UNIVERSITY OF KANSAS

Department of Physics and Astronomy
Physical Astronomy (ASTR 391) — Prof. Crossfield — Spring 2022

Problem Set 1

Due: Wednesdays, Feb 02, 2022, at the start of class (1100 Kansas Time) This problem set is worth 33 points.

1. Astronomical Concepts [20 pts].

(a) In a galaxy far, far away, the gas giant Endor orbits a Sun-like star at a distance of a_{E}. Endor (mass m_{E}) is orbited by a Forest Moon $\left(m_{m}\right)$ with the same separation as found in the Earth-Moon system ($a D_{D}$). What is the ratio (an algebraic expression, not just a number!) of the gravitational forces (i) between Endor and its star (mass m_{*}) and (ii) between Endor and its moon? Estimate which Force is stronger. [6 pts]
(b) You have invented a matter-antimatter reactor that converts physical material into energy with 100% efficiency. Congratulations: you're a shoo-in for the Nobel Prize. (i) If you put 0.5 kg of matter (and an equal amount of antimatter) in your reactor, approximately how much energy ($E_{\text {reactor }}$) is released? (ii) If the reactor takes 0.5 s to use that fuel, what was its approximate power output in Solar Luminosities $\left(L_{\odot}\right)$? (iii) How does $E_{\text {reactor }}$ compare to the total amount of energy used on Earth in a year? [7 pts]
(c) Write the astronomer's version of the Ideal Gas Law. Explain each term (including its physical units), and how it might be used [7 pts].
2. Order-of-Magnitude Estimation [13 pts]. Strive to do as many of these calculations in your head (or with pencil and paper) as possible, aside from looking up any necessary physical constants.
(a) City on a Hill [5 pts.] Roughly estimate the mass of Mount Oread, in kg and in M_{\oplus} (Earth masses).
(b) How Big? [$\mathbf{5} \mathbf{~ p t s}$]. The French revolutionaries of the late 18 th century defined the meter by setting the Earth's equator-to-pole distance to be $10,000 \mathrm{~km}$. Estimate the radius $\left(R_{\oplus}\right)$, volume $\left(V_{\oplus}\right)$, and mass $\left(M_{\oplus}\right)$ of the Earth, in SI units.
(c) How Big?! [3 pts] Jupiter is roughly $10 \times$ larger (in physical size) than the Earth (i.e., $R_{J u p} \approx 10 R_{\oplus}$), and the Sun is roughly $10 \times$ larger than Jupiter ($R_{\odot} \approx 10 R_{J u p}$). Roughly estimate the volume of both of these objects, relative to the volume of the Earth (i.e., in units of V_{\oplus}).

