UNIVERSITY OF KANSAS

Department of Physics and Astronomy Physical Astronomy (ASTR 391) — Prof. Crossfield — Spring 2022

Problem Set 1 Due: Wednesdays, Feb 02, 2022, at the start of class (1100 Kansas Time) This problem set is worth **33 points**.

1. Astronomical Concepts [20 pts].

- (a) In a galaxy far, far away, the gas giant Endor orbits a Sun-like star at a distance of a_E . Endor (mass m_E) is orbited by a Forest Moon (m_m) with the same separation as found in the Earth-Moon system (a_D) . What is the ratio (an algebraic expression, not just a number!) of the gravitational forces (i) between Endor and its star (mass m_*) and (ii) between Endor and its moon? Estimate which Force is stronger. [6 pts]
- (b) You have invented a matter-antimatter reactor that converts physical material into energy with 100% efficiency. Congratulations: you're a shoo-in for the Nobel Prize. (i) If you put 0.5 kg of matter (and an equal amount of antimatter) in your reactor, approximately how much energy (E_{reactor}) is released? (ii) If the reactor takes 0.5 s to use that fuel, what was its approximate power output in Solar Luminosities (L_☉)? (iii) How does E_{reactor} compare to the total amount of energy used on Earth in a year? [7 pts]
- (c) Write the astronomer's version of the Ideal Gas Law. Explain each term (including its physical units), and how it might be used [7 pts].
- 2. Order-of-Magnitude Estimation [13 pts]. Strive to do as many of these calculations in your head (or with pencil and paper) as possible, aside from looking up any necessary physical constants.
 - (a) City on a Hill [5 pts.] Roughly estimate the mass of Mount Oread, in kg and in M_{\oplus} (Earth masses).
 - (b) How Big? [5 pts]. The French revolutionaries of the late 18th century defined the meter by setting the Earth's equator-to-pole distance to be 10,000 km. Estimate the radius (R_{\oplus}) , volume (V_{\oplus}) , and mass (M_{\oplus}) of the Earth, in SI units.
 - (c) How Big?! [3 pts] Jupiter is roughly $10 \times$ larger (in physical size) than the Earth (i.e., $R_{Jup} \approx 10R_{\oplus}$), and the Sun is roughly $10 \times$ larger than Jupiter ($R_{\odot} \approx 10R_{Jup}$). Roughly estimate the volume of both of these objects, *relative to the volume of the Earth* (i.e., in units of V_{\oplus}).