
14 Timescales in Stellar Interiors

Having dealt with the stellar photosphere and the radiation transport so rel-
evant to our observations of this region, we’re now ready to journey deeper
into the inner layers of our stellar onion. Fundamentally, the aim we will de-
velop in the coming chapters is to develop a connection between M, R, L, and
T in stars (see Table 14 for some relevant scales).

More specifically, our goal will be to develop equilibrium models that
describe stellar structure: P(r), ρ(r), and T(r). We will have to model grav-
ity, pressure balance, energy transport, and energy generation to get every-
thing right. We will follow a fairly simple path, assuming spherical symmetric
throughout and ignoring effects due to rotation, magnetic fields, etc.

Before laying out the equations, let’s first think about some key timescales.
By quantifying these timescales and assuming stars are in at least short-term
equilibrium, we will be better-equipped to understand the relevant processes
and to identify just what stellar equilibrium means.

14.1 Photon collisions with matter

This sets the timescale for radiation and matter to reach equilibrium. It de-
pends on the mean free path of photons through the gas,

(227) � =
1

nσ

So by dimensional analysis,

(228) τγ ≈ �

c

If we use numbers roughly appropriate for the average Sun (assuming full

Table 3: Relevant stellar quantities.
Quantity Value in Sun Range in other stars
M 2 × 1033 g 0.08 � (M/M�) � 100
R 7 × 1010 cm 0.08 � (R/R�) � 1000
L 4 × 1033 erg s−1 10−3 � (L/L�) � 106

Teff 5777 K 3000 K � (Teff/mathrmK) � 50,000 K
ρc 150 g cm−3 10 � (ρc/g cm−3) � 1000
Tc 1.5 × 107 K 106 � (Tc/K) � 108
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14. Timescales in Stellar Interiors
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Figure 28: The state of hydrostatic equilibrium in an object like a star occurs
when the inward force of gravity is balanced by an outward pressure gradient.
This figure illustrates that balance for a packet of gas inside of a star

ionization, and thus Thomson scattering), we have

� =
1

nσ

(229)

=
mp

ρσT

(230)

=
1.7 × 10−24 g

(1.4 g cm−3)(2/3 × 10−24 cm−2)

(231)

≈ 2 cm
(232)

So the matter-radiation equilibration timescale is roughly τγ ≈ 10−10 s. Pretty
fast!

14.2 Gravity and the free-fall timescale

For stars like the sun not to be either collapsing inward due to gravity or
expanding outward due to their gas pressure, these two forces must be in
balance. This condition is known as hydrostatic equilibrium. This balance is
illustrated in Figure 28

As we will see, gravity sets the timescale for fluid to come into mechanical
equilibrium. When we consider the balance between pressure and gravity on a
small bit of the stellar atmosphere with volume V = Adr (sketched in Fig. 28),
we see that in equilibrium the vertical forces must cancel.

The small volume element has mass dm and so will feel a gravitational
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14.2. Gravity and the free-fall timescale

force equal to

(233) Fg =
GMr dm

r2

where Mr is the mass of the star enclosed within a radius r,

(234) M(r) ≡ 4π

r�=r�

r�=0

ρ(r�)r�2dr�

Assuming the volume element has a thickness dr and area dA, and the
star has a uniform density ρ, then we can replace dm with ρdrdA. This volume
element will also feel a mean pressure which we can define as dP, where the
pressure on the outward facing surface of this element is P and the pressure
on the inward facing surface of this element is P + dP. The net pressure force
is then dPdA, so

FP(r) = Fg(r)
(235)

A (P(r)− P(r + dr)) = −ρVg
(236)

= ρAdrg
(237)

(238)

which yields the classic expression for hydrostatic equilibrium,

(239)
dP
dr

= ρ(r)g(r)

where

(240) g ≡ −GM(r)
r2

and M(r) is defined as above.
When applying Eq. 239 to stellar interiors, it’s common to recast it as

(241)
dP
dr

= −GM(r)ρ(r)
r2

In Eqs. 239 and 241 the left hand side is the pressure gradient across our
volume element, and the right hand side is the gravitational force averaged
over that same volume element. So it’s not that pressure balances gravity in a
star, but rather gravity is balanced by the gradient of increasing pressure from
the center to the surface.

The gradient dP/dr describes the pressure profile of the stellar interior in
equilibrium. What if the pressure changes suddenly – how long does it take
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14. Timescales in Stellar Interiors

Figure 29: A simple model of a star having a radius R, mass M, constant den-
sity ρ, a constant temperature T, and a fully ionized interior. This simple model
can be used to derive a typical free-fall time and a typical sound-crossing time
for the sun.

us to re-establish equilibrium? Or equivalently: if nothing were holding up a
star, how long would it take to collapse under its own gravity? Looking at
Figure 29, we can model this as the time it would take for a parcel of gas on
the surface of a star, at radius R, to travel to its center, due to the gravitational
acceleration from a mass M.

Looking at Figure 29, we can model this as the time it would take for a
parcel of gas on the surface of a star, at radius R, to travel to its center, due to
the gravitational acceleration from a mass M. To order of magnitude, we can
combine the following two equations

(242) a = −GM
r2

and

(243) d = −1
2

at2.

Setting both r and d equal to the radius of our object R, and assuming a
constant density ρ = 3M

4πR3 , we find

(244) τf f ∼
1�
Gρ

which is within a factor of two of the exact solution,

(245) τf f =

�
3π

32Gρ
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14.3. The sound-crossing time

Note that the free-fall timescale does not directly depend on the mass of
an object or its radius (or in fact, the distance from the center of that object).
It only depends on the density. Since G ≈ 2/3× 10−7 (cgs units), with �ρ�� ≈
1 g cm−3, the average value is τdyn ∼ 30 min.

In real life, main-sequence stars like the sun are stable and long-lived struc-
tures that are not collapsing. Even if you have a cloud of gas that is collapsing
under its own gravity to form a star, it does not collapse all the way to R = 0
thanks to its internal hydrostatic pressure gradient.

14.3 The sound-crossing time

We have an expression for the time scale upon which gravity will attempt to
force changes on a system (such changes can either be collapse, if a system
is far out of hydrostatic equilibrium and gravity is not significantly opposed
by pressure, or contraction, if a system is more evenly balanced). What is the
corresponding time scale upon which pressure will attempt to cause a system
to expand?

The pressure time scale in a system can be characterized using the sound
speed (as sound is equivalent to pressure waves in a medium). This isothermal
sound speed is given by the relation

(246) cs =

�
P
ρ

Although gas clouds in the interstellar medium may be reasonably ap-
proximated as isothermal, the same is not true for stars. We will ignore that
fact for now, but will return to this point later.

Referring back to Figure 29, we can define the sound-crossing time for an
object as the time it takes for a sound wave to cross the object. Using a simple
equation of motion d = vt and approximating 2R just as R we can then define
a sound-crossing time as

(247) τs ∼ R
�

ρ

P

Using the ideal gas equation, we can substitute ρ
m̄ kT for P and get an ex-

pression for the sound crossing time in terms of more fundamental parameters
for an object:

(248) τs ∼ R
�

m̄
kT

Unlike the free-fall time we derived earlier, the sound-crossing time depends
directly upon the size of the object, and its temperature. At the center of the
Sun, Tc ≈ 1.5 × 107 K and m̄ ∼ mp and so the sound-crossing timescale is
roughly 30 min.
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14. Timescales in Stellar Interiors

Note that by Eq. 245 we see that τs is also approximately equal to the free-
fall timescale τf f . For an object not just to be in hydrostatic equilibrium but to
remain this way, the pressure must be able to respond to changes in gravity,
and vice versa. This response requires that a change in one force is met with
a change in another force on a timescale that is sufficiently fast to restore the
force balance. In practice, this means that for objects in hydrostatic equilib-
rium, the free-fall time is more or less equivalent to the sound-crossing time.
In that way, a perturbation in pressure or density can be met with a corre-
sponding response before the object moves significantly out of equilibrium.

14.4 Radiation transport

If photons streamed freely through a star, they’d zip without interruption
from the core to the stellar surface in R�/c ≈ 2 s. But as we saw above in
Eq. 232, the photons actually scatter every ∼1 cm. With each collision they
“forget” their history, so the motion is a random walk with N steps. So for a
single photon7 to reach the surface from the core requires

(249) �
√

N ∼ R�

which implies that the photon diffusion timescale is

(250) τγ,diff ∼
N�

c
∼ R2

�
�

1
c

or roughly 104 yr.

14.5 Thermal (Kelvin-Helmholtz) timescale

The thermal timescale answers the question, How long will it take to radiate
away an object’s gravitational binding energy? This timescale also governs the
contraction of stars and brown dwarfs (and gas giant planets) by specifying
the time it takes for the object to radiate away a significant amount of its
gravitational potential energy. This is determined by the Kelvin-Helmholtz
timescale. This thermal time scale can generally be given as:

(251) τKH =
E
L

,

where E is the gravitational potential energy released in the contraction to its
final radius and L is the luminosity of the source. Approximating the Sun as
a uniform sphere, we have

(252) τKH ∼ GM2
�

R�
1

L�

7This is rather poetic – of course a given photon doesn’t survive to reach the surface, but is
absorbed and re-radiated as a new photon ∼ (R�/�)2 times. Because of this, it may be better to
think of the timescale of Eq. 250 as the radiative energy transport timescale.
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14.6. Nuclear timescale

which is roughly 3 × 107 yr.
Before nuclear processes were known, the Kelvin-Helmholtz timescale was

invoked to argue that the Sun could be only a few 107 yr old – and therefore
much of geology and evolutionary biology (read: Darwin) must be wrong.
There turned out to be missing physics, but τKH turns out to still be important
when describing the contraction of large gas clouds as they form new, young
stars.

The time that a protostar spends contracting depends upon its mass, as
its radius slowly contracts. A 0.1 M� star can take 100 million years on the
Hayashi track to finish contracting and reach the main sequence. On the other
hand, a 1 M� star can take only a few million years contracting on the Hayashi
track before it develops a radiative core, and then spends up to a few tens of
millions of years on the Henyey track before reaching the main sequence and
nuclear burning equilibrium. The most massive stars, 10 M� and above, take
less than 100,000 years to evolve to the main sequence.

14.6 Nuclear timescale

The time that a star spends on the main sequence – essentially the duration of
the star’s nuclear fuel under a constant burn rate – is termed the the nuclear
timescale. It is a function of stellar mass and luminosity, essentially analogous
to the thermal time scale of Equation 251. Here, the mass available (technically,
the mass difference between the reactants and product of the nuclear reaction)
serves as the energy available, according to E = mc2.

If we fuse 4 protons to form one He4 nucleus (an alpha particle), then the
fractional energy change is

(253)
ΔE
E

=
4mpc2 − mHec2

4mpc2 ≈ 0.007

This is a handy rule of thumb: fusing H to He liberates roughly 0.7% of the
available mass energy. As we will see, in more massive stars heavier elements
can also fuse; further rules of thumb are that fusing He to C and then C to
Fe (through multiple intermediate steps) each liberates another 0.1% of mass
energy. But for a solar-mass star, the main-sequence nuclear timescale is

(254) τnuc =
ΔE
Etot

≈ 0.007M�c2

L�
≈ 1011 yr

which implies a main-sequence lifetime of roughly 100 billion years. The ac-
tual main-sequence lifetime for a 1M� star is closer to 10 billion years; it turns
out that significant stellar evolution typically occurs by the time ∼10% of a
star’s mass has been processed by fusion.

14.7 A Hierarchy of Timescales

So if we arrange our timescales, we find a strong separation of scales:
τnuc � τKH � τγ,di f f � τdyn � τγ

1011 yr � 3 × 107 yr � 104 yr � 30 min � 10−10 s
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14. Timescales in Stellar Interiors

This separation is pleasant because it means whenever we consider one
timescale, we can assume that the faster processes are in equilibrium while
the slower processes are static.

Much excitement ensues when this hierarchy breaks down. For example,
we see convection occur on τdyn which then fundamentally changes the ther-
mal transport. Or in the cores of stars near the end of their life, τnuc becomes
much shorter. If it gets shorter than τdyn, then the star has no time to settle
into equilibrium – it may collapse.

14.8 The Virial Theorem

In considering complex systems as a whole, it becomes easier to describe im-
portant properties of a system in equilibrium in terms of its energy balance
rather than its force balance. For systems in equilibrium– not just a star now,
or even particles in a gas, but systems as complicated as planets in orbit, or
clusters of stars and galaxies– there is a fundamental relationship between the
internal, kinetic energy of the system and its gravitational binding energy.

This relationship can be derived in a fairly complicated way by taking
several time derivatives of the moment of inertia of a system, and applying
the equations of motion and Newton’s laws. We will skip this derivation, the
result of which can be expressed as:

(255)
d2 I
dt2 = 2�K�+ �U�,

where �K� is the time-averaged kinetic energy, and �U� is the time-averaged
gravitational potential energy. For a system in equilibrium, d2 I

dt2 is zero, yielding
the form more traditionally used in astronomy:

(256) �K� = −1
2
�U�

The relationship Eq. 256 is known as the Virial Theorem. It is a consequence
of the more general fact that whenever U ∝ rn, we will have

(257) �K� = 1
n
�U�

And so for gravity with U ∝ r−1, we have the Virial Theorem, Eq. 256.
When can the Virial Theorem be applied to a system? In general, the sys-

tem must be in equilibrium (as stated before, this is satisfied by the second
time derivative of the moment of inertia being equal to zero). Note that this
is not necessarily equivalent to the system being stationary, as we are consid-
ering the time-averaged quantities �K� and �U�. This allows us to apply the
Virial Theorem to a broad diversity of systems in motion, from atoms swirling
within a star to stars orbiting in a globular cluster, for example. The system
also generally must be isolated. In the simplified form we are using, we don’t
consider so-called ‘surface terms’ due to an additional external pressure from
a medium in which our system is embedded. We also assume that there are
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14.8. The Virial Theorem

not any other sources of internal support against gravity in the system apart
from the its internal, kinetic energy (there is no magnetic field in the source,
or rotation). Below, we introduce some of the many ways we can apply this
tool.

Virial Theorem applied to a Star

For stars, the Virial Theorem relates the internal (i.e. thermal) energy to the
gravitational potential energy. We can begin with the equation of hydrostatic
equilibrium, Eq. 239. We multiply both sides by 4πr3 and integrate as follows

(258)
R�

0

dP
dr

4πr3dr = −
R�

0

�
GM(r)

r

��
4πr2ρ(r)

�
dr

The left-hand side can be integrated by parts,

(259)
R�

0

dP
dr

4πr3dr = 4πr3P|R0 − 3
R�

0

P4πr2dr

and since r(0) = and P(R) = 0, the first term equals zero. We can deal with
the second term by assuming that the star is an ideal gas, replacing P = nkT,
and using the thermal energy density

(260) u =
3
2

nkT =
3
2

P

This means that the left-hand side of Eq. 258 becomes

(261) −2
R�

0

u(4πr2dr) = −2Eth

Where Eth is the total thermal energy of the star.
As for the right-hand side of Eq. 258, we can simplify it considerably by

recalling that

(262) Φg = −GM(r)
r

and

(263) dM = 4πr2ρ(r)dr.

Thus the right-hand side of Eq. 258 becomes simply

(264)
R�

0

Φg(M�)dM� = Egrav
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14. Timescales in Stellar Interiors

And so merely from the assumptions of hydrostatic equilibrium and an
ideal gas, it turns out that

(265) Egrav = −2Eth

or alternatively,

(266) Etot = −Eth = Egrav/2

The consequence is that the total energy of the bound system is negative,
and that it has negative heat capacity – a star heats up as it loses energy!
Eq. 266 shows that if the star radiates a bit of energy so that Etot decreases,
Eth increases while Egrav decreases by even more. So energy was lost from
the star, causing its thermal energy to increase while it also becomes more
strongly gravitationally bound. This behavior shows up in all gravitational
systems with a thermal description — from stars to globular clusters to Hawk-
ing radiation near a black hole to the gravitational collapse of a gas cloud into
a star.

Virial Theorem applied to Gravitational Collapse

We can begin by restating the Virial Theorem in terms of the average total
energy of a system �E�:

(267) �E� = �K�+ �U� = 1
2
�U�

A classic application of this relationship is then to ask, if the sun were
powered only by energy from its gravitational contraction, how long could
it live? To answer this, we need to build an expression for the gravitational
potential energy of a uniform sphere: our model for the gravitational potential
felt at each point inside of the sun. We can begin to put this into equation form
by considering what the gravitational potential is for an infinitesimally thin
shell of mass at the surface of a uniformly-dense sphere.

Using dM as defined previously, the differential change in gravitational
potential energy that this shell adds to the sun is

(268) dU = −GM(r)dM
r

.

The simplest form for M(r) is to assume a constant density. In this case, we
can define

(269) M(r) =
4
3

π r3ρ

To determine the total gravitational potential from shells at all radii, we must
integrate Equation 268 over the entire size of the sphere from 0 to R, substi-
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14.8. The Virial Theorem

tuting our expressions for dM and M(r) from Equations 263 and 269:

(270) U = −G(4π ρ)2

3

R�

0

r4dr.

Note that if this were not a uniform sphere, we would have to also consider ρ
as a function of radius: ρ(r) and include it in our integral as well. That would
be a more realistic situation for a star like our sun, but we will keep it simple
for now.

Performing this integral, and replacing the average density ρ with the
quantity 3M

4πR3 , we then find

(271) U = −G(3M)2

R6
R5

5
= −3

5
GM2

R

which is the gravitational potential (or binding energy) of a uniform sphere.
All together, this is equivalent to the energy it would take to disassemble this
sphere, piece by piece, and move each piece out to a distance of infinity (at
which point it would have zero potential energy and zero kinetic energy).

To understand how this relates to the energy available for an object like the
sun to radiate as a function of its gravitational collapse, we have to perform
one more trick, and that is to realize that Equation 267 doesn’t just tell us
about the average energy of a system, but how that energy has evolved. That
is to say,

(272) ΔE =
1
2

ΔU

So, the change in energy of our sun as it collapsed from an initial cloud to its
current size is half of the binding energy that we just calculated. How does our
star just lose half of its energy as it collapses, and where does it go? The Virial
Theorem says that as a cloud collapses it turns half of its potential energy into
kinetic energy (Equation 256). The other half then goes into terms that are not
accounted for in the Virial Theorem: radiation, internal excitation of atoms
and molecules and ionization (see the Saha Equation, Equation 171).

Making the simplistic assumption that all of the energy released by the
collapse goes into radiation, then we can calculate the energy available purely
from gravitational collapse and contraction to power the luminosity of the
sun. Assuming that the initial radius of the cloud from which our sun formed
is not infinity, but is still large enough that the initial gravitational potential
energy is effectively zero, the energy which is radiated from the collapse is
half the current gravitational potential energy of the sun, or

(273) Eradiated = − 3
10

GM2
�

R�

Eq. 273 therefore links the Virial Theorem back to the Kelvin-Helmholtz
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14. Timescales in Stellar Interiors

timescale of Sec. 14.5. For the sun, this is a total radiated energy of ∼ 1041 J.
If we assume that the sun radiates this energy at a rate equal to its current
luminosity (∼ 1026 W) then we can calculate that the sun could be powered at
its current luminosity just by this collapse energy for 1015 s, or 3 × 107 years.
While this is a long time, it does not compare to our current best estimates
for the age of the earth and sun: ∼4.5 billion years. As an interesting histori-
cal footnote, it was Lord Kelvin who first did this calculation to estimate the
age of the sun (back before we knew that the sun must be powered by nu-
clear fusion). He used this calculation to argue that the Earth must only be
a few million years old, he attacked Charles Darwin’s estimate of hundreds
of millions of years for the age of the earth, and he argued that the theory of
evolution and natural selection must be bunk. In the end of course, history
has shown who was actually correct on this point.
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