
UNIVERSITY OF KANSAS
Department of Physics and Astronomy

Physical Astronomy (ASTR 391) — Prof. Crossfield — Spring 2022

Problem Set 4
Due: Monday, Feb 21, 2022, at the start of class
This problem set is worth 51 points (+10 bonus).

As always, be sure to: show your work, circle your final answer, and use the appropriate number of significant figures.

1. Stellar Types [24 pts]

(a) Devise your own mnemonic for remembering the stellar spectral sequence. [1/2 pt per spectral type]
Solution: For the Stellar types (if we include the brown dwarfs through L/T/Y), we might say:
Orangutans build a fine grass kimono, merely lowering their yields.
Onagers been angling for good Khartoum mincemeat, lightly toasted: yeah!

(b) Estimate the approximate stellar type and luminosity class for the three stars in PSet3, Question 2 (i.e., the
giant star, the small star, and the hot star). [6 pts]
Solution: The first star: a star larger than the Sun but the same temperature would be a subgiant or giant,
probably luminosity class IV or III. Since it has the same temperature as the Sun (which is G2V), this star
would be G2III/IV.
The second star: a small, relatively cool star would be a ‘red dwarf.’ It would have spectral type M and
luminosity class V. If you want to get a bit more specific, this would be (roughly) an M2V star.
The third star: Such a small, hot star would be a ‘white dwarf,’ the leftover core of a dead star. This is what
our Sun will become in roughly 5 Gyr. (We haven’t learned about white dwarfs yet — these stars really
confused astronomers, too, when they were first discovered! If you guessed an “O dwarf” since the star is
both hot and small, you’ll get full credit).

(c) For the next three questions, consider two stars with different apparent brightness in the B and R pho-
tometric bandpasses. From your photometry, you correctly infer than star one is redder, and star two is
bluer.

i. Which star is hotter and which cooler? Explain. If one can’t tell from the information given, describe
what additional information you would need. [5 pts]
Solution: The brightness in the blue B and red R bands will tell us which star is hotter or cooler;
hotter objects tend to have bluer spectra, while cooler objects tend to be redder. So
Star 2 has a bluer color and is likely hotter than star 1 .

ii. Which star is (intrinsically) brighter and which fainter? Explain. If one can’t tell from the information
given, describe what additional information you would need. [5 pts]
Solution: All we’re given is the colors of the two stars. To know their intrinsic brightness (or absolute
magnitude) we would need to know the particular B- or R-band brightness measured, along with the
distance to the star. Stars that are hot or cool can both be either large or small depending on the
luminosity class (dwarf, giant, etc.). So we can’t tell from the information given.

iii. Which star is more massive and which less? Explain. If one can’t tell from the information given,
describe what additional information you would need. [5 pts]
Solution: We have just as little insight here as we did for the luminosity of the two stars. A hot star
can be anywhere from 2M� to 50M� (or it could even be a tiny, but hot, white dwarf!), and a cool
star could be anywhere from 0.1M� to 10−20M�. So while star 1 might be slightly more likely to be
lower-mass, it wouldn’t be right to claim that with any certainty. Instead, we’d need some additional
pieces of information: if the star were in a binary we could measure its mass via the Doppler shift;
if we took a detailed spectra we might be able to derive a precise mass by comparing it to spectra of
other, known stars.
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2. Angles & Distance in a Binary Star System [8 pts]

(a) You observe a binary star system (two stars orbiting each other) and from your observations you correctly
infer that the stars are separated from each other by 100 au and are both 500 pc from the Earth. (i) What is
the parallax to the binary system? (ii) What is the maximum angular separation of the two stars as viewed
from Earth? [8 pts]
Solution: For the parallax, we just use the same equation as before. We find

θplx =
1′′

500
= 2 mas . (1)

The maximum angular separation of this binary is just the ratio of the distance scales involved:

θbin =
100 au

500 pc
. (2)

Since the parallax equation tells us that 1 AU and 1 pc makes an angle of 1”, the binary thus subtends an
angle on the sky of:

θbin =
100′′

500
= 200 mas . (3)

Often the astrometric (angular) motion resulting from stars orbiting each other is much larger than the
parallax signal that gives us the distance to the system. But as we’ll see in this class, both quantities are
often of considerable importance.

3. A Circumbinary Planet [13 pts]. A star system has two similar stars orbiting each other; the orbit has an
apparent (i.e., angular) semimajor axis of 2”, and the parallax to the system is 100 mas (milli-arcsec).

(a) Estimate the physical semimajor axis of the orbit in AU. [4 pts]
Solution: The apparent (angular) semimajor axis is φ=2”. If we knew the distance we could calculate the
physical semimajor axis a. Instead we’re only given the parallax, which we can use to find the distance.
If the parallax were 1” then the distance would be 10 pc; the parallax is actually 10× less so the distance
is greater by the same amount. Thus, d = 10 pc.
If the distance were just 1 pc, then a 2” semimajor axis would imply a = 2 au. Instead the system is 10×
futher away, so we must have a = 20 au .

(b) If the orbital period of the binary is estimated to be 100 yr, estimate the total mass in the binary and the
approximate mass of each component, in M�. What kind of stars are these likely to be? [5 pts]
Solution: We know from Kepler’s Laws that

(P/1 yr)2(Mtot/M�) = (a/1 au)3. (4)

In this case P ≈ 100 yr and a = 20 au, so we have

Mtot ≈ 203 × 100−2 yr→ Mtot ≈ 0.8M� . (5)

Since we’re told that the stars are similar, we can safely assume m1 ≈ m2 ≈Mtot/2 = 0.4M� . With
this mass, the system must be an M-dwarf binary.

(c) The binary is discovered to host a circumbinary planet — i.e., a planet in a wide orbit going around both
of the two stars — at an average angular separation from the binary of 20 arcsec on the sky. Assuming the
planet is on a circular orbit, estimate the planet’s semimajor axis in AU, orbital period in years, and orbital
velocity in SI units. [4 pts]
Solution: We know the orbital velocity (assuming a circular orbit) will just be v = 2πa/P , but we don’t
know a or P . We can estimate both of these as in the preceding parts.
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Since the angular semimajor axis is 20” and we know d = 10 pc, we must have a = 200 au. Then from
Kepler’s Laws, we can estimate the period as

P/(1 yr) ≈ 2003/2 × 0.8−1/2 ≈ 2800× 1.1→ P ≈ 3000 yr. (6)

(Note that we have assumed Mtot is just the mass of the stars – this is a reasonable assumption if we know
that this new object is a planet, since in general Mplanet �M∗).
This means that the planet’s orbital velocity is just

v =
2π × 200 au

3000 yr
≈ 1200× 1.5× 1011

3000× 107
m s−1 ≈ 3× 103 m s−1 . (7)

4. Order of Magnitude [6 pts]. In SI units:

(a) Estimate the luminosity of an ice cube.

(b) Estimate the luminosity of your body.

(c) Estimate the luminosity of the Earth.

Solution: For all of these, the general solution will take the form L = AσT 4, where A is the surface area
of the object and σ ≈ 6 × 10−8 in SI units. Let’s take an ice cube that’s s=2 cm across, so Aice = 6s2 ≈
6(0.02m)2 ∼ 0.002 m2. I’ll assume a tall, narrow, cylindrical human body with height of 2 m and radius
10 cm, so Ame ≈ 2π(2 × 0.1) m2 ∼ 1 m2. Finally, the Earth is nearly a sphere and so A⊕ = 4πR2

⊕ ≈
(12)(6, 000, 000m)2 ∼ 4× 1014m2.

We then have:
Lice ≈ (0.002)(6× 10−8)(270 K)4 ≈ 81× 10−2 ∼ 1 W . (8)

An ice cube emits roughly 1 W of power! More than I would have guessed...

Lme ≈ (1)(6× 10−8)(300 K)4 ≈ 6× 81 ∼ 500 W . (9)

... but the ice cube still emits a lot less than a human body...

L⊕ ≈ (4× 1014)(6× 10−8)(300 K)4 ≈ 24× 106 × 81× 108 ∼ 2× 1017 W . (10)

... and both ice cubes and humans emit a lot less than the Earth (which is itself a lot less than the sun, L� ≈
4× 1026 W).

5. Bonus: Orbital Energy [10 pts]. Assume a planet of massm is in a circular orbit with semimajor axis a around
a star of mass M∗.

(a) What is the gravitational potential energy of this two-body binary system? [1 pt]
Solution: From introductory physics, this is just

UG = −GmM∗
a

. (11)

(b) What is the kinetic energy of the system in terms of the planet’s orbital velocity v? [1 pt]
Solution: From introductory physics, this is just

K =
1

2
mv2 . (12)

3



(c) Describe (or draw a diagram) indicating the direction and magnitude of the astronomically relevant forces
acting on the planet. Remember, things like ‘centripetal forces’ aren’t real physical forces – they’re essen-
tially just (useful!) descriptions of motion. [2 pts]
Solution: The only force acting on the planet is the force of gravity from the star it orbits. This is an
attractive force, pulling the planet toward the star (the force is perpendicular to the planet’s circular orbital
motion). The magnitude of the force is given by

Fp,tot =
GmM∗
a2

. (13)

(d) Using Newton’s Second Law, derive an expression for the planet’s orbital velocity v2 in terms of the other
quantities given. [3 pts]
Solution: Newton’s second law is just Ftot = ma = mr̈ (writing the acceleration as the second time
derivative of r, lest we confuse acceleration and semimajor axis).. We already calculated the force, im-
mediately above. For our planet, the right-hand side of Newton’s second law means that since it is on
a circular orbit it is undergoing uniform circular motion — thus it undergoes centripetal acceleration,
r̈ = ar = v2/r. Equating the force (physics) with the mass times acceleration (dynamics), we have:

GmM∗
a2

=
mv2

a
. (14)

Rearranging for v2, we have

v2 =
GM∗
a

. (15)

(e) Write an expression for the total energy in the system in terms of m, M∗, and a but not v. Simplify your
answer as much as possible. [3 pts]
Solution: Since the total mechanical energy of a system is just Etot = U +K, we have

Etot =
1

2
mv2 − GmM∗

a
. (16)

Plugging in our expression for v2 above, we find that

Etot = 1
2
GmM∗

a − GmM∗
a (17)

= −1

2

GmM∗
a

. (18)

This result indicates that the total energy of a gravitational system is typically just Etot = Ug/2, a result
known as the virial theorem that is of great interest to dynamicists.
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