
UNIVERSITY OF KANSAS
Department of Physics and Astronomy

Physical Astronomy (ASTR 391) — Prof. Crossfield — Spring 2022

Problem Set 5
Due: Monday, Mar 21, 2021, in class

This problem set is worth 30 points (plus 10 potential bonus points).

As always, be sure to: type and print your solutions, show your work, circle your final answer, and use the
appropriate number of significant figures.

1. Journey to the Center of a Star [30 pts]

(a) [5 pts] In lecture we discussed at some length how we can model the physical conditions in a star’s interior.
Assume the star has a slightly more realistic density profile (valid from 0 ≤ r ≤ R∗) of

ρ(r) = ρc
(
(r/R∗)

2 − 2r/R∗ + 1
)
= ρc

(
r

R∗
− 1

)2

(1)

Plot ρ(r) over the full range from r = 0 to r = 2R∗. Discuss why this density profile might be slightly
more realistic than the constant-density model we assumed in class.
Solution:
Just by plugging in a few test values, we can see how the density behaves. For r = 0 we have ρ = ρc, and
for r = R∗ we have ρ = 0, so the density appears to decrease from the center out to the surface, as we
expect. For an intermediate value such as r = R∗/2, we see ρ = ρc/4; from this and more test points, or
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Figure 1: Density in the star for the functional form given. The vertical dotted line indicates the stellar surface.
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from the quadratic functional form, we could see that ρ(r) peaks at the core and decreases quadratically
down to zero at r = R∗. The full plot is shown in Fig. 1.
This is a bit more realistic because we should expect density (along with pressure, temperature, and related
quantities) to be highest in the core and smallest out near the surface.

(b) [5 pts] Show that the expression for the Enclosed Mass Menc(r) at an arbitrary radius r within this star is

4πρcr
3

(
r2

5R2
∗
− r

2R∗
+

1

3

)
(2)

Solution: To determine the enclosed mass within a radius r we use the recipe

Menc(r) ≡
∫ r=r

r=0

4πr2ρ(r)dr. (3)

Plugging in our expression given for ρ(r), we have

Menc(r) ≡
∫ r=r
r=0

4πr2ρc
(
(r/R∗)

2 − 2r/R∗ + 1
)
dr (4)

= 4πρc
∫ r=r
r=0

r2
(
(r/R∗)

2 − 2r/R∗ + 1
)
dr (5)

= 4πρc
∫ r=r
r=0

(
(r4/R2

∗)− 2r3/R∗ + r2
)
dr (6)

= 4πρc

(
r5

5R2
∗
− 2 r4

4R∗
+ r3

3

)
(7)

= 4πρcr
3

(
r2

5R2
∗
− r

2R∗
+

1

3

)
(8)

(9)

(c) [5 pts] Using the expression above for Menc(r), show that the gravitational acceleration gin(r) inside this
star will be

g(r) = 4πρcGr

(
r2

5R2
∗
− r

2R∗
+

1

3

)
. (10)

.
Solution: Remember that the gravitational acceleration in a star is just

ginside(r) ≡
GMenc(r)

r2
. (11)

This means the gravitational acceleration inside a star is just

g(r) = G
r2 4πρcr

3
(
r2

5R2
∗
− r

2R∗
+ 1

3

)
(12)

= 4πρcGr

(
r2

5R2
∗
− r

2R∗
+

1

3

)
(13)

(14)

(d) [6 pts] Plot Menc(r) and gin(r) over the range from r = 0 to 2R∗.
Solution: The plots are shown in Fig. 2.

(e) [4 pts] Starting with the equation of hydrostatic equilibrium (dP/dr = −ρ(r)g(r)), we could continue
in this vein and calculate the internal pressure and temperature of the star – but things would quickly get
really messy.
Instead, we can make a rough approximation to get a sense of the conditions inside the star, by assuming
that dP/dR ≈ Pc/R∗ (i.e., the pressure at the center of the star divided by the star’s radius), and further
assuming density and gravity are constant: ρ(r) = ρavg and g(r) = gsurface.
Under these simplifying assumptions, the pressure at the center of the star is just Pc ≈ ρavggsurfR∗.
Calculate a numerical value of Pc (in SI units) for the Sun, and for a red dwarf with M∗/M� = R∗/R� =
0.3. How do these compare to the atmospheric pressure here on Earth?
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Solution: As directed, we make the greatly-simplifying assumption that the central pressure in the star is
just Pc ≈ ρavggsurfR∗. We’re asked to estimate this quantity for both the Sun and an M dwarf. We’ll need
to calculate their average density (M∗/[

4
3πR

3
∗]) and surface gravity (GM∗/R

2
∗). So the final expression

we want is

Pc ≈ ρavggsurf (15)
≈ M∗

4
3πR

3
∗

GM∗
R2

∗
R∗ (16)

≈ 3GM2
∗

4πR4
∗
. (17)

Star M∗/M� R∗/R� ρavg [kg/m3] gsurf [m/s2] Pc [Pa]

Sun 1 1 1400 270 2.7× 1014

M dwarf 0.3 0.3 15700 910 3.0× 1015

Pressure at sea level is 1 bar≈ 105 Pa, so the pressure at the center of these stars is roughly 10 billion times
greater!

(f) [5 pts] Assume that our star is an ideal gas made entirely of hydrogen atoms. In this case, derive a symbolic
expression for the temperature Tc at the center of a star in terms of its pressure and density.
Then, calculate a numerical value for the central temperature of both the Sun and the M dwarf described
above. How do these compare to the surface temperatures of these stars?
Solution: Since we’re told to assume that the star is an ideal gas, it must obey

P = nkBT (18)

everywhere (including at its core, where we’d specifically be considering Pc, nc, and Tc).
Since we’re asked to give the answer in terms of density (not number density), we’ll have to remember that
n = ρ/mavg, wheremavg is the average mass of particles under consideration – in this case, just hydrogen
atoms. So our expression is then

Tc ≈
mavg

kB

Pc
ρavg

. (19)

Tc ≈ Pcmavg

ρkB
(20)

≈ 3Gmavg

4πkB

M2
∗

R4
∗ρavg

(21)

≈ Gmavg

kB
M∗
R∗

(22)
(23)
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Figure 2: Enclosed mass (left) and gravity right) in the star. The vertical dotted line indicates the stellar surface.
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Taking mavg = mH ≈ (1/6)× 10−26 kg, kB ≈ (1/7)× 1022 J/K, and G ≈ (2/3)× 10−11 (in SI units),
we then find

Tc ≈ 2.3× 107 K (24)

for both the Sun and for the M dwarf.

2. BONUS: Under Pressure [10 pts]

(a) [6 pts] Using Equations 1, 2, and 10, calculate an analytic expression (i.e., a formula) for the pressure
inside the star.
Solution: As we discussed in class, the equation of hydrostatic equilibrium can be rewritten in integral
form to get the pressure profile, P (r), throughout the interior of a star. This is:

P (r) =

∫ R∗

r

ρ(r)g(r)dr (25)

Since Eqs. 1 and 10 give ρ(r) and g(r), respectively, we can plug them in and then find:

P (r) =
∫ R∗
r

[
ρc
(
(r/R∗)

2 − 2r/R∗ + 1
)] [

4πρcGr
(
r2

5R2
∗
− r

2R∗
+ 1

3

)]
dr (26)

= 4πρ2cG
∫ R∗
r

[(
(r/R∗)

2 − 2r/R∗ + 1
)] [

r
(
r2

5R2
∗
− r

2R∗
+ 1

3

)]
dr (27)

(28)

This will quickly become a morass of polynomial terms — if you don’t use your favorite tool (e.g., Math-
ematica or something similar) or just calculate P numerically then trouble is likely near.

(b) [4 pts] Plot P (r) over the range from r = 0 to 2R∗.
Solution: I chose a numerical solution, and the result is shown in Fig. 3.
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Figure 3: Pressure in the star for the quadratic density profile given in Eq. 1. The vertical dotted line indicates the
stellar surface.
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