
UNIVERSITY OF KANSAS
Department of Physics and Astronomy

Physical Astronomy (ASTR 391) — Prof. Crossfield — Spring 2020

Problem Set 6
Due: Monday, April 27, 20222, 11am Kansas Time

This problem set is worth 53 points.

As always, be sure to: show your work, circle your final answer, and use the appropriate number of significant figures.

1. Our home, the Milky Way [15 pts] Draw a rough sketch of our Milky Way galaxy as it might be viewed from
an outside observer, as both a top-down and edge-on view. At a minimum, include and label the Galactic Center,
bulge, halo, disk, spiral arms, and the Sun, as well as a scale bar.

Solution: A search online can find dozens (if not hundreds) of Milky Way schematic diagrams. Go check them
out!

2. Other Galaxies [15 pts]

(a) [3 pts] List three ways astronomers might measure the distance to a distant Galaxy.
Solution:

i. Observe Cepheid variable stars in it and use the period-luminosity relation (along with the stars’
apparent brightness) to estimate the distance.

ii. Detect a type-Ia supernova in the galaxy, and use its light curve and apparent maximum brightness as
a “standardizable candle” to estimate the distance.

iii. Measure the redshift of the Galaxy’s spectrum, and use the Hubble Law to estimate the distance.
iv. Measure the Galaxy’s rotation speed, and use the Tully-Fisher (or Faber-Jackson) relation to estimate

its intrinsic luminosity; with its apparent brighness, estimate the distance.

(b) [3 pts] A 2019 article in the journal Nature celebrated that year’s Nobel Prize by writing that the award
was given for “the first report of an exoplanet orbiting around a Sun-like star in another galaxy.” Describe
what is wrong with this statement, and how you would correct it.
Solution: The poor author apparently didn’t know the difference between a solar system (one star orbited
by a few planets) and a galaxy (billions and billions of stars all orbiting their common center of mass).
They should have said “the first report of an exoplanet orbiting around a Sun-like star in another solar
system” (or “in our Milky Way galaxy”).

(c) [3 pts] The closest sizable galaxy to the Milky Way is Andromeda (also known as M31), which you can
see from the Northern hemisphere on a dark night in the Autumn. If Andromeda is 770 kpc away, and is
roughly the same physical size as the Milky Way, what is its approximate angular diameter on the sky?
Solution: We know the angular size of an object with radius R and distance from the observer d will just
be 2R/d radians, or roughly 100R/d degrees. The radius of the Milky Way’s disk is roughly 20 kpc –
if we assume Andromeda is the same size, then we have R/d = 20/770 ≈ 0.026, and so Andromeda
should be 2–3 degrees across on the sky. Lo, various websites also confirm that it is around 178 arcmin ≈
3 degrees across!

(d) [6 pts] Sketch the ‘tuning-fork’ diagram used for galaxy classification, and describe the properties of the
main types of galaxies shown there.
Solution: These include elliptical galaxies which can have the largest mass and are typically reddish-
colored due to their lack of young stars and spiral galaxies, which are also fairly massive but have much
more gas and dust, much higher rates of star formation, and so often have a more bluish color. There
are both ‘typical’ spirals and ‘barred’ spirals, as well as ‘lenticular’ galaxies whose properties may be
intermediate between those of ellipticals and spirals.
There are also irregular and dwarf galaxies, but they don’t appear on the usual ‘tuning form’ classification
diagram.
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http://astropixels.com/galaxies/M31-01.html


3. Space is Big. Really Big. [10 pts] Plot the distance to the following objects on a (1D) logarithmic number line
(e.g., with regularly-spaced intervals on the page indicating 1/10, 1, 10×, etc.):

(a) Moon

(b) Sun (closest star)

(c) Neptune

(d) Alpha Centauri (closest non-Sun star)

(e) Sagittarius A*

(f) Large Magellanic Cloud

(g) Andromeda Galaxy

(h) Distant galaxy with redshift z = 1 (d = 4.3 Gpc).

Solution: All of these distances can be looked up, and converted to parsecs. You can then plot them, e.g. as
follows:

from pylab import *

distances = [1.3e-8, 4.8e-6, 1.4e-4, 1.3, 8500, 50000, 770000, 4.3e9]
names = [’Moon’, ’Sun’, ’Neptune’, ’$\\alpha$ Centauri’, ’Sgr A*’, ’LMC’,

’Andromeda’, ’z=1’]

figure(1, [2, 8])
gca().set_position([0.3, 0.03, .65, .9])
for dist,nam in zip(distances, names):

semilogy(0, dist, ’ok’)
text(0, dist, ’ ’+nam, rotation=45, fontsize=12, verticalalignment=’bottom’)
xticks([0], [])
ylabel(’Distance from Earth [pc]’, fontsize=14)

yl = ylim()
xlim(-.25, .75)
plot([0,0], yl, ’:k’)
gca().set_yticks(10.**np.arange(-8, 11), minor=True)
ylim(yl)
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Figure 1: Left: Plotted distances. Right: from XKCD.
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https://xkcd.com/482/


4. Rotation Curves [13 pts] A key insight in astronomy is that if we can see one object orbiting another, we can
measure the total mass enclosed by the orbit using Kepler’s Third Law. In Solar-System units, this is(

P

yr

)2
Menclosed

M�
=
( r

AU

)3
. (1)

This applies to binary asteroids, planets with moons, stars with planets, and – as you will see here – even for
distant galaxies.

(a) [5 pts] Using the expression above, show that for a small mass in a circular orbit a distance r from a much
larger amount of mass Menclosed, the orbital speed just depends on the mass interior to the orbit as

vorb ≈ 30 km s−1

√
Menc/M�

r/AU
. (2)

(As an alternative approach, you can try equating the gravitational force between the objects to the expres-
sion for a centripetal force.)
Solution: We know that an object’s speed in an orbit of radius r and with period P is just v = 2πr/P . To
get r/P from Kepler’s third law, we just rearrange it to get

( r

AU

)2(P
yr

)−2

=
AU

r

Menc

M�
(3)

and so
r

AU

(
P

yr

)−1

=

(
AU

r

Menc

M�

)1/2

, (4)

which becomes
r

P
=

(
AU

r

Menc

M�

)1/2
AU

yr
≈ 4.7

(
AU

r

Menc

M�

)1/2

km s−1. (5)

We then plug this into v = 2πr/P ≈ 6.3r/P , to find

vorb ≈ 6.3× 4.7

(
AU

r

Menc

M�

)1/2

km s−1 ≈ 30

(
AU

r

Menc

M�

)1/2

km s−1 . (6)

(b) [3 pts] A wide range of objects orbit our Sun, from Mercury out to Neptune, Pluto, and beyond. Assuming
all objects orbiting the Sun have circular orbits, plot their orbital speeds vs. semimajor axis — i.e., plot the
above expression vorb, the rotation curve for things orbiting around a single massive object.
Solution: Fig. 2 plots the orbital velocity, assuming a circular orbit, for the Solar System.

(c) [5 pts] Roughly sketch the rotation curve (vorb vs. r) for a typical spiral galaxy. How is this similar to the
previous plot you drew, for the Solar System? how is it different? What do the differences imply for what
makes up most of the mass in galaxies, vs. what makes up most of the mass in a Solar system?
Solution: A typical rotation curve is shown in Fig. 3. The main similarities are just qualitative, in that
both plots show orbital velocity vs. orbital semimajor axis (distance from the center). The key difference
is that in the Solar System orbital velocity drops rapidly as r increases, but in a galaxy orbital velocity
is (roughly) constant even to very large separations – the speed drops much more slowly than would be
predicted. It turns out that this is because Dark Matter (not stars or gas or dust!) makes up most of the
mass in a galaxy, while in a Solar System the star is by far the most significant mass present.
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Figure 2: Orbital velocity vs. semimajor axis, for Solar System objects.

Figure 3: Rotational velocity for stars in a spiral galaxy (from https://milkyway.cs.rpi.edu/download/
images/gal_rotation_curve.png). The observed rotation curve is in green: stars orbit much more rapidly
than would be naively expected (blue, predicted rotation speeds) – this is because of the presence of dark matter
(contribution indicated by dotted line).
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https://milkyway.cs.rpi.edu/download/images/gal_rotation_curve.png
https://milkyway.cs.rpi.edu/download/images/gal_rotation_curve.png


(d) [13 pts] BONUS POINTS (optional): Assume you have a spherically symmetric cloud of material, with
a density profile ρ(r) = `0r

−2, where `0 is some reference density with units kg/m. (Obviously this
functional form is nonphysical since ρ(r = 0)→∞, but set that aside for now – it’s only a model).

i. Calculate Menclosed as a function of r and `0 (as necessary). [3 pts]
Solution: As we recall from modeling stellar interiors, we know that

Menc(r) =

∫ r

0

4πr2ρ(r)dr. (7)

In this case, we’ll then have

Menc(r) =
∫ r

0
4πr2`0r

−2dr (8)

= 4π`0
∫ r

0
dr (9)

= 4π`0r (10)

ii. Use Menclosed to calculate the orbital velocity vorb for objects orbiting in this cloud as a function of r
and `0 (as necessary). [4 pts]
Solution: As for the orbital velocity, we know

vorb ≈ 30 km s−1

√
M/M�

r/AU
. (11)

For the situation described above, this will become

vorb ≈ 30 km s−1
√
4π
√

`0r
M�

AU
r (12)

≈ 100 km s−1

√
`0 × (1 AU)

M�
. (13)

iii. If this object is a galaxy and the rotation speed of stars in its outer reaches (rmax ≈ 10 kpc) is observed
to be roughly 200 km/s, what is `0 (in kg/m)? Then (the final goal!) use `0 to calculate the total mass
involved, Menc(r = rmax), in Solar masses M�. [6 pts]
Solution: If the rotation speed is given by

vorb = 200 km s−1 ≈ 100 km s−1

√
`0 × (1 AU)

M�
(14)

then we must have
`0 × (1 AU)

M�
= 4 (15)

and so

`0 = 4
M�

1 AU
≈ 5.3× 1019 kg m−1 . (16)

Based on the relation for enclosed mass, we then have:

Menc = 4π`0r (17)
= 4π

(
5.3× 1019 kg m−1

)
(10 kpc) (18)

≈ 12
(
5.3× 1019 kg m−1

) (
104 × 3× 1016 m

)
(19)

≈ 12× 5.3× 3
(
×1019 kg m−1

) (
1020 m

)
(20)

≈ 200
(
×1039 kg

)
(21)

≈ 100
(
×109M�

)
(22)

≈ 1011M� (23)

So this rotation curve and galaxy mass describe a system not so very different from the Milky Way!
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