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FUNDAMENTALS OF
RADIATIVE TRANSFER
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1.1 THE ELECTROMAGNETIC SPECTRUM;
ELEMENTARY PROPERTIES OF RADIATION

Electromagnetic radiation can be decomposed into a spectrum of con-
stituent components by a prism, grating, or other devices, as was dis-
covered quite early (Newton, 1672, with visible light). The spectrum
corresponds to waves of various wavelengths and frequencies, related by
Av=c, where » is the frequency of the wave, A is its wavelength, and
¢=3.00x10" cm s~! is the free space velocity of light. (For waves not
traveling in a vacuum, ¢ is replaced by the appropriate velocity of the wave
in the medium.) We can divide the spectrum up into various regions, as is
done in Figure 1.1. For convenience we have given the energy E = Av and
temperature 7= E/k associated with each wavelength. Here % is Planck’s
constant=6.625x 10~%" erg s, and k is Boltzmann’s constant=1.38 x 10716
erg K~'. This chart will prove to be quite useful in converting units or in
getting a quick view of the relevant magnitude of quantities in a given
portion of the spectrum. The boundaries between different regions are
somewhat arbitrary, but conform to accepted usage.
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If we regard the sphere S, as fixed, then

F= constant
I (1.1)

fog T(°K) Temperature This is merely a statement of conservation of ener
gy.
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this fact a substantial theory (transfer theory) can be ere
justification of this assumption is considered at the end of Chapter 2. One ray (see Fig. 1.2). The . ‘
is is that of energy flux: consider an element range dv is then defined li;’li;xgeyreclmssmg dA in time dt and in frequency
ation

of the most primitive concep

of area dA exposed 10 radiation for a time dt. The amount of energy
passing through the element should be proportional to dA dt, and we write
it as FdA dt. The energy flux F is usually measured in erg s~ ! cm ™2 Note
that F can depend on the orientation of the element.

dE=1,dA drdQd, (12)
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Flux from an Isotropic Source—the Inverse Square Law

A source of radiation is called isotropic if it emits energy equally in all

directions. An example would be a spherically symmetric, isolated star. If

we put imaginary spherical surfaces S, and S at radii r, and 7, respectively,
of energy that the total energy

about the source, we know by conservation
passing through S; must be the same as that passing through S. (We

assume no energy losses of gains between S, and S.) Thus

dA =
L b Ray

Nor;;— ————3

Figure
1.2 Geometry for normally incident rays.

F(r,) Aqr?= F(r)- Aqr?,
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dimensions

1,(v,2) =energy (time)"l (arfaa)'l (solid angle)"1 (frequency)"
—=ergss”’ em~2ster ' Hz "

ation in space, on direction, and on frequency.

Note that , depends on loc

Net Flux and Momentum Flux

Suppose now that we have a radiati

construct a small element of area dA at some a
Fig. 1.3). Then the differential amount of flux from the solid angle d€2 is

(reduced by the lowered effective area cosfdA)

on field (rays in all directions) and
rbitrary orientation n (see

dF,(ergs™' em~2 Hz™ V) =1,cos0dS. (1.3a)
ained by integrating dF over all

The net flux in the direction m, F,(n) is obt:

solid angles:

F,= f I,cos8dg. (1.3b)

t a function of angle), then

Note that if I, is an isotropic radiation field (no
the net flux is zero, since fcosfd= 0. That is, there is just as much energy

crossing dA in the m direction as the —n direction.
To get the flux of momentum normal to d4 (momentum per unit time
per unit area = pressure) f a photon 1s

, remember that the momentum O
E/c. Then the momentum flux al gle 0 is dF,/c To get

ong the ray at an

Normal

Figure 1.3 Geometry for obliquely incident rays.
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the component
of momentum flux
normal .
factor of cosd. Integrating, we then obtain to dA, we multiply by another

p,(dynes cm~2 Hz ™! 1
m™? Hz™")=— [ 1, cos?4 Q. (14)

Note that F, and

: . # P, are moments (multiplicati

integration . . ultiplications b

v ;zrf auer over d{2) of' the intensity 7,. Of course WZ powers of 9050 and

quency to obtain the total (integrated) flux anfiagl allvivl?ys megrate
€ ke,

Flergs™ em™)= [ £, ds (1.52)
v 5a

p(dynes em™)= [, db (1.5b)
Hergs™ em™2ster™)= [ L,a (1.5¢)
I3 5c

Radiative Energy Density

The specific ener .
. gy density u, is defined

unit freque v > ined as the ener. € i

the ener(;‘ gcy range. To'determme this it is conv eg;’l é)ntr tumt vO!ume per
e i . leu;nmly per unit solid angle u,(Q) by dE=u (Q)svosnmder first-.
1.4). Since th e element. Consider a cylinder about a 2 Qdv where®
- Since the volume of the cylinder is ddcdt ray of length ct (Fig.

dE= uv(ﬂ) dAcdtdQady.

Radiation tra

vels at velocity ¢, s o
] ) , so tha m .
cylinder will pass out of it: t in time 4t all the radiation in the

dE=1,dAdQdtdy.

ds = cdt |

Figure
1.4  Electromagnetic energy in a cylinder.
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two expressions yields

d (1.6)

»

u(Q)="7"

Equating the above

Integrating over all solid angles we have

u,= f u,(ﬂ)d9=—lc- f 1,49,

or
Am (1.7)
=2,
ul’ c 4
j ity J,:
where we have defined the mean intensity J,
J = f 1,dS (1.8)
v 4w |
is si ined by integrating ¥,
The total radiation density (erg cm™3) is simply obtained by
e to

over all frequencies

u=fu,,dv=ég-f.l,,dv. (1.9)

tainin
Radiation Pressure in an Enclosure Con g

an Isotropic Radiation Field

i re containing
ecting enclosu !
“ ff.rs twice its normal component

have the relation

an isotropic radiation field.

| ntum On
Consider a [ C T
Each photon irans

reflection. Thus we
2 2
= — os20d.
p=7 fl,,c

1 we integrate
ith our previous formula, Eq. (1.4), since here
es Wi

ans. Now, by isotropy, 1,=J,s0

p=—2—fJ,dvfcoszﬂdQ.
[

This agre .
only over 27 steradi

The angular integratien yields
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The radiation pressure of an isotropic radiation field is one-third the

energy density. This result will be useful in discussing the thermodynamics
of blackbody radiation.

Constancy of Specific Intensity Along Rays in Free Space

Consider any ray L and any two points along the ray. Construct areas dA,
and dA, normal to the ray at these points. We now make use of the fact
that energy is conserved. Consider the energy carried by that set of rays

passing through both d4, and dA4, (see Fig. 1.5). This can be expressed in
two ways:

dE, =1, dA,dtd,dv,= dE,=1I, dA,dtdSdv,.

Here d{2, is the solid angle subtended by d4, at d4, and so forth. Since
dQ,=dA,/R* dQ,=dA,/R? and dv,=dv,, we have

I,=1I.
Thus the intensity is constant along a ray:
I, =constant. (111)
Another way of stating the above result is by the differential relation

dl,
& =" (1.12)

where ds is a differential element of length along the ray.

Proof of the Inverse Square Law for a Uniformly Bright Sphere

To show that there is no conflict between the constancy of specific
intensity and the inverse square law, let us calculate the flux at an arbitrary

Figure 1.5 Constancy of intensity along rays.
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bright sphere.

Figure 1.6 Flux from a uniformly
brightness B (that is, all Tays leaving the
Such a sphere 1S clearly an isotropic

here of uniform
B if the ray intersects the sphere and

distance from 2 SP
sphere have the same brightness).
source. At P, the specific intensity is
zero otherwise (se€ Fig. 1.6). Then,

F= f1cos0d9=Bf()z”d¢f()”°sin9cosod0,

gle at which a ray from P is tangent 10 the

where 8,=sin”'R/7 is the an.
sphere. It follows that

F=mB(1—cos’ 6,)=mB sin?8,
or L
- / ,1-
ae = b =2 PTHDS
F=7TB(7) Yare? f (1.13)
Thus the specific intensity is constant, but the solid angle subtended by the
such a way that the inverse square law is

given object decreases in

recovered.
A useful

result is obtained by setting = R:
(1.14)

F=xB.

rm brightness B is simply 7B.

That is, the flux at a surface of unifo

1.4 RADIATIVE TRANSFER

If a ray passes through matter, energy may be added or subtr
by emission OF absorption, and the specific intensity
remain constant. «gcattering” of photons into and out of
also affect the intensity, and is treated later in §1.7 and 1.8.

acted from it

will not in general
the beam can

N R 3 -
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The spontan

. eous emission coefficient j i

unit ti . . icient j i1s defi

time per unit solid angle and p ei unitef,l:,lled as the energy emitted per
ume:

) dE=;dVdQdr.
monochromatic emissio i
n coefficient can be simi
larly defined so
that
dE=j,dVdQdtdy, (1
.15)

wl}ere J, has units of erg cm™3 s~ ! ster ™! Hz ™!
n general, the emissi ici i
mission coefficient depends on the direction i
ion into which

emission takes
plaCC. For an i .
ran . ) isotropic emi
domly oriented emitters, we can wnp 'teemltter’ or for a distribution of

jy= _Py,
4m (1.16)

where P, is the :
radiated .
Sometimes th power per unit v
e e olume ;
emissivity €, dsgci)xlll(:gneous emission is defined by tliter(alulgt e
frequency , defined as the energy emitted ¢ ntegrated)
per unit time per uni SIDItiEC spontameous] i
A t m . y per
the emission is isotropic, then ass, with units of erg gm™! s'll;I Z—]ilnll;

)
w

dE=e,,pdthdv%9, (
| - 1.17)
where p is the i
mass density of the emitting medium and the 1
e last factor

f
g a
4

j,= &P
v P N
(1.18)

g g
’

section dA4 travel

] thl‘ough
to the a volume dV = ]
beam by spontaneous emission is: dA ds. Thus the intensity added

dl,=j,ds.
(1.19)

Absorption

de mne the abso’pl ‘() coe '( 1€ y (s} I()“()wlllg e(ll]a“()ll
X : won fﬁ ] !
. 4 / .n ) ap(Cm ) b th i i




