
UNIVERSITY OF KANSAS
Department of Physics and Astronomy

Physical Astronomy (ASTR 391) — Prof. Crossfield — Spring 2024

Problem Set 5 – REVISED
Due: Monday, March 29, 2024, in class

This problem set is worth 23 points (plus 7 bonus points).

As always, be sure to: show your work, circle your final answer, and use the appropriate number of significant figures.
Also, please submit your PSet as a single PDF file (not individual scanned images, which are tougher to keep track

of), and include your name in the PDF’s filename.

Journey to the Center of a Star
For this problem, you have two options: use a computer to perform numerical integration (via programming

language or, as shown in lecture, a spreadsheet), or alternatively use mathematical integration (calculus). If you use
numerical integration, be sure to use >20 layers so your results will be reasonably accurate. Regardless: remembering
when making plots for the question below that any good plot has labeled axes!

1. [5 pts] In lecture we discussed at some length how we can model the physical conditions in a star’s interior.
Assume the star has a slightly more realistic density profile (valid from 0 ≤ r ≤ R∗) of

ρ(r) = ρc
(
(r/R∗)

2 − 2r/R∗ + 1
)
= ρc

(
r

R∗
− 1

)2

(1)

Plot ρ(r) over the full range from r = 0 to r = 2R∗. Discuss why this density profile might be slightly more
reaslistic than the constant-density model we assumed in class.

Solution:
Just by plugging in a few test values, we can see how the density behaves. For r = 0 we have ρ = ρc, and for
r = R∗ we have ρ = 0, so the density appears to decrease from the center out to the surface, as we expect. For
an intermediate value such as r = R∗/2, we see ρ = ρc/4; from this and more test points, or from the quadratic
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Figure 1: Density in the star for the functional form given. The vertical dotted line indicates the stellar surface.
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functional form, we could see that ρ(r) peaks at the core and decreases quadratically down to zero at r = R∗.
The full plot is shown in Fig. 1.

This is a bit more realistic because we should expect density (along with pressure, temperature, and related
quantities) to be highest in the core and smallest out near the surface.

2. [5 pts] Show that the Enclosed Mass profile Menc(r) within this star is equivalent to the expression

4πρcr
3

(
r2

5R2
∗
− r

2R∗
+

1

3

)
. (2)

Then plot Menc(r).

Solution: To determine the enclosed mass within a radius r via integration (calculus!) we use the recipe

Menc(r) ≡
∫ r=r

r=0

4πr2ρ(r)dr. (3)

Plugging in our expression given for ρ(r), we have

Menc(r) ≡
∫ r=r

r=0
4πr2ρc

(
(r/R∗)

2 − 2r/R∗ + 1
)
dr (4)

= 4πρc
∫ r=r

r=0
r2

(
(r/R∗)

2 − 2r/R∗ + 1
)
dr (5)

= 4πρc
∫ r=r

r=0

(
(r4/R2

∗)− 2r3/R∗ + r2
)
dr (6)

= 4πρc

(
r5

5R2
∗
− 2 r4

4R∗
+ r3

3

)
(7)

= 4πρcr
3

(
r2

5R2
∗
− r

2R∗
+

1

3

)
(8)

(9)

3. [5 pts] Calculate the gravitational acceleration profile g(r) inside the star, using the expression above for
Menc(r). Then plot g(r).

Solution: Remember that the gravitational acceleration in a star is just

ginside(r) ≡
GMenc(r)

r2
. (10)

This means the gravitational acceleration inside a star is just

g(r) = G
r2 4πρcr

3
(

r2

5R2
∗
− r

2R∗
+ 1

3

)
(11)

= 4πρcGr

(
r2

5R2
∗
− r

2R∗
+

1

3

)
(12)

(13)

4. [3 pts] Starting with the equation of hydrostatic equilibrium (dP/dr = −ρ(r)g(r)), we could continue in this
vein and calculate the internal pressure and temperature of the star – but things would quickly get really messy.

Instead, we can make a rough approximation to get a sense of the conditions inside the star, by assuming that
dP/dR ≈ Pc/R∗ (i.e., the pressure at the center of the star divided by the star’s radius), and further assuming
density and gravity are constant: ρ(r) = ρavg and g(r) = gsurface.

Under these simplifying assumptions, the pressure at the center of the star is just Pc ≈ ρavggsurfR∗. Calculate
a numerical value of Pc (in SI units) for the Sun, and for a red dwarf with M∗/M⊙ = R∗/R⊙ = 0.3. How do
these compare to the atmospheric pressure here on Earth?

Solution: As directed, we make the greatly-simplifying assumption that the central pressure in the star is just
Pc ≈ ρavggsurfR∗. We’re asked to estimate this quantity for both the Sun and an M dwarf. We’ll need to
calculate their average density (M∗/[

4
3πR

3
∗]) and surface gravity (GM∗/R

2
∗). So the final expression we want

is

Pc ≈ ρavggsurf (14)
≈ M∗

4
3πR

3
∗

GM∗
R2

∗
R∗ (15)

≈ 3GM2
∗

4πR4
∗
. (16)
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Star M∗/M⊙ R∗/R⊙ ρavg [kg/m3] gsurf [m/s2] Pc [Pa]

Sun 1 1 1400 270 2.7× 1014

M dwarf 0.3 0.3 15700 910 3.0× 1015

Pressure at sea level is 1 bar≈ 105 Pa, so the pressure at the center of these stars is roughly 10 billion times
greater!

5. [5 pts] Assume that our star is an ideal gas made entirely of hydrogen atoms. In this case, derive a symbolic
expression for the temperature Tc at the center of a star in terms of its pressure and mass density.

Then, calculate a numerical value for the central temperature of both the Sun and the M dwarf described above.
How do these compare to the surface temperatures of these stars?

Solution: Since we’re told to assume that the star is an ideal gas, it must obey

P = nkBT (17)

everywhere (including at its core, where we’d specifically be considering Pc, nc, and Tc).

Since we’re asked to give the answer in terms of density (not number density), we’ll have to remember that
n = ρ/mavg, where mavg is the average mass of particles under consideration – in this case, just hydrogen
atoms. So our expression is then

Tc ≈
mavg

kB

Pc

ρavg
. (18)

Tc ≈ Pcmavg

ρkB
(19)

≈ 3Gmavg

4πkB

M2
∗

R4
∗ρavg

(20)

≈ Gmavg

kB

M∗
R∗

(21)
(22)

Taking mavg = mH ≈ (1/6) × 10−26 kg, kB ≈ (1/7) × 1022 J/K, and G ≈ (2/3) × 10−11 (in SI units), we
then find

Tc ≈ 2.3× 107 K (23)

for both the Sun and for the M dwarf.

6. BONUS [7 pts]: Use the equation of hydrostatic equilibrium to calculate the full pressure profile, P (r), through-
out the star described in parts 1–3 above. Plot P (r).
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