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20.1 Useful references

• Prialnik, 2nd ed., Appendix B

• Choudhuri, Secs. 5.1–5.2

• Kippenhahn, Weiger, and Weiss, 2nd ed., Ch. 15

• Hansen, Kawaler, and Trimble, Sec. 3.5

20.2 Introduction

Nuclear burning continues until fuel is exhausted. For the Sun, the p-p chain
can continue for about 1010 yr. Once H is exhausted at the core, thermal pres-
sure is lost: the upper layers of the star are no longer supported, and the core
compresses. By the virial theorem, half of that gravitational binding energy
goes into heating the gas.

When we hit TC ∼ 108 K at the core, the triple-α process kicks in and
begins converting 4He into 12C. After that, ever-larger nuclei continue to fuse
until either (1) we get up to 56Fe or (2) something besides nuclear burning can
provide a (non-thermal) pressure source to maintain hydrostatic equilibrium.
For Sun-like stars, degeneracy pressure provides that support.

20.3 Degeneracy Pressure

Degeneracy pressure results from the Pauli exclusion principle, which states
that only one fermion is allowed to occupy any particular quantum state.
In effect, fermions begin to repel each other in order to keep their quantum
wavefunctions from overlapping.

Recall that in the very first lecture (Sec. 1, also in Sec. 20.2) we discussed
an order-of-magnitude criterion for a classical ideal gas, namely

(432) n � λ−3
D .

For ionized H gas, we found that this was equivalent to requiring

(433) ρ � 103 g cm−3
�

T
107K

�3/2
.

We will now improve on this using kinetic theory.
We previously defined the density of states in phase space (Eq. 96) to be

(434)
dN

d3rd3 p
= f (�r,�p).

We’ll make the simplifying assumption that f is both homogeneous (i.e., there
is no�r dependence) and isotropic (thus replacing �p with p). For fermions, we
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20.3. Degeneracy Pressure

Figure 39: Phase space density of fermions as a function of energy E. The
indicated value µ is the Fermi Energy. In the fully degenerate limit, the phase-
space density approaches a step function.

have seen that this takes the form (Eq. 148)

(435) f (p) =
2
h3

1
e[E−µ]/kBT+1

=
2
h3 nocc.

Here, µ is not the mean molecular weight but rather Ef , the Fermi energy
of the distribution. This quantity is derived by maximizing the number of
microstates given E, N, and no more than two particles per state (see Fig. 36).
So, much above Ef almost no states are occupied; much below it almost all
states are full.

The quantities derived from f (p) above are key for us. In particular, we
have the number density

(436) n =
�

f (p)d3 p

and also the gas pressure

(437) P =
1
3

�
vp f (p)d3 p.

Note that we can relate n, T, and µ – so typically we will solve for µ in terms
of these other variables.

Non-degenerate (classical) case:

In the classical limit, particles are widely spaced, n << λ3
D, and nocc << 1.

This means that exp[(E − µ)/kT] >> 1. Furthermore, if we are fully classical
then

(438) E =
p2

2m
.
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This means that we have

f ≈ 2
h3 e−E/kTeµ/kT

(439)

≈ 2
h3 e−p2/2mkTeµ/kT .

(440)

If we integrate Eq. 411 over momentum to find n, we can solve for µ and find
that

(441) f (p)
n

(2πmkT)3/2)
e−p2/2mkT

which we should recognize as being directly related to the Maxwell-Boltzmann
distribution for an ideal gas (Eq. 142).

Degenerate cases:

In the fully degenerate limit, particles are packed as tightly together as their
fermionic wavefunctions will allow. This means that

f (p) = 2/h3 (E ≤ µ)

(442)

= 0 (E > µ)
(443)

To calculate the number density from f (p), we again calculate

n =
�

f (p)d3 p

(444)

= 4π

pF�

0

2p2

h3 dp

(445)

=
8π

h3
p3

F
3

(446)

where pF is the Fermi momentum, at which E = µ. Given the number density
n, this means we can also recast things as

(447) pF =

�
3nh3

8π

�1/3

which will hold regardless of the particular relation between energy and mo-
mentum (i.e., whether we are fully relativistic or totally non-relativistic).
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20.3. Degeneracy Pressure

Let’s then use Eq. 418 to calculate the pressure from a fully degenerate gas.
Again, from Eq. 408 we have

(448) P =
1
3

pF�

0

vp
2
h3 4πp2dp.

We’ll consider two limits:

1. v = p/m (fully non-relativistic), and

2. v ≈ c (ultra-relativistic)

In the non-relativistic degenerate case, we calculate Eq. 408 as

P =
8π

3
1
m

1
h3

pF�

0

p4dp

(449)

=
8π

15
p5

F
mh3 .

(450)

If we then plug in Eq. 418, we see that in this limit the gas pressure is

(451) P =
8π

15
1

mh3

�
3h3

8π

�5/3

n5/3.

Note this expression for pressure contains the term 1/m, so the smallest-mass
particles dominate the pressure. Thus the electrons are what really matter. If
we want to cast P in terms of the mass density, we use Eq. 221 and the mean
molecular weight of electrons,

(452) ne =
ρtot

µemp
,

to write

P =

�
3
π

�2/3 h2

20mem5/3
p

�
ρ

µe

�5/3
(453)

= KNR

�
ρ

µe

�5/3
.

(454)

By comparison back to Eq. 17, we see that a non-relativistic gas is a polytrope
(Sec. 17) with index γ = 5/3.

In the relativistic degenerate case, the particle velocities are independent
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Figure 40: Pressure P vs. density ρ in the non-relativistic (NR) and ultra-
relativistic (UR) limits. A switchover occurs at high densities above ρ/µe ≈
106.7 g cm−3.

of p, so we have one less p in our integral for pressure:

P =
1
3

Pf�

0

cp
2
h3 4πp2dp

(455)

=

�
3
π

�1/3 hc
8m4/3

p

�
ρ

µe

�4/3
(456)

= KUR

�
ρ

µe

�4/3
.

(457)

So the ultra-relativistic degenerate gas is also a polytrope, but now with a
slightly shallower index γ = 4/3.

20.4 Implications of Degeneracy Pressure

So our discussion of polytropes in Sec. 17 was fruitful; it now turns out that
they give an exact description of the behavior of a degenerate gas. The poly-
trope indices in the two cases, above, 5/3 vs. 4/3, seem close enough together
that there might not be much difference. But comparison to Eqs. 343 and 344
show that the slightly lower index of 4/3 makes all the difference: a fully
relativistic and degenerate gas will tend toward instability and collapse.

In the equations of state Eqs. 425 and 428 above, the degeneracy pressure
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will dominate over the gas pressure so long as

Pdeg � Pgas

(458)

KNR

�
ρ

µe

�5/3
� ρkT

µemp
.

(459)

And assuming a fully ionized medium (so µe = 1/2), we then require

(460)
ρ

µe
� 750 g cm−3

�
T

107 K

�3/2

which is quite similar to our earlier estimate of n � λ−3
D (Eq. 404, and

Sec. 20.2). As the density of a degenerate gas is increased, Fig. 37 demon-
strates that the equation of state will switch over from non-relativistic (Eq. 425)
to ultra-relativistic (Eq. 428) above densities ρ/µe ≈ 106.7 g cm−3 or (equiva-
lently) when

(461) pF ≈ mec =
�

3nh3

8π

�1/3

.

20.5 Comparing Equations of State

As we start moving into stellar evolution, we will encounter wildly different
regimes of pressure, density, and temperature. Which equation of state domi-
nates in each regime? We’ve seen several examples so far:

Type EOS Ideal gas Temp. dependence

NR degeneracy pressure KNR

�
ρ
µe

�5/3
= ρ

µe
kT
mp

T ∝ ρ2/3

Rel degeneracy pressure KUR

�
ρ
µe

�4/3
= ρ

µe
kT
mp

T ∝ ρ1/3

Radiation pressure 4σ
3c T4 = ρ

µe
kT
mp

T ∝ ρ1/3

Note that the temperature for radiation pressure and ultra-relativistic degen-
eracy pressure have the same dependence on temperature; however, the coef-
ficient is larger for the radiation pressure case.

One additional case we haven’t yet discussed is: when does treatment as
a gas break down? This turns out to happen when Coulomb interactions be-
come increasingly important. Or equivalently, when

EC ≈ ETh

(462)

e2

a
≈ n1/3e2 = kT

(463)

which implies that again, T ∝ ρ1/3 — but with a smaller coefficient than
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Figure 41: Different regimes in stellar interiors.

for the ultra-relativistic degenerate gas. Fig. 38 summarizes all these different
regimes.

Note that degeneracy pressure (like any good polytropic equation of state)
is independent of temperature. So it halts stellar contraction even with no
power generation. If nuclear power is somehow generated in a degenerate
medium, there are interesting consequences:

• Non-degenerate: When extra energy is produced, the star expands and
cools thanks to the virial theorem. Thus energy production will de-
creases: negative feedback.

• Degenerate star: Extra energy production leads to no expansion of the
star. The only place the energy can go is into heating the gas, so its
temperature goes up – and thus energy production will increase as well.
Positive feedback!

The positive feedback in the degenerate case can accelerate so rapidly that an
entire star can become unbound. In other cases, the star will merely be heated
up so much that the degenerate state is destroyed; then negative feedback via
the virial theorem can once again come into play.
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