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Physical Astronomy (ASTR 391) — Prof. Crossfield — Spring 2022

Problem Set 3
Due: Wednesday, February 11, 2022, by the start of class

This problem set is worth 42 points.

As always, be sure to: show your work, circle your final answer, and use the appropriate number of significant figures.

1. Angles, Distance, and Magnitudes [22 pts].

(a) Explain why an ordinary lightbulb can appear much brighter than a star, even though the lightbulb emits
far less light. [3 pts]
Solution: This is mainly because of the inverse-square law of isotropically-propogating radiation. If a
light source is viewed from 3× farther away, the radiation that earlier had illuminated a 1-unit-radius
sphere now has to illuminate a sphere with 32 = 9× greater surface area – so the light source will look 9×
dimmer.

(b) Astronomers have measured the parallax to the stars Polaris and γ Vel (“gamma Vel,” a young, hot, massive
star) to be about 7.5 mas (milli-arcsec) and 2.9 mas, respectively. Estimate the distance to each star. [3 pts]
Solution: Via the definition of parallax, θ/arcsec = 1 au/(d/pc). So

dP = (1000/7.5) pc ≈ 130 pc (1)

and
dγ = (1000/2.9) pc ≈ 340 pc , respectively. (2)

(c) In the old (pre-Gaia) Hipparcos astrometric catalog, the uncertainty on measured parallax was about
±0.5 mas; roughly what distance uncertainty does this translate into for Polaris and γ Vel? (I.e.: if the
parallax to Polaris is 7.5±0.5 mas, what is the uncertainty range on the inferred distance?)[4 pts]
Solution: You could solve this several ways: calculate the analytic propogation of errors for the parallax-
distance equation, or calculate the distance for each value d ± σd, or just conduct a quick Monte-Carlo
calculation. To do the latter in Python, we could do

import numpy as np
n_trials = 10000 # number of Monte Carlo draws
u_p = 0.5
p_polaris_montecarlo = np.random.normal(7.5, u_p, n_trials)
p_gammavel_montecarlo = np.random.normal(2.9, u_p, n_trials)
d_polaris_montecarlo = 1000. / p_polaris_montecarlo
d_gammavel_montecarlo = 1000. / p_gammavel_montecarlo
print(’Polaris: ’, np.median(d_polaris_montecarlo),

np.std(d_polaris_montecarlo))
print(’Gamma Vel:’, np.median(d_gammavel_montecarlo),

np.std(d_gammavel_montecarlo))

Which gives σθ ≈ 9 pc for Polaris and σθ ≈ 68 pc for γ Vel. All else being equal (e.g. equal-brightness
targets), we always know the distances more precisely to things closer to us.

(d) Describe how you might estimate the distance to a star whose parallax is too small to measure. [6 pts]
Solution: There are several ways to do this. One would be to obtain and examine a sufficiently detailed
spectrum of the star. If you can be sure that the spectrum is very similar to that of other (closer) stars
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whose properties (luminosity and distance) are well-known, you could use those values and the distant
star’s apparent magnitude to estimate the distance.
A related way would be to eschew spectra and examine broadband photometric measurements of the star’s
brightness. From these you could estimate the star’s approximate spectral type, which would give you its
Teff . If you also have a way to estimate its radius, then you can calculate its luminosity, and by comparing
its absolute magnitude to its apparent magnitude you could again estimate the distance.

(e) Explain why most of the stars you can see with your own eyes in the night sky are giants and supergiants
(10s to 100s of R�), even though these stars account for only ∼1% of all stars (most stars are < 1R�). [6
pts]
Solution: Giants and supergiants are larger than normal stars, so even though they are (sometimes) rather
cool they still benefit from the R2

∗ term in the Stefan-Boltzmann luminosity equation; so they are far
brighter than the smaller ‘dwarf’ stars. The sort of observational effect described in this problem is a
well-known bias in observational astronomy: things that are brighter are always easier to see and count,
so they seem more abundant than they really are. (If you look down on a city at night from an airplane
or high-resolution satellite image, you would count more street lamps than standard-size light bulbs – but
that might not be an accurate estimate of the relative number of these two types of lights in the city).

2. Order-of-Magnitude Estimation [20 pts].

(a) You observe a giant star that is twice the size of the Sun but has the same effective temperature. Estimate
the star’s luminosity in L�.
Solution: Since we know that

L

L�
=

(
R

R�

)2 (
Teff

Teff,�

)4

(3)

and we have R = 2R� and the Solar Teff , we must have L = 4L� .

(b) You observe a star that is half the size of the Sun but just 2% as luminous. Estimate the star’s approximate
Teff .
Solution: Again, the same relation applies. In this case we have

Teff

Teff,�
=

(
0.02× 0.5−2

)1/4 ≈ 0.081/4 ≈ 0.53. (4)

Since the Sun’s effective temperature is roughly 5800 K, our star has Teff ≈ 3100 K .

(c) You observe a hot star that is just as luminous as the Sun but 10× hotter. Estimate the star’s approximate
size in R� and in R⊕.
Solution: We can use the same relation as above, rearranged to find R. In terms of Solar units, we have

R =
(
10−4

)1/2 → R = 0.01R� . (5)

Since the Sun is roughly 100× larger than the Earth, this means that our unusual hot star is tiny, ‘just’ the
size of a planet: R ≈ R⊕ .

(d) Estimate the wavelengths at which each of the three of the stars above emit most of their light. [4 pts]
Solution: We need to use Wien’s Law here, which tells us that a hot object’s temperature, T , is roughly
related to the wavelength of peak emission, λmax, by

λmax

1µm
=

3000 K

T
. (6)

Star (a) has Ta ≈ T� ≈ 6000 K, star (b) has Tb ≈ 3100 K ≈ T�/2, and star (c) has Tc ≈ 10T� ≈
60, 000 K. Since the Sun’s radiation peaks at roughly λmax,� ≈ (3000/6000) ≈ 0.5µm = 500 nm, we
expect these stars to peak at roughly: (a) 500 nm, (b) twice that, or 1000 nm = 1µm, and (c) a tenth that,
or 50 nm.
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(e) Estimate the energy of a single photon at each of those wavelengths, above. [4 pts]
Solution: We just need to recall that the energy of a single photon with frequency ν (“nu”) is E = hν,
where h is Planck’s constant, and that nu = c/λ, and then calculate E accordingly.
Alternatively, one can use the handy trick that the energy of a photon measured in electron-Volts (eV) is
roughly

E

1 eV
≈ 1 µm

λ
. (7)

From the wavelengths above, this would imply photon energies of 2 eV, 1 eV, and20 eV . With 1 eV

≈ 1.6× 10−19 J, this corresponds to photon energies of roughly (3.2, 1.6, 32)× 10−19 J .
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