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18.1 Useful References

• Choudhuri, Secs. 4.1–4.2

• Kippenhahn, Weiger, and Weiss, 2nd ed., Chap. 18

• Hansen, Kawaler, and Trimble, Sec. 6.2

18.2 Introduction

Commercial nuclear fusion may be perpetually 50 years away, but stellar fu-
sion has powered the universe for billions of years and (for the lowest-mass
stars) will continue to do so for trillions of years to come.

Our two goals here are (1) to understand �, the volumetric energy produc-
tion rate (see Eq. 289), and how it depends on ρ and T; and (2) to identify and
describe the key nuclear reaction pathways that are important in stars.

18.3 Nuclear Binding Energies

Stars derive their energy from the fusion of individual atomic nuclei, as we
described briefly in Sec. 14.6. Fusion involves true elemental transmutation of
the sort that the ancients could only dream of. For better or for worse, our own
discussions of this natural alchemy will involve relatively more considerations
of the detailed physics involved and relatively less boiling of one’s own urine.

Figure 33: Rough sketch of the nuclear potential. Coulomb (electrostatic) re-
pulsion dominates at large separations, and is overwhelmed by Strong nuclear
attraction at the smallest separations.

122
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Nuclei all have positive charges, so they’re generally inclined to repel
each other rather than to fuse. For one nucleus to reach another and fuse, it
must overcome the strong Coulomb (electrostatic) repulsion generated by the
two positively-charged nuclei. Fig. 33 gives a rough sketch of the situation:
Coulomb repulsion dominates at large separations, but it is overwhelmed by
the Strong nuclear force, which is attractive at the smallest separations.

The fundamental nuclear size is set by the typical radius of protons and
neutrons, rp ≈ rn ≈ 0.8 fm, as

(376) rnuc ≈ 2rp A1/3

where A is the number of nucleons (neutrons plus protons, also approxi-
mately the atomic weight). We will also deal shortly with Z, the nuclear
charge (i.e., number of protons). For our purposes here, all the negatively-
charged electrons are so far away from the nucleus that they might as well
not be there at all. (Also, stellar cores are hot enough that lighter elements are
often fully ionized, i.e. all their electrons have gone and left the nucleus all
alone.)

The key thing that matters in nuclear reactions is the nuclear binding en-
ergy. Just like two stars in a binary system are bound together via their gravi-
tational potential energy. What’s different now is that the masses involved are
much smaller (protons vs. stars!), so small that we have to pay close attention
to mass-energy equivalence – that old equation

(377) E = mc2.

The SI units of energy is of course the Joule, but in nuclear reactions the
energies involved are much smaller than 1 J so we often use the units of eV,
where 1 J≈ 6 × 1018 eV.

Through the equation E = mc2, we will often speak of the “mass” of small
particles in units of energy. So when we say an electron has a mass (more
accurately, a mass energy) of ≈500 keV (that is, 500,000 eV) we just mean that
mec2 ≈ 500 keV. Similarly, a proton has a mass energy of ≈1,000 MeV — and
so is about 2000× more massive than an electron.

For astrophysical purposes we don’t need to descend all the way into the
realm of detailed nuclear physics. For our purposes an empirically-calibrated,
semiclassical model (the “Bethe-Weizsäcker formula) is sufficiently accurate.
This posits that the binding energy EB of an atomic nucleus

(378) EB ≈ aV A − aS A2/3 − aCZ2

A1/3 − aA
(A − 2Z)2

A

Each of the terms in Eq. 377 has a particular significance. These are:

aV ≈ 14 MeV Volumetric term, describes bulk assembly of the nucleus.
aS ≈ 13.1 MeV Surface term, since surface nucleons have few neighbors.
aC ≈ 0.58 MeV Coulomb term, describes mutual repulsion of protons.
aA ≈ 19.4 MeV Asymmetry term, preferring Nn = Np (Fermi exclusion).
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Figure 34: Rough sketch of quantum tunneling, with the wave function (just
barely) penetrating the forbidding Coulomb barrier.

This model does a decent job: Eq. 377 correctly demonstrates that the nu-
clei with the greatest binding energy per nucleon have Z ∼ 25. In fact the most
tightly-bound, and thus most stable, nucleus is that of iron (Fe) with Z = 26,
A = 56. Thus elements near Fe represent an equilibrium state toward which
all nuclear processes will try to direct heavier or lighter atoms. For example,
we will see that lighter atoms (from H on up) typically fuse into elements as
high as Fe but no higher (except in unusual circumstances).

18.4 Let’s Get Fusing

The Big Bang produced a universe whose baryonic matter was made of roughly
75% H and 25% He, with only trace amounts of heavier elements. Stellar fu-
sion created most of the heavier elements, with supernovae doing the rest.
For fusion to proceed, something must occur to either fuse H or He. Since He
will have a 4× greater Coulomb barrier (two nuclei with two protons each,
2 × 2 = 4), we’ll focus on H; nonetheless we immediately encounter two huge
problems.

The first big challenge is the huge Coulomb barrier shown in Fig. 33. At
the separation of individual nucleons, the electronic (or protonic) repulsion is
e2/fm ∼ 1 MeV, of roughly comparable scale to the strong nuclear attraction
at shorter scales. But how to breach this Coulomb wall? Even at the center
of the Sun where Tc = 1.5 × 107 K (Sec. 14) the typical thermal energies per
particle are of order kBTC ∼ 1 keV — a thousand times too low. The second
problem is that the fusion product of two protons would be 2He, an isotope
so unstable it is not entirely clear whether it has ever been observed.

Problem one: quantum tunneling

The first problem was solved by recognizing that at the nuclear scale one
doesn’t climb a mountain — rather, one tunnels through it. Quantum mechan-
ics states that each particle has a wave function Ψ(x) given by the Schrödinger
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Figure 35: Rough sketch of inverse beta decay: p + p yields p + n + e+ + νe.

Equation, and the probability of finding the particle at x is ∝ |Ψ(x)|2. When
the particle’s energy is less than required to classically overcome an energy
barrier, the wavefunction decays exponentially but remains nonzero. To order
of magnitude, the protons only need to get close enough to each other that
their thermal de Broglie wavelengths overlap; when this happens, tunneling
becomes plausible (as sketched in Fig. 34).

Problem two: avoiding the 2He trap

The second challenge to fusion is that the product of H + H, 2He, is incredibly
unstable, and its solution lies in the humble neutron. Given sufficient neutrons
we could form the stable isotope 2H (deuterium) instead of 2He and open up
new reaction pathways.

The challenge is that the neutron half-life is only ∼15 min, after which
neutrons undergo beta decay via n → p + e− + ν̄e. (Here n is a neutron, p
is a proton that is the nucleus of a hydrogren atom, e is an electron, and ν
indicates that a neutrino is also created). The solution to our second problem
lies in a related nuclear reaction, inverse beta decay. In this process (sketched
in Fig. 35) two of the many, common protons interact via the Weak nuclear
force. The full reaction is

p + p → p + n + e+ + νe → 2H + e+ + νe
and perhaps surprisingly, this can provide all the neutrons we need to produce
sufficient 2H to make the universe an interesting place to be. The cross-section
is tiny (it’s a weak process):

(379) σp−p ≈ 10−22 barnes = 10−46 cm2

(recall that the electron scattering, or Thomson, cross section of Sec. 13.5 was
σT = 0.67 barns!). Put another way, the reaction rate in the Sun will be just
once per ∼few Gyr, per proton. But it’s enough, and once we have 2H we
can start producing heavier (and more stable) He isotopes: fusion becomes
energetically feasible. Thus the solution to the 2He fusion barrier is similar
in a way to the H− story of Sec. 13.5: to get everything right required both
hydrogen and some imagination.
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