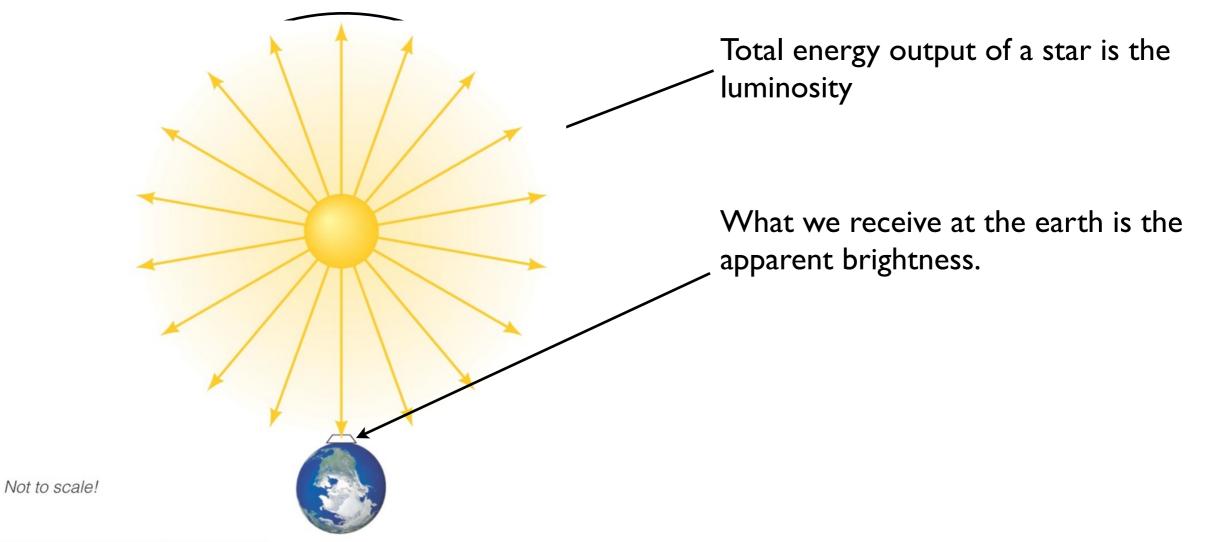
Intensity vs. luminosity

- flux(f) how bright an object appears to us. Units of [energy/t/area].
 The amount of energy hitting a unit area.
- luminosity (L) the total amount of energy leaving an object. Units of [energy/time]



What we will cover today

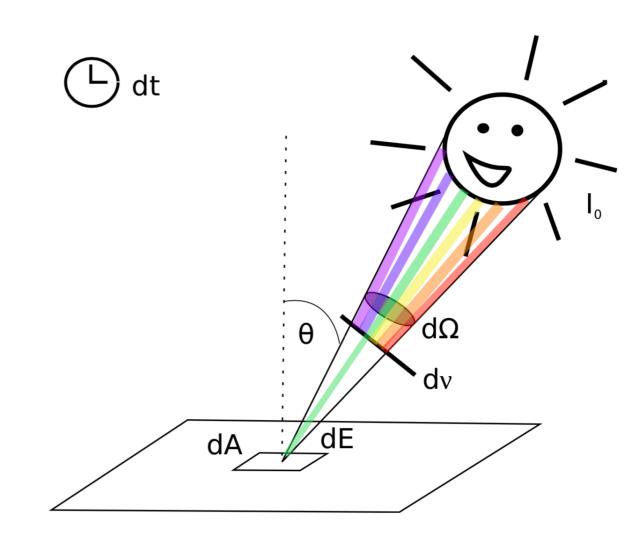
- The brightness of objects
 - Intensity
 - Flux
 - Luminosity
 - How they all relate
- The relation between flux, luminosity and distance
- The total emission of a blackbody
- The spectrum of a blackbody

Different ways to measure light coming from an object

- What are the different parameters that we have to consider in the diagram below?
- Need to consider the amount of light that leaves the object with a frequency between vand v+dv as $l_{0,v}$
- From an observer with area dA we see light coming from direction θ away from the normal to dA.
- The source covers a solid angle dΩ and has The light is measured in a given time interval dt
- The total energy received is

$$dE_{\nu} = I_{0,\nu} \cos \theta \ dA \ d\Omega \ d\nu \ dt$$

specific
intensity

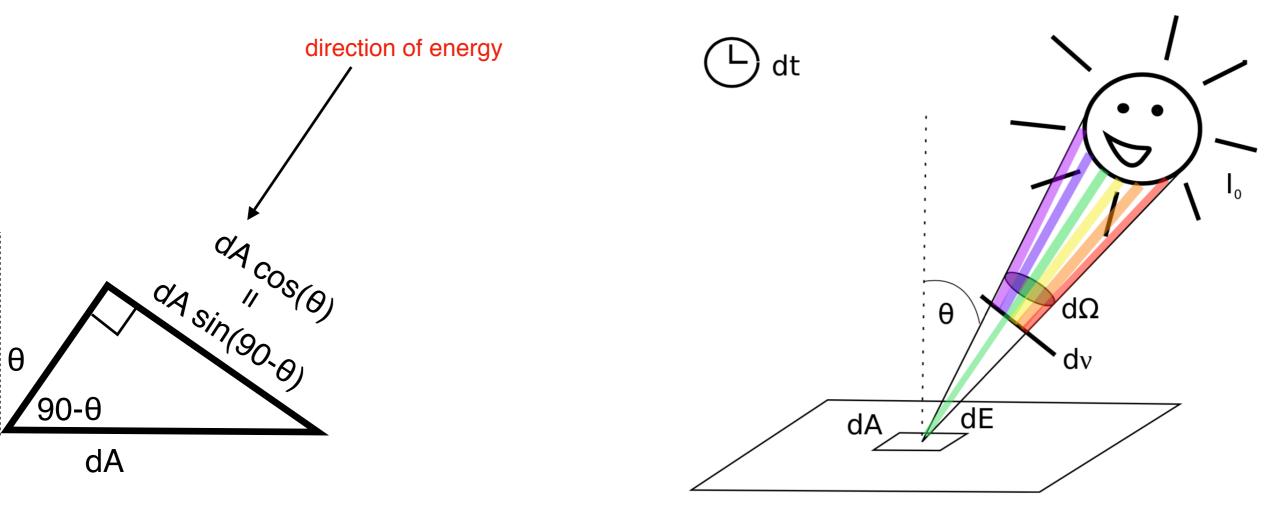


Intensity

• The total energy received from an angular area of the object

intensity = $dE_{\nu} = I_{0,\nu} \cos \theta \, dA \, d\Omega \, d\nu \, dt$ The units of this are [] s⁻¹ Hz⁻¹ m⁻² sr⁻¹]

- What is " $\cos \theta \, dA$ " term for?
- Energy received is perpendicular to incident direction



Flux density and bolometric flux

• The total energy received from an angular area of the object

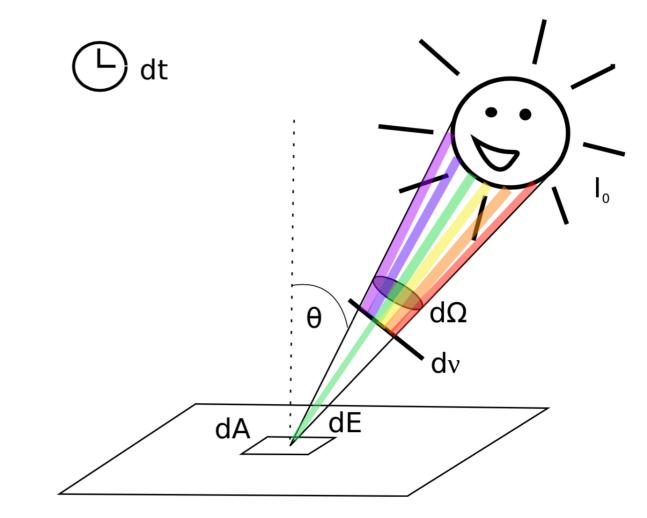
intensity = $dE_{\nu} = I_{0,\nu} \cos \theta \, dA \, d\Omega \, d\nu \, dt$ The units of this are [] s⁻¹ Hz⁻¹ m⁻² sr⁻¹]

• Flux density is the total energy integrated over the solid angle of a source, per unit area, per unit time, per unit frequency

$$F_{\nu} = \int_{\Omega} \frac{dE_{\nu}}{dA \ dt \ d\nu} = \int_{\Omega} I_{\nu} \cos \theta \ d\Omega$$

- What are the units of F_{ν} ?
- [J s⁻¹ Hz⁻¹ m⁻²]
- **Bolometric flux** is the flux over all frequencies

$$F = \int_{\nu} F_{\nu} d\nu \text{ with units [] s-1 m-2]}$$



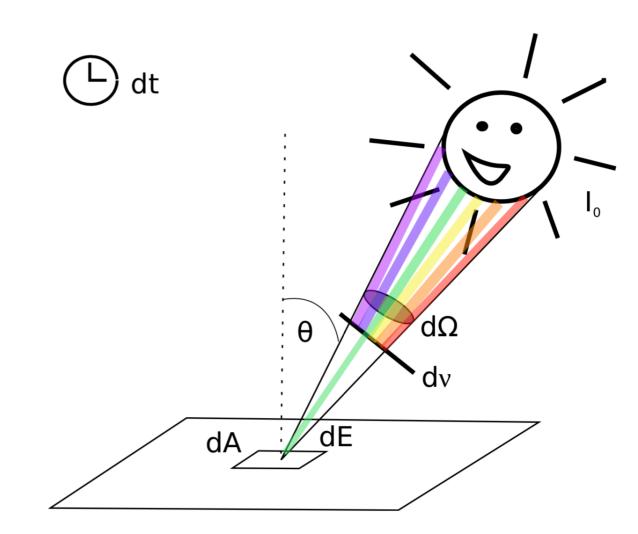
Flux vs luminosity

• **Bolometric flux** is the flux over all frequencies

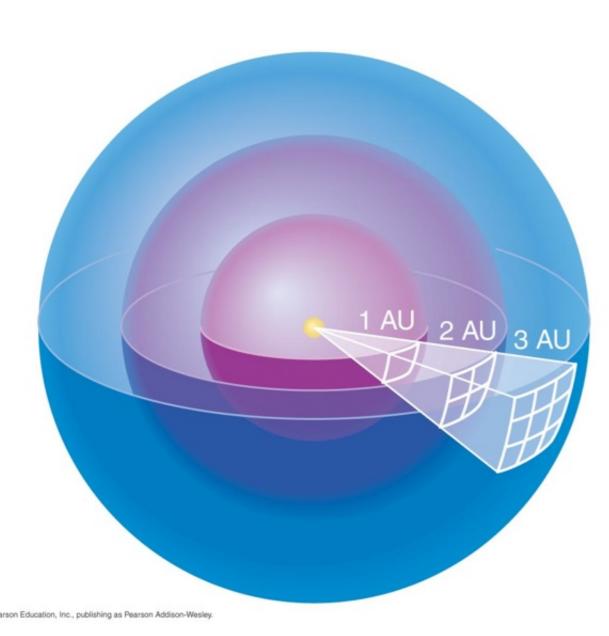
$$F = \int_{\nu} F_{\nu} d\nu \text{ with units [J s-1 m-2]}$$

• Luminosity is the flux integrated over all areas

$$L = \int F \, dA \text{ and has units of } [J \text{ s}^{-1}]$$



The dependence of apparent brightness on distance: The inverse square law



$$L = \int F \, dA$$

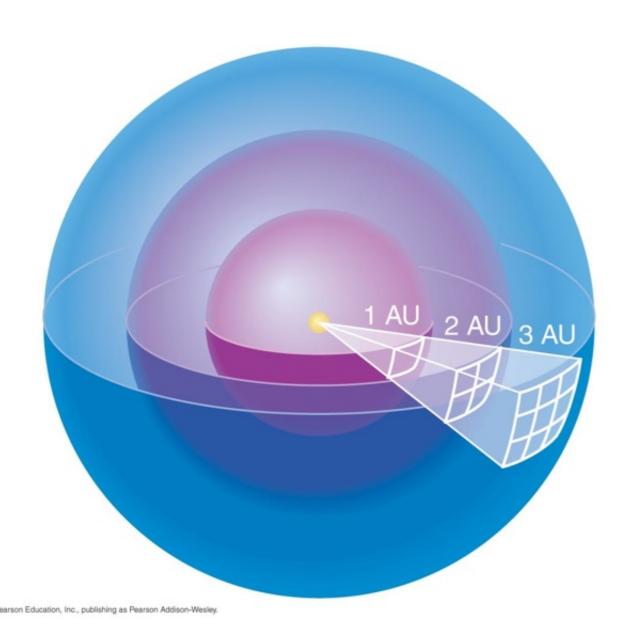
If we consider that luminosity collects all the light over a sphere, we can relate the flux to luminosity using geometry

The **total** amount of light coming out of an object does not change with distance.

The amount hitting a fixed area (like your camera lens or eye) decreases with distance.

$$F = \frac{L}{4\pi d^2} \implies L = 4\pi d^2 F$$

The dependence of apparent brightness on distance: The inverse square law



$$F = \frac{L}{4\pi d^2} \implies L = 4\pi d^2 F$$

If a source has a luminosity of $1L_{\odot}$ =3.826×10²⁶ W and is at a distance of 3 Ly, what is the flux?

$$3 \text{ Ly} = 2.83 \times 10^{16} \text{ m}$$

$$F = \frac{3.826 \times 10^{26} \text{ W}}{4\pi (2.83 \times 10^{16} \text{ m})^2} = 3.78 \times 10^{-8} \text{W m}^{-2}$$

The sun at 3 Ly is very faint!

1 Ly = 9.461x10¹⁵m

The simplest kind of emitting object

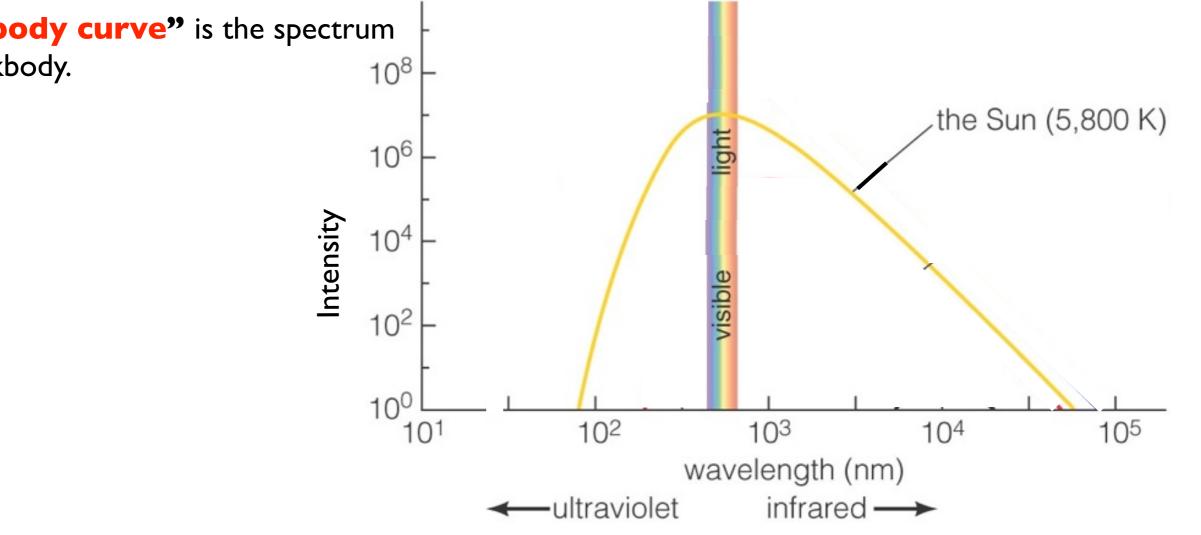
"spectrum" is a graph of an objects intensity as a function of wavelength.

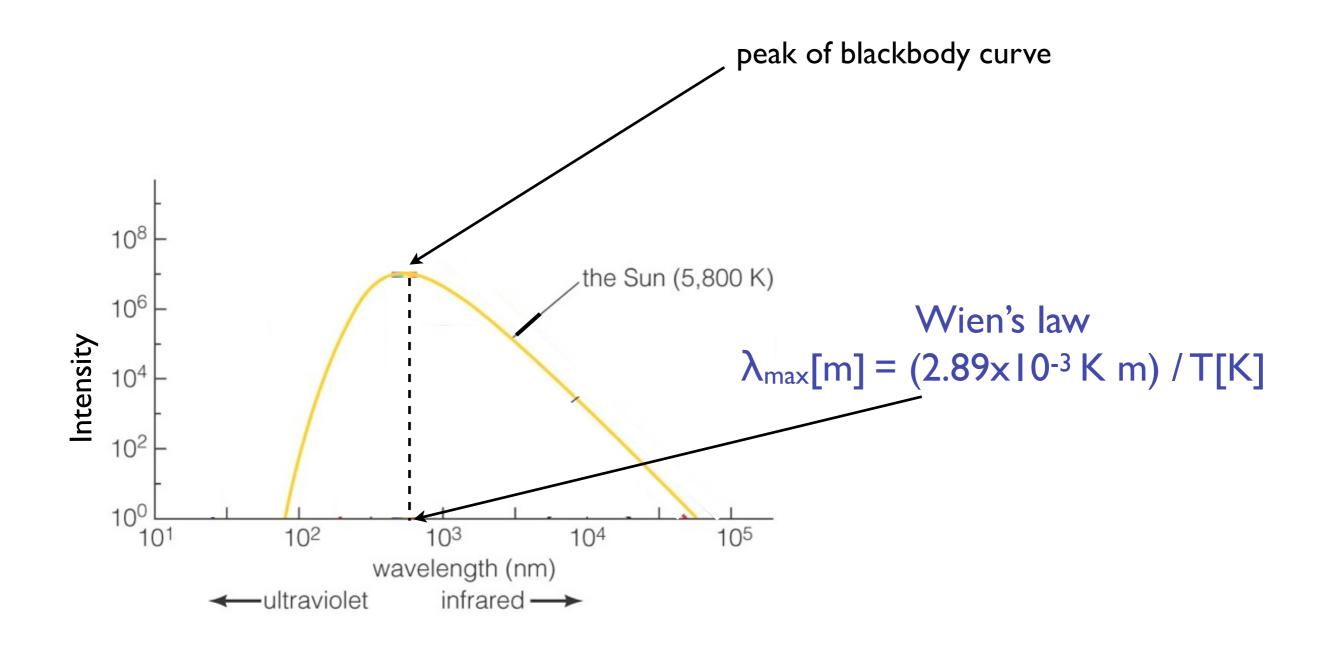
"Blackbody" is an object that is dense, absorbs all light that hits it, and remits that light with a spectrum that depends on the objects temperature.

"Blackbody curve" is the spectrum of a blackbody.

$$B_{\lambda}(T) = \frac{2hc^2}{\lambda^5} \frac{1}{e^{\frac{hc}{\lambda k_B T}} - 1}$$

 B_{λ} has units W m⁻² Hz⁻¹ sr⁻¹ or energy emitted per time per unit surface area per solid angle.





The **WAVELENGTH** that the **PEAK** of the blackbody curve occurs at tells us about the object's **TEMPERATURE** and **COLOR**.

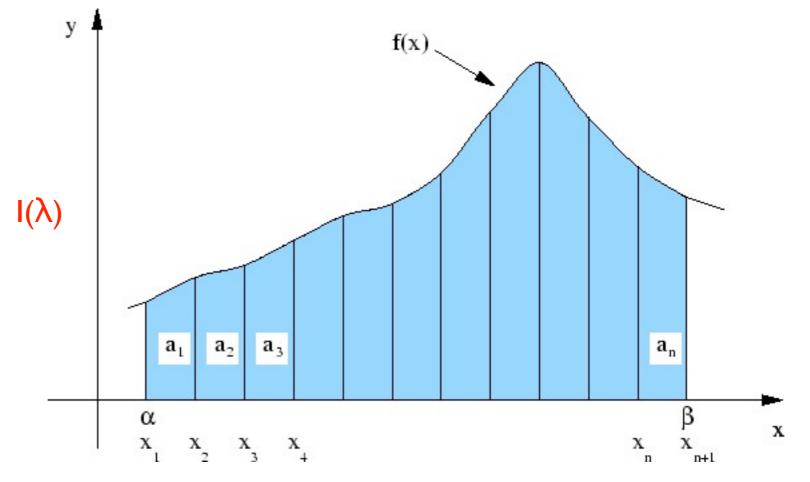
The curve behaves differently on both sides of this peak

Integrating a curve

The total intensity is given by

Integrating a curve gives you the area under the curve.

The integral of a spectrum gives you the total intensity of an object over the wavelength range of the integral.



λ

$$f_{tot} = \int_{\lambda_1}^{\lambda_2} f_{\lambda}(\lambda) d\lambda$$

Stefan-Boltzmann Law

- Describes the total amount of energy emitted by a patch of surface on a blackbody.
- $F = (5.67 \times 10^{-8} \text{ J/s/m}^2/\text{K}^4) \text{ T}^4$
- If object A has T_A =100K and object B has T_B =200K, how much more energy per m² does object B emit?
- Object B emits 16 times more energy than object A
- Luminosity is how much total energy an object emits.
- The Luminosity (L) depends on an object's surface area (A) and temperature (T).
- •L=(5.67×10⁻⁸ J/s/m²/K⁴)(A)(T⁴)
- For a spherical object with radius R
- •L=(5.67×10⁻⁸ J/s/m²/K⁴)(4 π R²)(T⁴)
- •So, BIGGER and hotter objects are brighter than smaller and cooler objects.

The Stefan-Boltzmann law

•what is the relative luminosity of the objects A and B if: $T_A = 100K$ $T_B = 200K$ $R_A = 10m$ $R_B = 5m$

$$\frac{L_A}{L_B} = \frac{T_A^4 R_A^2}{T_B^4 R_B^2} = \frac{(100 \text{ K})^4 (10 \text{ m})^2}{(200 \text{ K})^4 (5 \text{ m})^2} = \frac{10^{10} \text{K}^4 \text{ m}^2}{4 \times 10^{10} \text{K}^4 \text{ m}^2}$$

The Stefan-Boltzmann law

• $L_A = L_B = 10^4 \text{ J/s}$; $R_A = 10^4 \text{ m}$; $R_B = 10^5 \text{ m}$. Which star has the greater temperature?

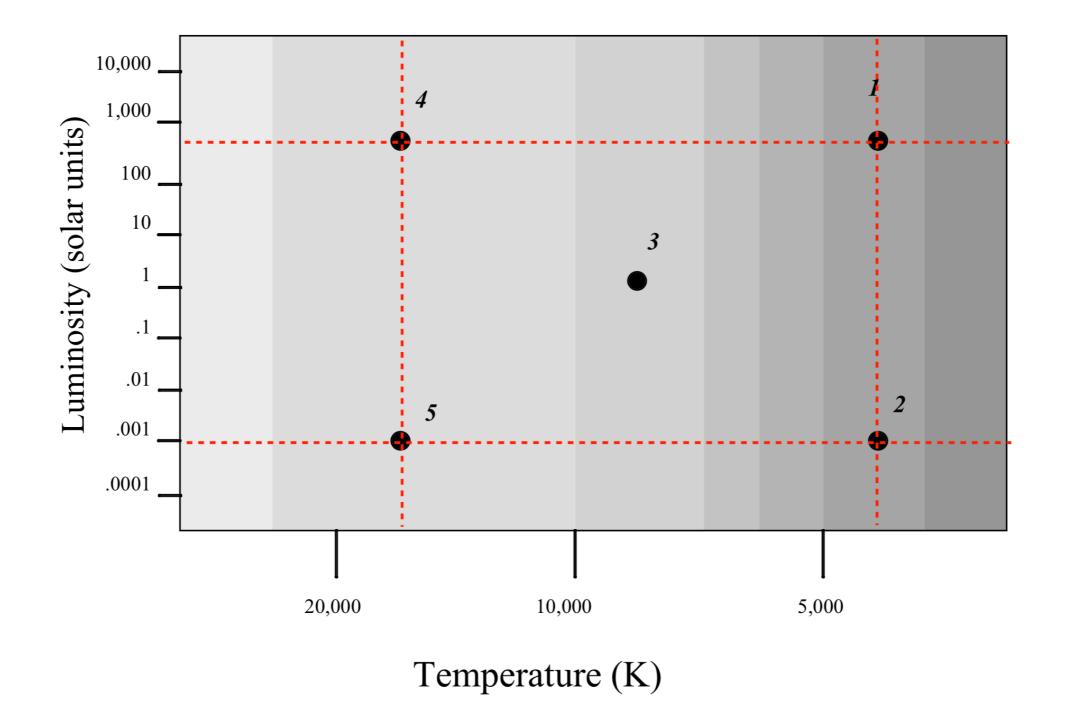
$L_{A} = 10^{4} \text{ J/s}$	$L_{\rm B} = 10^4 {\rm J/s}$
$R_A = 10^4 m$	$R_{B} = 10^{5}m$

$$T = \left(\frac{L}{R^2}\right)^{1/4} \implies \frac{T_A}{T_B} = \left(\frac{L_A}{R_A^2}\frac{R_B^2}{L_B}\right)^{1/4}$$
$$\frac{T_A}{T_B} = \left(\frac{10^4 \text{ J s}^{-1}}{(10^4 \text{ m})^2}\frac{(10^5 \text{ m})^2}{10^4 \text{ J s}^{-1}}\right)^{1/4} = \left(\frac{10^{10} \text{ m}^2}{10^8 \text{ m}^2}\right)^{1/4} = 100^{1/4}$$

A must be hotter because it has the same luminosity at a smaller radius

Which star is the largest?

Which star is the smallest?



$$\begin{split} B_{\lambda}(T) &= \frac{2hc^2}{\lambda^5} \frac{1}{e^{\frac{hc}{\lambda k_B T}} - 1} \\ \log B_{\lambda}(T) &= \log \left(\frac{2hc^2}{\lambda^5}\right) + \log \left(e^{\frac{hc}{\lambda k_B T}} - 1\right)^{-1} \\ &= \log 2hc^2 - 5 \log \lambda - \log \left(e^{\frac{hc}{\lambda k_B T}} - 1\right) \end{split}$$

This function behaves differently in different regimes.

For a fixed T:

- if λ>>λ_{max} then middle term gets rapidly smaller while last term only slowly grows. So log B_λ α -5 log λ, or a straight line in log space
- If $\lambda <<\lambda_{max}$ then **last term** dives to exponentially fast while the first term only slowly rises. So **log B**_{λ} has an exponential cutoff.

When you see a function, think about its behavior!

