7 BINARY SYSTEMS

Having dealt with the two-body problem, we’ll leave the three-body problem
to science fiction authors? and begin an in-depth study of stars. Our foray into
Kepler’s laws and two-body systems was appropriate, because about 50% of
all stars are in binary (or higher-multiplicity) systems. With our fundamental
dynamical model, plus data, we get a lot of stellar information from binary
stars — that is, stars in two-star systems.

Note that there are increasing levels of stellar multiplicity: systems of three,
four, or even more stars all orbiting each other in a complicated dance. These
higher-order multiples are less common than binaries, and they are often ar-
ranged heirarchically: that is, a triple system will typically involve two stars
closely-orbiting each other with the third at a much wider separation. The
nearby a Centauri triple system (our closest stellar neighbors) is such a heirar-
chical multiple: the more massive stars « Cen A and a Cen B orbit each other
with a = 23 au, while the smaller, cooler, lower-mass Proxima Centauri (the
closest star to the Sun) orbits A & B at roughly a ~ 8000 au.

Stars in binaries are best characterized by mass M, radius R, and luminos-
ity L. Note that an effective temperature T is often used in place of L (see
Eq. 13). An alternative set of parameters from the perspective of stellar evo-
lution would be M; heavy-element enhancement metallicity [Fe/H], reported
logarithmically; and age.

7.1 Empirical Facts about binaries

The distribution of stellar systems between singles, binaries, and higher-order
multiples is roughly 55%, 35%, and 10% (for details see Raghavan et al. 2010%)
— so the average number of stars per system is something like 1.6.

Orbital periods range from < lday to ~ 10 days (~ 3 x 10° yr). Any
longer, and Galactic tides will disrupt the stable orbit (the Sun takes ~ 200 Myr
to orbit the Milky Way). The periods of binary stars have a log-normal distri-
bution — that is, the distribution is roughly Gaussian in log(P). For Sun-like
stars, binaries are most common with log,,(P/d) = 4.8 with a width of 2.3 dex
(Duquennoy & Mayor 19925) — that is, the most common orbital periods are
roughly 10+8+23 4.

There’s also a wide range of eccentricities, from nearly circular to highly
elliptical. For short periods, we see e ~ 0. This is due to tidal circularization:
the stretching and squeezing of a 3D (non-pointlike) body by a companion’s
gravity ‘steals” energy from the orbit, causing eccentric orbits to eventually
circularize. Stars and planets aren’t point-masses and aren’t perfect spheres;
tides represent the differential gradient of gravity across a physical object, and
they bleed off orbital energy while conserving angular momentum. It turns
out that this means e decreases as a consequence, as explained by the energy
diagram analysis presented in Sec. 6.4.

3See: https://en.wikipedia.org/wiki/The_Three-Body_Problem_(novel) .
4https://ui.adsabs.harvard.edu/abs/2010ApJS..190....1R/
Shttps://ui.adsabs.harvard.edu/abs/1991A%26A. ..248..485D/
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7.2 Parameterization of Binary Orbits

As discussed before in Sec. 6.2, two bodies orbiting in 3D requires 12 param-
eters, three for each body’s position and velocity. Three of these map to the
3D position of the center of mass — we get these if we measure the binary’s
position on the sky and the distance to it. Three more map to the 3D velocity
of the center of mass — we get these if we can track the motion of the binary
through the Galaxy.

So we can translate any binary’s motion into its center-of-mass rest frame,
and we're left with six numbers describing orbits (see Fig. 9):

¢ P — the orbital period

* 4 - semimajor axis

* ¢ — orbital eccentricity

¢ | - orbital inclination relative to the plane of the sky
e () — the longitude of the ascending node

¢ w — the argument of pericenter

The period gives the relevant timescale; the next two parameters give us
the shape of the ellipse; the last three describe the ellipse’s orientation (three
angles for 3D space, as you may have seen in classical mechanics).

7.3 Binary Observations

The best way to measure L comes from basic telescopic observations of the
apparent bolometric flux F (i.e., integrated over all wavelengths). Then we
have

L
(55) F= "3
where ideally d is known from parallax.

But the most precise way to measure M and R almost always involve stel-
lar binaries (though asteroseismology can do very well, too). But if we can
observe enough parameters to reveal the Keplerian orbit, we can get masses
(and separation); if the stars also undergo eclipses, we also get sizes.

In general, how does this work? We have two stars with masses m; > mjy
orbiting their common center of mass on elliptical orbits. Kepler’s third law
says that

2
o) M = (%”)

so if we can measure P and a we can get M. For any type of binary, we usually
want P < 10* days if we're going to track the orbit in one astronomer’s career.

If the binary is nearby and we can directly see the elliptical motion of at
least one component, then we have an astrometric binary. If we know the
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Figure 8: Geometry of an orbit. The observer is looking down along the z axis,
so x and y point in the plane of the sky.

distance d, we can then directly determine a as well (or both 4; and a; if
we see both components). The first known astrometric binary was the bright,
northern star Sirius — from its motion on the sky, astronomers first identified
its tiny, faint, but massive white dwarf companion, Sirius b.

More often, two objects in a binary are so close that we can’t separate the
light well enough to see their astrometric motion. In these cases, we obtain
spectra of the stars that let us measure the stars’ Doppler shifts, and so mea-
sure the velocity of one or both stars. If we can only measure the periodic
velocity shifts of one star (e.g. the other is too faint), then the spectroscopic
binary is an “SB1”. If we can measure the Doppler shifts of both stars, then
we have an “SB2”: we get the individual semimajor axes a7 and ay of both
components, and we can get the individual masses from mya; = mpa;.

If we have an SB1, we measure the radial velocity of the visible star. As-
suming a circular orbit,

(57) o _27mlsinlcos %
57 rl — P P

where P and v, are the observed quantities. What good is a5 sin I? We know
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that a1 = (my/M)a, so from Kepler’s Third Law we see that

27\?  Gmd
(58) o =3 >
P ay M?

Combining Egs. 57 and 58, and throwing in an extra factor of sin® I to each
side, we find

1/2n\* 5 .5 1 o

- = I — rl
69 & ( P ) % SIS = G 2n /D)
mgsin3l

(60) = M2

where this last term is the spectroscopic “mass function” — a single number

built from observables that constrains the masses involved.
mg sin® [
(my 4 myp)?

(61) fm =

In the limit that m; << m; (e.g. a low-mass star or planet orbiting a more
massive star), then we have

(62) fm ~=my sin® I < my

Another way of writing this out in terms of the observed radial velocity semi-
amplitude K (see Lovis & Fischer 2010) is:

63 K= 284ms ! mysinl <m1+m2)2/3( P )1/3

(1—e2)1/2 My, Mo 1yr

Fig. 9 shows the situation if the stars are eclipsing. In this example one star

Figure 9: Geometry of an eclipse (top), and the observed light curve (bottom).

is substantially larger than the other; as the sizes become roughly equal (or as
the impact parameter b reaches the edge of the eclipsed star), the transit looks
less flat-bottomed and more and more V-shaped.
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If the orbits are roughly circular then the duration of the eclipse (T14) re-
lates directly to the system geometry:

2R1y/1— (b/Ry)2

T4 ~
(64) Tia -

while the fractional change in flux when one star blocks the other just scales
as the fractional area, (Ro/R1)?.

There are a lot of details to be modeled here: the proper shape of the light
curve, a way to fit for the orbit’s eccentricity and orientation, also including
the flux contribution during eclipse from the secondary star. Many of these de-
tails are simplified when considering extrasolar planets that transit their host
stars: most of these have roughly circular orbits, and the planets contribute
negligible flux relative to the host star.

Eclipses and spectroscopy together are very powerful: visible eclipses typ-
ically mean I ~ 907, so the sin I degeneracy in the mass function drops out
and gives us an absolute mass. Less common is astrometry and spectroscopy
— the former also determines I; this is likely to become much more common
in the final Gaia data release (DRy, est. 2022).
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