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29.1 Useful References

• Choudhuri, Secs. 6.5–6.6

• Rybicki & Lightman, Sec. 10.5

29.2 Introduction

The interstellar medium, or ISM, is the nearly-empty space inside our Galaxy
in which all the objects we’ve studied thus far are embedded (note that there is
also an intergalactic medium in the spaces between galaxies). The Milky Way
is full of gas, dust, cosmic rays, and radiation, all at comparable energy den-
sities. This forms a very complex medium, that often affects many processes
involving stars and compact objects, as well as our observations of these ob-
jects.

Our focus here is on the gas and the plasma. On average, the ISM is com-
posed of ∼ 75% H and ∼ 25% He, by mass. Typical densities are n ∼ 1 cm−3 –
about 100× emptier than the so-called “ultra-high” vacuums found in terres-
trial laboratories. The ISM is strongly inhomogeneous the material sits in var-
ious reservoirs, which are characterized using different observing techniques:

Reservoir n [cm−3] T [K] observed by:
H I gas (neutral) 0.3–30 30–3000 radio (typ. 21 cm)
Molecular clouds (H2) � 103 30 radio
H ii regions (ionized) 0.3–104 104 radio → optical
Coronal gas (ionized) ∼ 0.004 � 106 radio, X-ray

The neutral species, atomic (H I) and molecular (H2), contain most of
the gas mass. Molecular clouds are where stars form, as discussed briefly in
Sec. 22.1. These tend to be highly obscured, but disks and jets around young
stars are often visible. H ii regions require a hot, ionizing source: e.g. a white
dwarf or a massive, young star. Coronal gas is blown out by supernovae.

29.3 H2: Collapse and Fragmentation

Earlier we introduced the concept of the Jeans Mass (Eq. 458), the mass re-
quired for gravitational collapse to occur,

MJeans = 2.3 M�

�
T

10 K

�3/2 � n
105 cm−3

�−1/2
.

Given the density and temperature of various stages of the ISM, we can cal-
culate the Jeans mass in each phase:

Reservoir MJeans/M�
H I 104 − 108

H2 ∼ 300
H ii 107 − 109

Coronal gas ∼ 1012

So we can see why stars form in the molecular (H2) regions.
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Once the Jeans mass has been reached and gravitational collapse sets in
(see Sec .22.1), both n and T will increase in the cloud. These have compet-
ing effects: increasing n will tend to decrease the Jeans mass, while increasing
T will increase the Jeans mass. If “density wins” and the net effect is a de-
crease in MJeans, the large collapsing cloud will then be able to collapse on
much smaller scales: the cloud fragments, and the result is multiple collaps-
ing objects. If the collapsing object can no longer easily cool, then it has likely
become a protostar.

29.4 H ii Regions

H ii regions are zones of ionized atomic hydrogen. They are often associated
with nebulae, and require gas that contains a continuous source of ionizing
radiation (hν > 13.6 eV). This could be a massive star or a white dwarf, but ei-
ther way it must be very hot (and so fairly young). Without that central source,
the protons and electrons in the ISM will quickly recombine – even with the
ionizing source, it can only ionize a region of some given volume before re-
combinations will be happening as quickly as ionizations. The result will be
a bubble of ionized gas, termed a Strömgren Sphere. Such H ii regions are
easily observable via the strong emission lines resulting from recombination.
Thus to add further to the nomenclature, they are also sometimes known as
emission-line nebulae.

Our goal in the following section is to understand the size of the ionized
bubble and its detailed ionization structure. In this effort, we will define the
ionization fraction

(781) f ≡ nH+(r)
nH(r)

.

For a fully neutral, atomic ISM f = 0, while full ionization implies f = 1. As
hinted at in the preceding argument, to maintain a constant f we will want to
make use of ionization equilibrium, where

(number of ionizing photons/sec) = (number of recombinations/sec
from source) in bubble)

Q∗ = Rrecom

�
4
3 πR3

�

(under the assumption of spherical symmetry). Here

(782) Q∗ ≡
∞�

νm

Lν

hν
dν

is the number of ionizing photons emitted per second, with hνm = 13.6 eV. On
the right-hand side, Rrecom is the volumetric recombination rate (recombina-
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tions per sec per cm3):

Rrecom ≡npne�σrecomv�
(783)

=npneα(T).
(784)

Here σrecom is the free-bound cross-section for recombination. The function
α(T) can be computed from the theory of radiative transitions; it is approxi-
mately

(785) α(T) ≈ (2.6 × 10−13cm3 s−1)

�
Tgas

104K

�−1/2

Regardless of the exact form of α(T), if we assume that our bubble is fully
ionized (presumably with some recombinative transition zone at the edges),
we will have

(786) npne = n2

and so then

(787) Q∗ = n2α(T)
�

4
3

πR3
�

.

This gives the classic Strömgren Radius of a Strömgren sphere,

(788) R =

�
3Q∗

4παn2

�1/3
.

Note that this has the expected scalings: the bubble is larger for a stronger
ionizing source (larger Q∗), for a lower ambient density n, and for higher
temperature Tgas. One can expand on this simple model a bit in a few ways.
One is to consider multiple transitions in the H atoms, which gives rise to
much more complicated forms for �vσ�. Another is to require equilibrium in
each of a series of nested spherical shells. In each shell, one then sets the
local ionization rate (which depends on the flux reaching that radius) equal to
the local recombination rate (depending on the local temperature and neutral
fraction).

29.5 Plasma Waves

As noted above, much of the ISM is ionized: thus we should really treat it as a
plasma, rather than a gas. This ionized mixture affects the propagation of EM
radiation (especially radio waves) in several observable ways.

In what follows we focus on these propagation effects. We need to consider
a dilute proton-electron plasma, possible with a background magnetic field.
We will first revisit the wave equation, in order to compare it to non-vacuum
wave propagation.
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The wave-plasma interactions will be dominated by the electrons, because
they are very light and so can respond much more quickly to changing fields.
To understand how they respond, we revisit the momentum equation (Eq. 690).
We have

(789) ρe

�
∂�v
∂t

+
�
�v · �∇�v

��
= −�∇P − nee

�
�E +

�v
c
× �B

�

where �v is the velocity induced by the radiation; we’ll assume this is a small
value. We’ll also neglect �∇P, since it is often unimportant in the ISM. Under
these assumptions, and with ρe = mene, we then obtain

(790) me
∂�v
∂t

= −e
�
�E +

�v
c
× �B

�
.

This is just the old Lorentz force law – which makes sense, since we’re just
considering changes in the electrons’ momenta. Here �E comes from the EM
radiation involved, whereas �B comes from whatever background �B is in the
ISM. The contribution to �B from the EM radiation will be smaller by ∼ v/c,
so we ignore it.

Let’s recall Maxwell’s equations, specifically Faraday’s Law

(791) �∇× �E = −1
c

∂�B
∂t

and the Maxwell-Ampere Law

(792) �∇× �B =
4π

c
�J +

1
c

∂�E
∂t

.

In our plasma,

(793) �J = ne(−e)�v.

We take the time derivative of Eq. 763, which is

(794) �∇× ∂�B
∂t

=
4π

c
∂�J
∂t

+
1
c

∂2�E
∂t2 .

Taking these terms one by one, we first see that

∂�J
∂t

= −nee
∂�v
∂t

(795)

=
nee2

me
�E.

(796)

I.e., the rate of change of the current depends on the electric field. And we can
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rewrite Faraday’s Law as

(797)
∂�B
∂t

= −c�∇× �E.

Thus from Maxwell’s equations in a plasma we obtain

(798) �∇× �∇× �E =
4πnee2

mec2
�E +

1
c2

∂2�E
∂t2 .

To see how electromagnetic waves propagate through the plasma (and
their effects on the plasma), we assume that the waves can be decomposed
into a series of Fourier modes — plane waves:

(799) �E ≡ �E0ei(�k·�r−ωt).

Applying this expression to Eq. 769, we then obtain the dispersion relation

(800) �k ×�k × �E0 =

�
ω2

p

c2 − ω2

c2

�
�E0.

Here we have defined the plasma frequency,

(801) ωp =

�
4πnee2

me

�1/2 �
≈ 2π × 104 Hz

��
ne

1 cm−3

�1/2
.

This dispersion relation has the character of an eigenvalue problem: an oper-
ator acting on �E0 equals �E0 times a constant. We can determine the velocities
of each eigenmode solution via dω/dk for each component.

We can gain further insight into this situation if we define a coordinate
direction for our propagating wave:

(802) �k = kẑ.

This means that our wave equation (Eq. 771) now becomes

(803) k2 �Eyŷ + Exx̂
�
=

ω2
p − ω2

c2

�
Exx̂ + Eyŷ + Ezẑ

�

which is really three equations, one for each vector component.

(804)




ω2
p + c2k2 0 0

0 ω2
pc2k2 0

0 0 ω2
p







Ex
Ey
Ez


 = ω2




Ex
Ey
Ez




This has three solution. The one along ẑ has the form ω2 = ω2
p, i.e. ω is a
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constant. This is a longitudinal mode and does not propagate, since

(805) vgroup =
dω

dk
= 0.

The remaining two solutions lie along x̂ and ŷ. These degenerate solutions
represent transverse waves and have the form

(806) ω2 = c2k2 + ω2
p

and so have nonzero velocities

vgroup =
dω

dk
=

c2k
ω

(807)

= c

�
1 +

ω2
p

c2k2

�−1/2
(808)

= c

�
1 −

ω2
p

ω2

�+1/2
(809)

The longitudinal modes are plasma modes: non-propagating disturbances
in the plasma, indicating local bunching and rarefactions (i.e., density fluctu-
ations). The electric field then sets up a restoring force, as sketched schemati-
cally in Fig. 65. If charge carriers in a neutral block of gas with volume AΔx
are separated, a plane-parallel electric field will be set up with

(810) E = 4πσ =
4πneeAΔx

A
.

Figure 68: Intuitive picture: charges are separated in a neutral block of gas
(left), setting up an electric field (right) which itself sets up a restoring force.
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The restoring force on the charge carriers will then be

(811) F = me
d2Δx
dt2 = −eE

and so

d2Δx
dt2 +

4πnee2

me
Δx = 0

(812)

d2Δx
dt2 +ω2

pΔx = 0.

(813)

So in plasma modes, when charges are initially perturbed they will subse-
quently oscillate with frequency ωp (Eq. 772).

Fig. 66 shows the dispersion relation ω(k). The frequency ω has its min-
imum value at ω(k = 0) = ωp and increases with |k|. Thus, modes with
ω < ωp cannot propagate through the ISM.

Plasma modes play an important role in both the ISM as well as closer to
home, in the Earth’s ionosphere.

Medium ne [cm−3] fp [Hz] λp
ISM ∼ 0.03 1700 180 km
ionosphere ∼ 105 3 × 106 100 m

The ionospheric cutoff means that radio waves with λ � 100 m cannot prop-
agate through the Earth’s atmosphere: ground-based radio astronomy is im-
possible at these frequencies! On the other hand, the same argument holds
for terrestrial radio emissions: they are blocked from reaching space, but can
instead be reflected beyond direct line-of-sight and far around the globe.

As a final note, solid metals look very much like a free electron gas to inci-
dent photons. In this case, the characteristic λp ∼ 10s of nm ( fp ∼ 3× 1016 Hz)
and longer-wavelength radiation cannot propagate through the metal. Thus
solid metals reflect visible light, but are (largely) transparent to high-energy

Figure 69: Dispersion relation for transverse plasma modes. Modes with ω <
ωp cannot propagate.
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UV and X-ray radiation.

29.6 ISM as Observatory: Dispersion and Rotation Measures

Some of the most-observed radio sources embedded in the ISM are pulsars
(though there are many others). Each emitted pulse travels through the ISM,
and its wave speed will be affected by its propagation through the plasma. If
it is a distance d away, the travel time of the pulse is

tpulse =

d�

0

d�
vgroup

(814)

=
1
c

d�

0

�
1 −

ω2
p

ω2

�−1/2

d�.

(815)

If we are observing at fairly high frequencies compared to the ISM’s cutoff
frequency (just ∼ 2 kHz) then we can simplify this somewhat as

tpulse ≈ d
c
+

1
c

d�

0

ω2
p

2ω2 d�

(816)

=
d
c
+

2πe2

mecω2

d�

0

ned�

(817)

We don’t know when the pulse was actually emitted, so a measurement at a
single frequency won’t help us much. But we can look at the offset in the time
of arrival as a function of frequency (or wavelength):

dtp

dω
= − 4πe2

mecω3

d�

0

ned�

(818)

= − 4πe2

mecω3 �ne�d.

(819)

The initial fraction is just a set of physical or observed constants; the remaining
quantities are defined as the Dispersion Measure

(820) DM = �ne�d.

Using sources with known distances, we have established that �ne� ≈ 0.03 cm−3
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in most areas of the Milky Way. We can then measure dtp/dω to directly es-
timate the distances to pulsars! Fig. 67 shows the dispersion measure for an
assortment of Galactic pulsars and magnetars.

We can also examine the propagation of waves through the ISM in the
presence of a time-changing �B (which we have ignored up to now). The cal-
culation is not trivial! But the key, final result is that right-hand and left-hand
circular polarization states will travel at different speeds:

(821) kL/R =
ω

c

�
1 −

ω2
p

ω(ω ± ωc)

�1/2

where

(822) ωc ≡
eB||
mec

and

(823) B|| = �B ·�k/k.

Since any linearly-polarized wave can be regarded as the combination of
two circular polarizations, any linearly-polarized plane wave will see its direc-
tion of polarization rotate as the two circular waves move at different speeds.

(824) Δθp =

d�

0

kL − kR
2

dz ≡ RMλ2

where RM is the observed Rotation Measure. Observationally we again look
at how this changes with frequency:

(825)
dθ

dω
= − 1

ω3
4πe3

m2
e c2

d�

0

neB||dz.

This gives us a way to infer magnetic field strengths throughout the ISM, just
using radio wave observations (and a bit of astrophysics). Fig. 67 shows the
rotation measure vs. dispersion measure for various radio sources.
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Figure 70: Dispersion and rotation measures for Galactic pulsars (black dots)
and magnetars (red dots) and for Fast Radio Bursts (green triangles and green
line at top). Reproduced from Micchili et al. (2018), Fig. 3.

239


