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Radiation through empty space is what makes astronomy possible, but it isn’t
so interesting to study on its own. Radiative transfer, the effect on radiation
of its passage through matter, is where things really get going.

11.1  The Equation of Radiative Transfer

We can use the fact that the specific intensity does not change with distance to
begin deriving the radiative transfer equation. For light traveling in a vacuum
along a path length s, we say that the intensity is a constant. As a result,

(113) % = 0 (for radiation traveling through a vacuum)

This case is illustrated in the first panel of Figure 16. However, space (par-
ticularly objects in space, like the atmospheres of stars) is not a vacuum ev-
erywhere. What about the case when there is some junk between our detector
and the source of radiation? This possibility is shown in the second panel of
Figure 16. One quickly sees that the intensity you detect will be less than it
was at the source. You can define an extinction coefficient a, for the space
junk, with units of extinction (or fractional depletion of intensity) per distance
(path length) traveled, or m~! in SI units. For our purposes right now, we will
assume that this extinction is uniform and frequency-independent (but in real
life of course, it never is).

We also define

(114)
&y = noy

(115)
= pKy

Where 7 is the number density of absorbing particles and oy is their frequency-
dependent cross-section, while p is the standard mass density and «, is the
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Figure 16: The radiative transfer equation, for the progressively more compli-
cated situations of: (left) radiation traveling through a vacuum; (center) radia-
tion traveling through a purely absorbing medium; (right) radiation traveling
through an absorbing and emitting medium.
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frequency-dependent opacity. Now, our equation of radiative transfer has
been modified to be:

dl . ) )
(116) d—; = —uy I, (when there is absorbing material between us and our source)

As is often the case when simplifying differential equations, we then find
it convenient to try to get rid of some of these pesky units by defining a
new unitless constant: 7, or optical depth. If «, is the fractional depletion of
intensity per path length, 7, is just the fractional depletion. We then can define

(117) dT, = ayds

and re-write our equation of radiative transfer as:

al,
(118) i L

Remembering our basic calculus, we see that this has a solution of the type
(119)
S
IL(s)=L(0)exp | — /dT,,
0

(120)
= L,(0)e” ™ (for an optically thin source)

So, at an optical depth of unity (the point at which something begins to be
considered optically thick), your initial source intensity Iy has decreased by a
factor of e.

However, radiation traveling through a medium does not always result in
a net decrease. It is also possible for the radiation from our original source to
pass through a medium or substance that is not just absorbing the incident
radiation but is also emitting radiation of its own, adding to the initial radia-
tion field. To account for this, we define another coefficient: j,. This emissivity
coefficient has units of energy per time per volume per frequency per solid
angle. Note that these units (in S W m~3 Hz~! sr™!) are slightly different
than the units of specific intensity. Including this coefficient in our radiative
transfer equation we have:

dl .
(121) 7: =Jv — ayly

or, putting it in terms of the dimensionless optical depth 7, we have:

al, _ jy
(122) Ty = OTV

-1,
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After defining the so-called source function

_ v
(123) S, = m

v

we arrive at the final form of the radiative transfer equation:

dl,
(124) 7:: =S, — I,

11.2  Solutions to the Radiative Transfer Equation

What is the solution of this equation? For now, we will again take the simplest
case and assume that the medium through which the radiation is passing is
uniform (i.e., S, is constant). Given an initial specific intensity of I, (s = 0) =
I, o, we obtain

(125) I, = Lpe ™ + S, (1 —e™™) (for constant source function)

What happens to this equation when 7 is small? In this case, we haven't
traveled very far through the medium and so should expect that absorption
or emission hasn’t had a strong effect. And indeed, in the limit that 7, = 0 we
see that I, = I, .

What happens to this equation when T becomes large? In this case, we've
traveled through a medium so optically thick that the radiation has “lost all
memory” of its initial conditions. Thus e~ ™ becomes negligible, and we arrive
at the result

(126) I, = Sy (foran optically thick source)

So the only radiation that makes it out is from the emission of the medium
itself. What is this source function anyway? For a source in thermodynamic
equilibrium, any opaque (i.e., optically thick) medium is a “black body” and
so it turns out that S, = B, (T), the Planck blackbody function. For an optically-
thick source (say, a star like our sun) we can use Eq. 126 to then say that
I, = B,.

The equivalence that I, = S, = B, gives us the ability to define key proper-
ties of stars — like their flux and luminosity — as a function of their temperature.
As described in the preceding chapter, using Eq. 91 and 92 we can integrate
the blackbody function to determine the flux of a star (or other blackbody) as
a function of temperature, the Stefan-Boltzmann law:

(127) F=0oT*

Another classic result, the peak frequency (or wavelength) at which a star
(or other blackbody) radiates, based on its temperature, can be found by differ-
entiating the blackbody equation with respect to frequency (or wavelength).
The result must be found numerically, and the peak wavelength can be ex-
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pressed in Wien’s Law as

2.898 x 103 mK
T

(128) /\peak =

We can improve on Eq. 125 and build a formal, general solution to the
radiative transfer equation as follows. Starting with Eq. 124, we have

(129)
dl
a5, =S
14
(130)
dl
#ew = Sye™ — Ie™
v
(131)
A (Le™) = Sye™
i v v

We can integrate this last line to obtain the formal solution:

Ty
(132) L(t) = L(0)e™™ + / Su(1)e ™™ d]
0

As in our simpler approximations above, we see that the initial intensity I, (0)
decays as the pathlength increases; at the same time we pick up an increasing
contribution from the source function S, integrated along the path. In practice
Sy can be fairly messy (i.e., when it isn’t the Planck function), and it can even
depend on I,. Nonetheless Eq. 132 lends itself well to a numerical solution.

11.3  Kirchhoff’s Laws

We need to discuss one additional detail before getting started on stars and
nebulae: Kirchhoff’s Law for Thermal Emission. This states that a thermally
emitting object in equilibrium with its surrounding radiation field has S, =
By(T).

Note that the above statement does not require that our object’s thermal ra-
diation is necessarily blackbody radiation. Whether or not that is true depends
on the interactions between photons and matter — which means it depends on
the optical depth 7,.

Consider two lumps of matter, both at T. Object one is optically thick, i.e.
T, >> 1. In this case, Eq. 132 does indeed require that the emitted radiation
has the form I, (1) = Sy = By(T) — i.e., blackbody radiation emerges from
an optically thick object. This is mostly the case for a stellar spectrum, but not
quite (as we’ll see below).

First, let’s consider the other scenario in which our second object is opti-
cally thin, i.e. 0 < 1, << 1. If our initial specific intensity I, (0) = 0, then we
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have

(133)
L(t)=0+S(1-(1-n))

(134)
= 1,B,(T)

Thus for an optically thin object, the emergent radiation will be blackbody
radiation, scaled down by our low (but nonzero) 7.

It's important to remember that 7, is frequency-dependent (hence the v
subscript!) due to its dependence on the extinction coefficient a,. So most as-
tronomical objects represent a combination of the two cases discussed imme-
diately above. At frequencies where atoms, molecules, etc. absorb light most
strongly, «, will be higher than at other frequencies.

So in a simplistic model, assume we have a hot hydrogen gas cloud where
ay is zero everywhere except at the locations of H lines. The location of these
lines is given by the Rydberg formula,

1 1 1
(1 =R|—5-—
35) Avac1,2 1’1% n%

(where R = 1/(91.2 nm) is the Rydberg constant and n; = 1,2,3,4,5, etc. for
the Lyman, Balmer, Paschen, and Brackett series, respectively).

In a thin gas cloud of temperature T, thickness s, and which is “backlit”
by a background of empty space (so I, o ~ 0), from Eq. 134 all we will see
is 7By(T) = aysB,(T) — so an emission-line spectrum which is zero away
from the lines and has strong emission at the locations of each line.

What about in a stellar atmosphere? A single stellar T (an isothermal at-
mosphere) will yield just a blackbody spectrum, regardless of the form of
«y. The simplest atmosphere yielding an interesting spectrum is sketched in
Fig. 17: an optically thick interior at temperature Ty and a cooler, optically
thin outer layer at Tc < Ty.

///’ T}“d., ol '_Fcﬁb‘*\_\
T4 ket Ty

Figure 17: The simplest two-layer stellar atmosphere: an optically thick interior
at temperature Ty and a cooler, optically thin outer layer at Tc < Tj.

The hot region is optically thick, so we have [, = S, = B,(Ty) emitted
from the lower layer — again, regardless of the form of «,. The effect of the
upper, cooler layer which has small but nonzero 7, is to slightly diminish the
contribution of the lower layer while adding a contribution from the cooler
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layer:
(136)
I = L(0)e ™+, (1—e™ ™)

(137)

= By(Th)e™ ™ +By(Tc) (1 —e™™)
(138)

~ By(Ty)(1 — 1)+ By(Tc)wy
(139)

~ By(Ty) — t (By(Ty) — B, (T¢))
(140)

~ B,(Ty) — ays (By(Ty) — By(Tc))

So a stellar spectrum consists of two parts, roughly speaking. The first is
B,(Ty), the contribution from the blackbody at the base of the atmosphere
(the spectral continuum). Subtracted from this is a contribution wherever «,
is strong —i.e., at the locations of strongly-absorbing lines. As we will see later,
we can typically observe in a stellar atmosphere only down to 7, ~ 1. So at
the line locations where (absorption is nonzero), we observe approximately
By (T¢). Thus in this toy model, the lines probe higher in the atmosphere (we
can’t observe as deeply into the star, because absorption is stronger at these
frequencies — so we effectively observe the cooler, fainter upper layers). Mean-
while there is effectively no absorption in the atmosphere, so we see down to
the hotter layer where emission is brighter. Fig. 18 shows a typical example.
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Figure 18: Toy stellar spectrum (solid line) for the toy stellar model graphed
in Fig. 17.

Note that our assumption has been that temperature in the star decreases
with increasing altitude. More commonly, stellar models will parameterize an
atmosphere in terms of its pressure-temperature profile, with pressure P de-
creasing monotonically with increasing altitude. An interesting phenomenon
occurs when T increases with decreasing P (increasing altitude): in this case
we have a thermal inversion, all the arguments above are turned on their
heads, and the lines previously seen in absorption now appear in emission
over the same continuum. Thermal inversions are usually a second-order cor-
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rection to atmospheric models, but they are ubiquitous in the atmospheres of
the Sun, Solar System planets, and exoplanets.
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