UNIVERSITY OF KANSAS

Department of Physics and Astronomy Physical Astronomy (ASTR 391) — Prof. Crossfield — Spring 2024

Problem Set 5 – REVISED

Due: Monday, March 29, 2024, in class This problem set is worth 23 points (plus 7 bonus points).

As always, be sure to: show your work, circle your final answer, and use the appropriate number of significant figures. Also, please submit your PSet as a single PDF file (not individual scanned images, which are tougher to keep track of), and include your name in the PDF's filename.

Journey to the Center of a Star

For this problem, you have two options: use a computer to perform numerical integration (via programming language or, as shown in lecture, a spreadsheet), or alternatively use mathematical integration (calculus). If you use numerical integration, be sure to use >20 layers so your results will be reasonably accurate. Regardless: remembering when making plots for the question below that any good plot has labeled axes!

1. [5 pts] In lecture we discussed at some length how we can model the physical conditions in a star's interior. Assume the star has a slightly more realistic density profile (valid from $0 \le r \le R_*$) of

$$
\rho(r) = \rho_c \left((r/R_*)^2 - 2r/R_* + 1 \right) = \rho_c \left(\frac{r}{R_*} - 1 \right)^2 \tag{1}
$$

Plot $\rho(r)$ over the full range from $r = 0$ to $r = 2R_*$. Discuss why this density profile might be slightly more reaslistic than the constant-density model we assumed in class.

Solution:

Just by plugging in a few test values, we can see how the density behaves. For $r = 0$ we have $\rho = \rho_c$, and for $r = R_*$ we have $\rho = 0$, so the density appears to decrease from the center out to the surface, as we expect. For an intermediate value such as $r = R_*/2$, we see $\rho = \rho_c/4$; from this and more test points, or from the quadratic

Figure 1: Density in the star for the functional form given. The vertical dotted line indicates the stellar surface.

functional form, we could see that $\rho(r)$ peaks at the core and decreases quadratically down to zero at $r = R_*$. The full plot is shown in Fig. [1.](#page-0-0)

This is a bit more realistic because we should expect density (along with pressure, temperature, and related quantities) to be highest in the core and smallest out near the surface.

2. [5 pts] Show that the Enclosed Mass profile $M_{enc}(r)$ within this star is equivalent to the expression

$$
4\pi\rho_c r^3 \left(\frac{r^2}{5R_*^2} - \frac{r}{2R_*} + \frac{1}{3}\right).
$$
 (2)

Then plot $M_{enc}(r)$.

Solution: To determine the enclosed mass within a radius r via integration (calculus!) we use the recipe

$$
M_{enc}(r) \equiv \int_{r=0}^{r=r} 4\pi r^2 \rho(r) dr.
$$
 (3)

Plugging in our expression given for $\rho(r)$, we have

$$
M_{enc}(r) \equiv \int_{r=0}^{r=r} 4\pi r^2 \rho_c \left((r/R_*)^2 - 2r/R_* + 1 \right) dr \tag{4}
$$

$$
= 4\pi \rho_c \int_{r=0}^{r=r} r^2 \left((r/R_*)^2 - 2r/R_* + 1 \right) dr
$$
\n
$$
= 4\pi \rho_c \int_{r=r}^{r=r} \left((r^4/R_*^2) - 2r^3/R_* + r^2 \right) dr
$$
\n(6)

$$
= 4\pi \rho_c \int_{r=0}^{r=r} \left(\left(r^4 / R_*^2 \right) - 2r^3 / R_* + r^2 \right) dr \tag{6}
$$

$$
= 4\pi \rho_c \left(\frac{r^5}{5R_*^2} - 2\frac{r^4}{4R_*} + \frac{r^3}{3} \right) \tag{7}
$$

$$
= \left| \frac{4\pi \rho_c r^3 \left(\frac{r^2}{5R_*^2} - \frac{r}{2R_*} + \frac{1}{3} \right)}{\rho_c} \right| \tag{8}
$$

(9)

3. [5 pts] Calculate the gravitational acceleration profile $g(r)$ inside the star, using the expression above for $M_{enc}(r)$. Then plot $q(r)$.

Solution: Remember that the gravitational acceleration in a star is just

$$
g_{\text{inside}}(r) \equiv \frac{GM_{enc}(r)}{r^2}.
$$
\n(10)

This means the gravitational acceleration inside a star is just

$$
g(r) = \frac{G}{r^2} 4\pi \rho_c r^3 \left(\frac{r^2}{5R_*^2} - \frac{r}{2R_*} + \frac{1}{3} \right) \tag{11}
$$

$$
= 4\pi \rho_c G r \left(\frac{r^2}{5R_*^2} - \frac{r}{2R_*} + \frac{1}{3}\right)
$$
 (12)

$$
(13)
$$

4. [3 pts] Starting with the equation of hydrostatic equilibrium $\frac{dP}{dr} = -\rho(r)g(r)$, we could continue in this vein and calculate the internal pressure and temperature of the star – but things would quickly get really messy. Instead, we can make a rough approximation to get a sense of the conditions inside the star, by assuming that $dP/dR \approx P_c/R_*$ (i.e., the pressure at the center of the star divided by the star's radius), and further assuming density and gravity are constant: $\rho(r) = \rho_{\text{avg}}$ and $g(r) = g_{\text{surface}}$.

Under these simplifying assumptions, the pressure at the center of the star is just $P_c \approx \rho_{avg} g_{surf} R_*$. Calculate a numerical value of P_c (in SI units) for the Sun, and for a red dwarf with $M_*/M_{\odot} = R_*/R_{\odot} = 0.3$. How do these compare to the atmospheric pressure here on Earth?

Solution: As directed, we make the greatly-simplifying assumption that the central pressure in the star is just $P_c \approx \rho_{\text{avg}} g_{\text{surf}} R_*$. We're asked to estimate this quantity for both the Sun and an M dwarf. We'll need to calculate their average density $(M_*/[\frac{4}{3}\pi R_*^3])$ and surface gravity (GM_*/R_*^2) . So the final expression we want is

$$
P_c \approx \rho_{\text{avg}} g_{\text{surf}} \tag{14}
$$

$$
\approx \frac{M_*}{\frac{4}{3}\pi R_*^3} \frac{GM_*}{R_*^2} R_* \tag{15}
$$

$$
\approx \frac{3GM_*^2}{4\pi R_*^4}.\tag{16}
$$

Pressure at sea level is 1 bar≈ 10^5 Pa, so the pressure at the center of these stars is roughly 10 billion times greater!

5. [5 pts] Assume that our star is an ideal gas made entirely of hydrogen atoms. In this case, derive a symbolic expression for the temperature T_c at the center of a star in terms of its pressure and mass density.

Then, calculate a numerical value for the central temperature of both the Sun and the M dwarf described above. How do these compare to the surface temperatures of these stars?

Solution: Since we're told to assume that the star is an ideal gas, it must obey

$$
P = nk_B T \tag{17}
$$

everywhere (including at its core, where we'd specifically be considering P_c , n_c , and T_c).

Since we're asked to give the answer in terms of density (not number density), we'll have to remember that $n = \rho/m_{\text{avg}}$, where m_{avg} is the average mass of particles under consideration – in this case, just hydrogen atoms. So our expression is then

$$
T_c \approx \frac{m_{\text{avg}}}{k_B} \frac{P_c}{\rho_{\text{avg}}}
$$
 (18)

$$
T_c \approx \frac{P_c m_{\text{avg}}}{\rho k_B} \tag{19}
$$

$$
\approx \frac{3Gm_{\text{avg}}}{4\pi k_B} \frac{M_*^2}{R_*^4 \rho_{\text{avg}}}
$$
(20)

$$
\approx \frac{Gm_{\text{avg}}}{k_B} \frac{M_*}{R_*} \tag{21}
$$

(22)

Taking $m_{\text{avg}} = m_H \approx (1/6) \times 10^{-26}$ kg, $k_B \approx (1/7) \times 10^{22}$ J/K, and $G \approx (2/3) \times 10^{-11}$ (in SI units), we then find

$$
T_c \approx 2.3 \times 10^7 \text{ K}
$$
 (23)

for both the Sun and for the M dwarf.

6. BONUS [7 pts]: Use the equation of hydrostatic equilibrium to calculate the full pressure profile, $P(r)$, throughout the star described in parts 1–3 above. Plot $P(r)$.