UNIVERSITY OF KANSAS

Department of Physics and Astronomy

Physical Astronomy (ASTR 391) — Prof. Crossfield — Spring 2020

Problem Set 5 - REVISED

Due: Monday, March 30, 2020, in class
This problem set is worth $\mathbf{2 3}$ points.

As always, be sure to: show your work, circle your final answer, and use the appropriate number of significant figures. Also, please submit your PSet as a single PDF file (not individual scanned images, which are tougher to keep track of), and include your name in the PDF's filename.

Journey to the Center of a Star

For almost all of this problem you won't be calculating specific numerical values: anyone can plug in numbers, after all. So unless specified otherwise, your answers should all be symbolic (algebraic).

1. [5 pts] In lecture we discussed at some length how we can model the physical conditions in a star's interior. Assume the star has a slightly more realistic density profile of

$$
\begin{equation*}
\rho(r)=\rho_{c}\left(\left(r / R_{*}\right)^{2}-2 r / R_{*}+1\right)=\rho_{c}\left(\frac{r}{R_{*}}-1\right)^{2} \tag{1}
\end{equation*}
$$

Plot $\rho(r)$ over the full range from $r=0$ to $r=2 R_{*}$. Discuss why this density profile might be slightly more reaslistic than the constant-density model we assumed in class.
2. [5 pts] Show that the expression for the Enclosed Mass $M_{e n c}(r)$ at an arbitrary radius r within this star is

$$
\begin{equation*}
4 \pi \rho_{c} r^{3}\left(\frac{r^{2}}{5 R_{*}^{2}}-\frac{r}{2 R_{*}}+\frac{1}{3}\right) \tag{2}
\end{equation*}
$$

3. [5 pts] Calculate an expression for the gravitational acceleration $g(r)$ inside the star, using the expression above for $M_{e n c}(r)$.
4. [3 pts] Starting with the equation of hydrostatic equilibrium ($d P / d r=-\rho(r) g(r)$), we could continue in this vein and calculate the internal pressure and temperature of the star - but things would quickly get really messy.
Instead, we can make a rough approximation to get a sense of the conditions inside the star, by assuming that $d P / d R \approx P_{c} / R_{*}$ (i.e., the pressure at the center of the star divided by the star's radius), and further assuming density and gravity are constant: $\rho(r)=\rho_{\text {avg }}$ and $g(r)=g_{\text {surface }}$.
Under these simplifying assumptions, the pressure at the center of the star is just $P_{c} \approx \rho_{\text {avg }} g_{\text {surf }} R_{*}$. Calculate a numerical value of P_{c} (in SI units) for the Sun, and for a red dwarf with $M_{*} / M_{\odot}=R_{*} / R_{\odot}=0.3$. How do these compare to the atmospheric pressure here on Earth?
5. [5 pts] Assume that our star is an ideal gas made entirely of hydrogen atoms. In this case, derive a symbolic expression for the temperature T_{c} at the center of a star.
Then, calculate a numerical value for the central temperature of both the Sun and the M dwarf described above. How do these compare to the surface temperatures of these stars?
