
15 Stellar Structure

Questions you should be able to answer after these lectures:

• What equations, variables, and physics describe the structure of a star?

• What are the two main types of pressure in a star, and when is each
expected to dominate?

• What is an equation of state, and what is the equation of state that is
valid for the sun?

15.1 Formalism

One of our goals in this class is to be able to describe not just the observ-
able, exterior properties of a star, but to understand all the layers of these
cosmic onions — from the observable properties of their outermost layers to
the physics that occurs in their cores. This next part will then be a switch
from some of what we have done before, where we have focused on the “sur-
face” properties of a star (like size, total mass, and luminosity), and consid-
ered many of these to be fixed and unchanging. Our objective is to be able
to describe the entire internal structure of a star in terms of its fundamental
physical properties, and to model how this structure will change over time as
it evolves.

Before we define the equations that do this, there are two points that may
be useful to understand all of the notation being used here, and the way in
which these equations are expressed.

First, when describing the evolution of a star with a set of equations, we
will use mass as the fundamental variable rather than radius (as we have
mostly been doing up until this point.) It is possible to change variables in this
way because mass, like radius, increases monotonically as you go outward in
a star from its center. We thus will set up our equations so that they follow
individual, moving shells of mass in the star. There are several benefits to this.
For one, it makes the problem of following the evolution of our star a more
well-bounded problem. Over a star’s lifetime, its radius can change by orders
of magnitude from its starting value, and so a radial coordinate must always
be defined with respect to the hugely time-varying outer extent of the star.
In contrast, as our star ages, assuming its mass loss is insignificant, its mass
coordinate will always lie between zero and its starting value M — a value
which can generally be assumed to stay constant for most stars over most of
stellar evolution. Further, by following shells of mass that do not cross over
each other, we implicitly assume conservation of mass at a given time, and
the mass enclosed by any of these moving shells will stay constant as the
star evolves, even as the radius changes. This property also makes it easier to
follow compositional changes in our star.

In general, the choice to follow individual fluid parcels rather than ref-
erence a fixed positional grid is known as adopting Lagrangian coordinates
instead of Eulerian coordinates. For a Lagrangian formulation of a problem:
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15. Stellar Structure

• This is a particle-based description, following individual particles in a
fluid over time

• Conservation of mass and Newton’s laws apply directly to each particle
being followed

• However, following each individual particle can be computationally ex-
pensive

• This expense can be somewhat avoided for spherically-symmetric (and
thus essentially ‘1D’) problems

In contrast, for an Eulerian formulation of a problem:

• This is a field-based description, recording changes in properties at each
point on a fixed positional grid in space over time

• The grid of coordinates is not distorted by the fluid motion

• Problems approached in this way are generally less computationally ex-
pensive, and are generally easier for 2D and 3D problems

There are thus trade-offs for choosing each formulation. For stellar struc-
ture, Lagrangian coordinates are generally preferred, and we will rely heavily
on equations expressed in terms of a stellar mass variable going forward.

Second, it might be useful to just recall the difference between the two
types of derivatives that you may encounter in these equations. The first is a
partial derivative, written as ∂ f . The second is a total derivative, written as
d f . To illustrate the difference, let’s assume that f is a function of a number of
variables: f (x, t). The partial derivative of f with respect to x is just ∂ f

∂x . Here,
we have assumed in taking this derivative that x is held fixed with time and
does not vary. However, most of the quantities that we will deal with in the
equations of stellar structure do vary with time. The use of a partial derivative
with respect to radius or mass indicates that we are considering the change in
this space(like) coordinate for an instantaneous, fixed time value. In contrast,
the total derivative does not hold any variables to be fixed, and considers how
all of the dependent variables changes as a function of the variable considered.
Note that when you see a quantity like ṙ in an equation, this is actually the
partial rather than total derivative with respect to time.

15.2 Equations of Stellar Structure

In this class, we will define four fundamental equations of stellar structure,
and several additional relationships that, taken all together, will define the
structure of a star and how it evolves with time. Depending on the textbook
that you consult, you will find different versions of these equations using
slightly different variables, or in a slightly different format.
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15.2. Equations of Stellar Structure

dr

r

m(r)=Mr

dm
ρ(r)

Figure 30: An illustration of a shell with mass dm and thickness dr. The mass
enclosed inside of the shell is m(r) (or Mr, depending on how you choose to
write it). Assume that this object has a density structure ρ(r)

Mass continuity

The first two equations of stellar structure we have already seen before, as the
conversion between the mass and radius coordinates

(274)
dr
dm

=
1

4πr2ρ

and as the equation of hydrostatic equilibrium (Eq. 239), now recast in terms
of mass:

(275)
dP
dm

= − Gm
4πr4

Eq. 274 and its variant forms are known variously as the Mass Continuity
Equation or the Equation of Conservation of Mass. Either way, this is the
first of our four fundamental equations of stellar structure, and relates our
mass coordinate m to the radius coordinate r, as shown in Fig. 30.

Note that up until now we have been generally either assuming a uniform
constant density in all of the objects we have considered, or have been making
approximations based on the average density 〈ρ〉. However, to better and more
realistically describe stars we will want to use density distributions that are
more realistic (e.g., reaching their highest value in the center of the star, and
decreasing outward to zero at the edge of the star). This means we should
start trying to think about ρ as a function rather than a constant (even when
it is not explicitly written as ρ(r) or ρ(m) in the following equations).

Hydrostatic equilibrium

The second equation of stellar structure (Eq. 275, the equation of hydrostatic
equilibrium) concerns the motion of a star, and we derived it in Sec. 14.2. As
we noted earlier, stars can change their radii by orders of magnitude over
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15. Stellar Structure

the course of their evolution. As a result, we must consider how the interiors
of stars move due the forces of pressure and gravity. We have already seen
a specific case for this equation: the case in which gravity and pressure are
balanced such that there is no net acceleration, and the star is in hydrostatic
equilibrium (Equation 239).

We want to first consider a more general form of Eq. 275 that allows for the
forces to be out of balance and thus there to be a net acceleration, and second
to change variables from a dependence on radius to a dependence on mass.
We can begin by rewriting our condition of force balance in Equation 239 as

(276) 0 = −Gm(r)
r2 − 1

ρ

∂P
∂r

.

Each term in this equation has units of acceleration. Thus, this equation can
be more generally written as

(277) r̈ = −Gm(r)
r2 − 1

ρ

∂P
∂r

.

Using Equation 263 we can recast this expression in terms of a derivative
with respect to m rather than r. This gives us the final form that we will use:

(278) r̈ = −Gm(r)
r2 − 4πr2 ∂P

∂m
.

This is the most general form of our second equation of stellar structure. When
r̈ is zero we are in equilibrium and so we obtain Eq. 275, the equation of hy-
drostatic equilibrium. This more general form, Eq. 278, is sometimes referred
to as the Equation of Motion or the Equation of Momentum Conservation.

The Thermal Transport Equation

We also need to know how the temperature profile of a star changes with
depth. If we do that, we can directly connect the inferred profile of tempera-
ture vs. optical depth (Eq. 211) to a physical coordinate within the star.

Assume there is a luminosity profile (determined by the energy equation,
to be discussed next), such that the flux at radius r is

(279) F(r) =
L(r)
4πr2

In a plane-parallel atmosphere, we learned (Eq. 202) that the flux is related
to the gradient of the radiation pressure. The assumptions we made then don’t
restrict the applicability of that relation only to the outer atmosphere, so we
can apply it anywhere throughout the interior of our star. The only (minor)
adjustment is that we replace dz with dr since we are now explicitly consider-
ing a spherical geometry, so we now have

(280) F = − c
α

dPrad
dr
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15.2. Equations of Stellar Structure

Since we know that Prad = 4/3c σSBT4 (Eq. 305), we see that

(281)
dPrad

dr
=

16σSB
3c

T3 dT
dr

.

When combined with Eq. 279, we find the thermal profile equation,

(282)
dT
dr

= − 3ρκL(r)
64πσSBT3r2

The Energy Equation

Eq. 282 shows that we need to know the luminosity profile in order to deter-
mine the thermal profile. In the outer photosphere we earlier required that
flux is conserved (Sec. 13.2), but go far enough in and all stars (until the ends
of their lives) are liberating extra energy via fusion.

Thus the next equation of stellar structure concerns the generation of en-
ergy within a star. As with the equation of motion, we will first begin with a
simple case of equilibrium. In this case, we are concerned with the thermody-
namics of the star: this is the equation for Thermal Equilibrium, or a constant
flow of heat with time for a static star (a situation in which there is no work
being done on any of our mass shells).

Consider the shell dm shown in Fig. 30. Inside of this shell we define a
quantity εm that represents the net local gain of energy per time per unit mass
(SI units of J s−1 kg−1) due to local nuclear processes. Note that sometimes
the volumetric power εr will also sometimes be used, but the power per unit
mass εm is generally the more useful form. Regardless, we expect either ε to
be very large deep in the stellar core and quickly go to zero in the outer layers
where fusion is negligible – in those other regions, ε = 0, L is constant, and
we are back in the flux-conserving atmosphere of Sec. 13.2.

We then consider that the energy per time entering the shell is Lr (note that
like Mr, this is now a local and internal rather than global or external property:
it can be thought of as the luminosity of the star as measured at a radius r
inside the star) and the energy per time that exits the shell is now Lr + dLr
due to this local gain from nuclear burning in the shell. To conserve energy,
we must then have (note that these are total rather than partial derivatives as
there is no variation with time):

(283)
dLr

dm
= εm.

This is the equation for Thermal Equilibrium in a star. While Thermal
Equilibrium and Hydrostatic Equilibrium are separate conditions, it is gener-
ally unlikely that a star will be in Thermal Equilibrium without already being
in Hydrostatic equilibrium, thus guaranteeing that there is no change in the
energy flow in the star with time or with work being done. In general, Ther-
mal Equilibrium and Eq. 283 require that any local energy losses in the shell
(typically from energy propagating outward in the star) are exactly balanced
by the rate of energy production in that shell due to nuclear burning. On a
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15. Stellar Structure

macroscopic scale, it means that the rate at which energy is produced in the
center of the star is exactly equal to the star’s luminosity: the rate at which
that energy exits the surface.

How likely is it that a star satisfies this requirement? While a star may
spend most of its life near Thermal Equilibrium while it is on the main se-
quence, most of the evolutionary stages it goes through do not satisfy Eq. 283:
for example, pre-main sequence evolution (protostars) and post-main sequence
evolution (red giants). How can we describe conservation of energy for an ob-
ject that is not in Thermal equilibrium?

Following standard texts (e.g., Prialnik), we can make use of u, the internal
energy density in a shell in our star. We can change u either by doing work
on the shell, or by having it absorb or emit heat. We have already described
how the heat in the shell can change with Lr and εm. Similarly, the incremen-
tal work done on the shell can be defined as a function of pressure and the
incremental change in volume:

dW = −PdV

(284)

= −P
(

dV
dm

dm
)(285)

= −P d
(

1
ρ

)
dm

(286)

The change in internal energy per unit mass (du) is equal to the work done
per unit mass ( dW

dm ), so finally we can rewrite Eq. 286 as:

(287) du = −Pd
(

1
ρ

)
Taking the time derivative of each side,

(288)
du
dt

= −P
d
dt

(
1
ρ

)
Compression of the shell will decrease dV, and thus require energy to be
added to the shell, while expansion increases dV and is a way to release energy
in the shell.

Changes in the internal energy of the shell u with time can then be de-
scribed in terms of the both the work done on the shell and the changes in
heat:

(289)
du
dt

= εm −
∂Lr

∂m
− P

d
dt

(
1
ρ

)
The general form of Eq. 289 is the next equation of stellar structure, known
either as the Energy Equation or the Equation of Conservation of Energy.
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15.2. Equations of Stellar Structure

You may also sometimes see this equation written in various other forms,
such as in terms of the temperature T and entropy S of the star. In this form,
you then have

(290)
∂Lr

∂m
= εm − T

dS
dt

Chemical Composition

An additional relationship that is useful for determining stellar evolution is
the change in a star’s composition. This relation will be less of an ‘equation’ for
the purposes of this class, and more a rough depiction of how the composition
of a star can vary with time.

We can define the composition of a star using a quantity called the mass
fraction of a species:

(291) Xi =
ρi
ρ

.

Here, ρi is the partial density of the ith species.
Particles in a star are defined by two properties: their baryon number A

(or the number of total protons and neutrons they contain) and their charge
Z . Using the new notation of baryon number, we can rewrite

(292) n =
ρ

m̄
,

as the corresponding partial number density of the ith species:

(293) ni =
ρi
Ai mH

.

We can then slightly rewrite our expression for the composition as

(294) Xi = ni
Ai
ρ

mH .

Changes in composition must obey (at least) two conservation laws. Con-
servation of charge:

(295) Zi +Zj = Zk +Zl .

and conservation of baryon number:

(296) Ai +Aj = Ak +Al .

If you also consider electrons, there must also be a conservation of lepton
number.
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15. Stellar Structure

Without attempting to go into a detailed formulation of an equation for
the rate of change of X we can see that it must depend on the starting com-
position and the density, and (though it does not explicitly appear in these
equations) the temperature, as this will also govern the rate of the nuclear
reactions responsible for the composition changes (analogous to the collision
timescale tcol =

v
nA as shown in Figure 37, in which the velocity of particles

is set by the gas temperature). This leads us to our last ‘equation’ of stellar
structure, which for us will just be a placeholder function f representing that
the change in composition is a function of these variables:

(297) Ẋ = f(ρ, T, X).

Technically, this X is a vector representing a series of equations for the
change of each Xi.

The final fundamental relation we need in order to derive the structure of
a star is an expression for the temperature gradient, which will be derived a
bit later on.

15.3 Pressure

We have already seen a relationship for the gas pressure for an ideal gas, P =
nkT. However, now that we have begun talking more about the microscopic
composition of the gas we can actually be more specific in our description
of the pressure. Assuming the interior of a star to be largely ionized, the gas
will be composed of ions (e.g., H+) and electrons. Their main interactions
(‘collisions’) that are responsible for pressure in the star will be just between
like particles, which repel each other due to their electromagnetic interaction.
As a result, we can actually separate the gas pressure into the contribution
from the ion pressure and the electron pressure:

(298) Pgas = Pe + Pion

For a pure hydrogen star, these pressures will be equivalent, however as
the metallicity of a star increases, the electron pressure will be greater than
the ion pressure, as the number of free electrons per nucleon will go up (for
example, for helium, the number of ions is half the number of electrons).

Assuming that both the ions and electrons constitute an ideal gas, we can
rewrite the ideal gas equation for each species:

(299) Pe = nekT

and

(300) Pion = nionkT
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15.3. Pressure

However, this is not the full story: there is still another source of pressure
in addition to the gas pressure that we have not been considering: the pressure
from radiation.

Considering this pressure then at last gives us the total pressure in a star:

(301) P = Pion + Pe + Prad

We can determine the radiation pressure using an expression for pressure
that involves the momentum of particles:

(302) P =
1
3

∞∫
0

v p n(p) dp

Here v is the velocity of the particles responsible for the pressure, p is
their typical momentum, and n(p) is the number density of particles in the
momentum range (p, p + dp). We first substitute in values appropriate for
photons (v = c, p = hν

c ). What is n(p)? Well, we know that the Blackbody
(Planck) function (Equation 16) has units of energy per volume per interval
of frequency per steradian. So, we can turn this into number of particles per
volume per interval of momentum by (1) dividing by the typical energy of a
particle (for a photon, this is hν), then (3) multiplying by the solid angle 4π,
and finally (4) using p = E

c to convert from energy density to momentum
density.

(303) Prad =
1
3

4π

∞∫
0

c
(

hν

c

)(
1

hν

)(
1
c

)
2hν3

c2

[
e

hν
kT − 1

]−1
dν

Putting this all together,

(304) Prad =
1
3

(
4
c

)π

∞∫
0

(
1
c

)
2hν3

c2

[
e

hν
kT − 1

]−1
dν


Here, the quantity in brackets is the same integral that is performed in

order to yield the Stefan-Boltzmann law (Equation 126). The result is then

(305) Prad =
1
3

(
4
c

)
σT4

The quantity 4σ
c is generally defined as a new constant, a.

We can also define the specific energy (the energy per unit mass) for radi-
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15. Stellar Structure

ation, using the relation

(306) urad = 3
Prad

ρ

When solving problems using the Virial theorem, we have encountered a
similar expression for the internal energy of an ideal gas:

(307) KEgas =
3
2

NkT

From the ideal gas law for the gas pressure (P = nkT), we can see that the
specific internal energy KE

m̄ then can be rewritten in a similar form:

(308) ugas =
Pgas

ρ

15.4 The Equation of State

In a star, an equation of state relates the pressure, density, and tempera-
ture of the gas. These quantities are generally dependent on the composition
of the gas as well. An equation of state then has the general dependence
P = P(ρ, T, X). The simplest example of this is the ideal gas equation. Inside
some stars radiation pressure will actually dominate over the gas pressure, so
perhaps our simplest plausible (yet still general) equation of state would be

P = Pgas + Prad

(309)

= nkT +
4F
3c

(310)

=
ρkT
µmp

+
4σSB

3c
T4

(311)

where µ is now the mean molecular weight per particle – e.g., µ = 1/2 for
fully ionized H.

But a more general and generally applicable equation of state is often that
of an adiabatic equation of state. As you might have encountered before in a
physics class, an adiabatic process is one that occurs in a system without any
exchange of heat with its environment. In such a thermally-isolated system,
the change in internal energy is due only to the work done on or by a system.
Unlike an isothermal process, an adiabatic process will by definition change
the temperature of the system. As an aside, we have encountered both adia-
batic and isothermal processes before, in our description of the early stages
of star formation. The initial collapse of a star (on a free-fall time scale) is a
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15.4. The Equation of State

roughly isothermal process: the optically thin cloud is able to essentially radi-
ate all of the collapse energy into space unchecked, and the temperature does
not substantially increase. However, once the initial collapse is halted when
the star becomes optically thick, the star can only now radiate a small fraction
of its collapse energy into space at a time. It then proceeds to contract nearly
adiabatically.

Adiabatic processes follow an equation of state that is derived from the
first law of thermodynamics: for a closed system, the internal energy is equal
to the amount of heat supplied, minus the amount of work done.

As no heat is supplied, the change in the specific internal energy (energy
per unit mass) u comes from the work done by the system. We basically al-
ready derived this in Equation 287:

(312) du = −Pd
(

1
ρ

)

As we have seen both for an ideal gas and from our expression for the
radiation pressure, the specific internal energy is proportional to P

ρ :

(313) u = φ
P
ρ

Where φ is an arbitrary constant of proportionality. If we take a function
of that form and put it into Equation 312 we recover an expression for P in
terms of ρ for an adiabatic process:

(314) P ∝ ρ
φ+1

φ

We can rewrite this in terms of an adiabatic constant Ka and an adiabatic
exponent γa:

(315) P = Kaργa

For an ideal gas, γa = 5
3 .

This adiabatic relation can also be written in terms of volume:

(316) PVγa = Ka

This can be compared to the corresponding relationship for an ideal gas,
in which PV = constant.
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15.5 Summary

In summary, we have a set of coupled stellar structure equations (Eq. 274,
Eq. 278, Eq. 282, Eq. 289, and Eq. 315):

(317)
dr
dm

=
1

4πr2ρ

(318) r̈ = −Gm(r)
r2 − 4πr2 ∂P

∂m
.

(319)
dT
dr

= − 3ρκL(r)
64πσSBT3r2

(320)
du
dt

= εm −
∂Lr

∂m
− P

d
dt

(
1
ρ

)

(321) P = Kaργa

If we can solve these together in a self-consistent way, we have good
hope of revealing the unplumbed depths of many stars. To do this we will
also need appropriate boundary conditions. Most of these are relatively self-
explanatory:

M(0) = 0
(322)

M(R) = Mtot

(323)

L(0) = 0
(324)

L(R) = 4πR2σSBT4
eff

(325)

ρ(R) = 0
(326)

P(R) ≈ 0
(327)

T(R) ≈ Teff

(328)

(329)
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15.5. Summary

To explicitly solve the equations of stellar structure even with all these con-
straints in hand is still a beast of a task. In practice one integrates numerically,
given some basic models (or tabulations) of opacity and energy generation.
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