V}=0$ mag has a flux density (measured in photons $/ \mathrm{s}$, not J / s) of around 10^{8} photons $/ \mathrm{s} / \mathrm{m}^{2} / \mathrm{nm}$ at visible wavelengths.
(a) What is the energy of a V-band photon, in Joules? [2 pts]
(b) Use your answer in part (a) to estimate the flux density F_{λ} of such a star in $\mathrm{W} / \mathrm{m}^{2} / \mathrm{nm}$. [3 pts]
(c) If the V photometric band spans roughly from $500-600 \mathrm{~nm}$, use your answer for F_{λ} to estimate the visiblewavelength flux F from the star. How does this compare to the "solar constant" flux of $\sim 1400 \mathrm{~W} \mathrm{~m}{ }^{-2}$? [4 pts]
(d) If a second, fainter star with $m_{V}=5$ were observed, by what factor would it be fainter than the first star? What would be its flux density (in photons $/ \mathrm{s} / \mathrm{m}^{2} / \mathrm{nm}$)? [4 pts]

3. How Do You Say "Absorption" in Astrophysics? [12 pts]

(a) Define α_{λ}, extinction coefficient (in words, not just an equation!), and give its typical units. [3 pts]
(b) Define σ_{λ}, cross-section (in words, not just an equation!), and give its typical units. [3 pts]
(c) Define κ_{λ}, opacity (in words, not just an equation!), and give its typical units. [3 pts]
(d) Define τ_{λ}, the optical depth (in words, not just an equation!), and give its typical units. [3 pts]
4. A Hazy Morning [11 pts] On a given day the weather report mentions that visibility is about one km. Take that as the distance at which $\tau_{\lambda} \approx 1$:
(a) Estimate the atmosphere's extinction coefficient α_{λ} that morning. [3 pts]
(b) If the visibility is mainly limited by smoke from nearby fires, estimate the effective cross-section σ_{λ} of the smoke particles and the number density n of these particles in the atmosphere. [4 pts]
(c) Given the typical density ρ of air at sea level, estimate the opacity κ_{λ} of the smoky air. [4 pts]

5. Basic Radiative Transfer [13 pts]

(a) How does the specific intensity $\left(I_{\lambda}\right)$ of light change as the light passes through empty space? [3 pts]
(b) How does I_{λ} change as light passes through an absorbing medium (e.g., dust, fog, etc.)? Assume the medium emits no light of its own. [3 pts]
(c) How does I_{λ} change as light passes through a hot, incandescent medium? Assume the medium absorbs none of the light passing through it. [3 pts]
(d) How does I_{λ} change as light passes through material that is hot \& incandescent, but that also absorbs some of the light passing through it? [4 pts]

