
Lecture 1 – Basic Definitions and Results

We are interested in the flow of radiation; what is often called “radiative transfer”. We
follow the intensity, Iν (units of joule m−2 s−1 Hz−1 ster−1) and describe the sources and
sinks of photons. The first sink term is absorption. In this process, a photon is destroyed
and an atom (or molecule) goes from a lower energy state to a higher energy state.

hν + X →X∗ (1)

where X denotes the atom in the lower energy level and X∗ denotes the atom in the upper
energy level. If ds denotes an increment in path length, then the absorption coefficient,
κν , (units of m−1) is defined such that:

dIν = −κν Iν ds (2)

Therefore:
dIν

ds
= −κν Iν (3)

If the atom has a cross section at frequency ν of σν (units of m2) and the density of atoms
is n (m−3), then we note that

κν = n σν (4)

Often, we also use the opacity, χν defined so that:

χν =
κν

ρ
(5)

where ρ is the mass density of the material. Since ρ = µn where µ is the mean molecular
weight, then

χν =
σν

µ
(6)

If we define the mean free path for a photon of frequency ν as lν , then

lν = κ−1
ν =

1
nσν

(7)

If light with intensity, I0
ν is incident upon a medium of uniform κν and if we define s =

0 to be the boundary of the medium, then the intensity as a function of s is given as the
solution to the differential equation (3):

Iν = I0
ν e−κν s (8)

Another important parameter to introduce is the dimensionless quantity, the optical depth,
τν . We define

dτν = κν ds (9)
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For a homogeneous medium, then
τν = κν s (10)

The attenuation of the light is modest if τν < 1; such a situation is described as being
“optically thin”. The attenuation of the light is large if τν > 1; such a situation is described
as being optically thick.

In addition to absorption, light can be produced by emission. Schematically, this occurs
when an atom (or molecule) undergoes a transition from an an upper energy level (X∗) to
a lower energy level (X). Thus:

X∗→X + hν (11)

We define the emissivity, εν as the rate at which energy is emitted per unit solid angle.
Then, if we only include the source term:

dIν = εν ds (12)

or
dIν

ds
= εν (13)

If we include both the source term and the sink term, then we may write that

dIν

ds
= −κν Iν + εν (14)

This expression is called the equation of transfer and is the fundamental equation used to
describe the flow of radiation energy.

The equation of transfer is often re-written in the following fashion. Divide the equation
by κν , and use the definition of the optical depth to get:

dIν

dτν
= −Iν +

εν

κν
(15)

We introduce a new quantity called the source function, Sν (units of joule m−2 s−1 Hz−1

ster−1) such that
Sν =

εν

κν
(16)

Thus the equation of transfer becomes:

dIν

dτν
= −Iν + Sν (17)

If we measure through a uniform medium (Sν is constant) in terms of optical depth
instead of physical distance, then the solution to the equation of transfer for the emergent
intensity from a uniform medium of optical depth, τ is

I0
ν = Sν

(
1 − e−τν

)
(18)
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Note that if the medium is optically thin (τν < 1), then

I0
ν ≈ Sν τν (19)

while if the medium is optically thick (τν > 1), then

I0
ν ≈ Sν (20)

An opaque medium (that is, an optically thick medium) is a “black body”. Therefore,
for black body radiation, we may set, Sν equal to the Planck function or

Sν =
2hν3

c2

1
exp

(
hν
kT

)
− 1

(21)

For an opaque object, the emergent intensity is independent of its composition and depends
only upon its temperature.

Two related quantities to the intensity of radiation are the mean intensity and the flux
or flow of energy. The mean intensity, Jν , is defined as the average over solid angle of the
intensity. Therefore, at any particular location, we define

Jν =
1
4π

∫ 2π

0

∫ π

0
Iν(θ, φ) sin θ dθ dφ (22)

Note that Jν and Iν have the same units.
If we define θ relative to the Z-axis, then the flux of energy along the Z axis, Fν , is

given by the expression

Fν =
∫ 2π

0

∫ π

0
Iν(θ, φ) cos θ sin θ dθ dφ (23)

The flux has units of joule m−2 s−1 Hz−1 or watts m−2 Hz−1.
In an isotropic radiation field where the light moves equally in all directions, let Iν(θ, φ)

= I0
ν . Then:

Jν = I0
ν (24)

and
Fν = 0 (25)

In an isotropic radiation field, there is no flux because there is no net transport of energy.
Another important case is where a surface is radiating out into space. Assume a

situation (such as the surface of a star or an aperture looking into a cavity.) In this case
we assume that Iν is only a function of θ and is independent of φ. We write that

Iν(θ) = I0
ν (26)
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for 0 ≤ θ ≤ π/2. and
Iν(θ) = 0 (27)

Therefore

Fν = 2π

∫ π
2

0
I0
ν cos θ sin θ dθ (28)

By setting x = sin θ, then it is easy to evaluate the integral and we find that

Fν = π I0
ν (29)

From above, we may therefore write that for a black body,

Fν = 2 π
hν3

c2

1
exp

(
hν
kT

)
− 1

(30)

Often we are interested in the flow of all the energy and not just the energy at a
particular frequency. We can write for the total flux, F , that

F =
∫ ∞

0
Fν dν (31)

The integrated flux has units of watts m−2. For radiation from a plane surface, then

F =
∫ ∞

0
2 π

hν3

c2

1
exp

(
hν
kT

)
− 1

dν (32)

With the substitution
x =

hν

kT
(33)

Then:

F = 2π
k4T 4

c2h3

∫ ∞

0

x3

ex − 1
dx (34)

Consider an atom with an upper energy level U and a lower energy level, L. We now
want to describe the emission and absorption by this atom. In order to do this exactly, we
need to understand how the transition occurs by using quantum mechanics. However, even
without a detailed understanding of the system, we can determine some general properties
of a spectral line.

Assume that the atom can undergo a “spontaneous” transition from the upper to the
lower level with a rate (units of s−1) of AUL where this quantity AUL is often called the
“Einstein A”. The mean lifetime of the atom is the upper level is the inverse of the
spontaneous decay rate or A−1

UL. The units of this mean lifetime are s. The emissivity of
the atom is given by the expression:

εν =
1
4π

AUL hν nU φ(∆ν) (35)
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where φ(∆ν) (units of Hz−1) is called the line profile. The rate of production of line photons
depends upon the number of atoms in the upper level, the energy per photon, the Einstein
A. We also include the factor 1

4π because we are interested in the production of photons
into each solid angle as well as the total rate of production of photons. Finally, we include
φ(∆ν), the line profile, because we want to know the spectral energy distribution of the
emission at different frequencies. The line photons are not all emitted at exactly the same
frequency. Instead there is a spread of frequencies, and the function φ(∆ν) describes this
spread.

Because the line photons are emitted near the frequency ν, we can define the frequency
offset from line center, ∆ν as

∆ν = ν − ν0 (36)

where ν0 is the frequency at line center. Then we expect that∫ +∞

−∞
φ(∆ν) d∆ν = 1 (37)

Alternatively, we may write this equation as:∫ +∞

0
φ(∆ν) dν = 1 (38)

since:
dν = d∆ν (39)

The difference between these two equations is the lower limit of the integral. Since the
emission always occurs at frequencies relatively near ν0 so it does not make a real difference
whether we integrate ∆ν to −∞ (physically slightly unrealistic) or to −ν0 (physically
realistic but mathematically more complex).

An important example of line broadening is that produced by Doppler motions of the
atoms in the system. If we observe emission from a gas, then along the line of sight, some
atoms will be approaching us and others receding. We expect that:

∆ν

ν
= −vr

c
(40)

where vr is the radial velocity of the gas atom and c is the speed of light. In a 1-dimensional
Maxwell-Boltzmann distribution,

f(vr) dvr ∝ exp

(
−mv2

r

2kT

)
dvr (41)

where m denotes the mass of the atom. The velocity distribution is symmetric around its
mean value which here we take to be 0 m s−1. We therefore expect that

f(∆ν) d(∆ν) ∝ exp
(
−mc2∆ν2

2kTν2

)
d(∆ν) (42)
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We expect that
φ(∆ν) ∝ f(∆ν) (43)

Therefore, with the normalization condition, we find for a line undergoing thermal broad-
ening that:

φ(∆ν) =

√
mc2

2πkTν2
exp

(
−mc2∆ν2

2kTν2

)
(44)

In addition to emission, the atom can absorb light. We define the “Einstein B” such
that BLU

κν = nL BLU hν
1
4π

φ(∆ν) (45)

With this definition, BLU has a similar appearance to AUL. Warning: while everyone
agrees about the definition of the Einstein A, different authors do or do not include the 1

4π
term in their definition of the Einstein “B”. The units of BLU (or BUL) are different from
those of AUL. In particular, the units of BLU are equal to the units of AUL divided by an
intensity. Thus BLU has units of m2 s−1 joule−1. You may also think of the cross section
in the line and write,

σν = BLU hν
1
4π

φ(∆ν) (46)

As pointed out by no lesser an authority than Einstein, we must also allow for the
possibility of stimulated emission. That is, as with all harmonic oscillators, there can be
forced oscillations. We therefore, assume that there may be “stimulated emission” which
is the reverse of absorption. In stimulated emission, we expect that:

hν + X∗→ hν + hν + X (47)

In this scheme, there is conservation of energy, and a photon is produced from an atom
which is already excited. We denote the coefficient for stimulated emission as BUL, and it
acts like a “negative absorption” Thus, it contributes to the opacity as:

κν = −nU BUL hν
1
4π

φ(∆ν) (48)

We now estimate the relationship between the Einstein A and B′s. Consider the two
level atom. In a steady state, the rate at which atoms leave level U equals the rate at
which they enter level U . The rate at which they leave U depends both upon the rate of
spontaneous emission and the rate of stimulated emission. The rate per unit volume of
spontaneous emission is

1
4π

AUL nU φ(∆ν) (49)

The rate per unit volume of stimulated emission is the result of photons arriving from all
directions and therefore depends upon the mean intensity, Jν . We can write that the total
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rate per unit volume of stimulated emission is

Jν nU BUL
1
4π

φ(∆ν) (50)

The rate per unit volume at which atoms enter level U is given by the rate per unit volume
of absorptions from level L and is given by the expression:

JνnL BLU
1
4π

φ(∆ν) (51)

Therefore, in a steady state,

1
4π

AUL nU φ(∆ν) + Jν nU BUL
1
4π

φ(∆ν) = JνnL BLU
1
4π

φ(∆ν) (52)

This equation can be re-written as:

AUL nU + Jν nU BUL = JνnL BLU (53)

We can re-arrange the terms to find:

Jν =
AUL nU

nLBLU − nUBUL
(54)

or

Jν =
AUL
BUL

nLBLU
nUBUL

− 1
(55)

This relationship is derived for a steady state at any temperature. We may therefore set
Jν equal to the Planck function at any temperature. This gives the following:

2hν3

c2

1
exp

(
hν
kT

)
− 1

= Jν =
AUL
BUL

nLBLU
nUBUL

− 1
(56)

The solution to this expression is that

2hν3

c2
=

AUL

BUL
(57)

and

exp

(
hν

kT

)
=

nLBLU

nUBUL
(58)

which is the same as:

exp

(
− hν

kT

)
=

nUBUL

nLBLU
(59)
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In atomic spectroscopy, it is often found that a level is “degenerate”. This means that
there might be more than one “sublevel” at the same energy. If g is used to denote the
number of sublevels in a level, then we have both gL and gU for the lower and upper energy
levels, respectively. We can generalize the usual Boltzmann relationship so that

nU

nL
=

gU

gL
exp

(
− hν

kT

)
(60)

Therefore:
gL BLU = gU BUL (61)

At this point, we have now established that there is a simple, relationship between the
Einstein A and the Einstein B′s. First, any atom which has a high value of A, that is any
atom which can be a strong emitter, also must have a large value of B which means that it
also is a strong absorber. Second, of necessity, BUL is not zero and is positive. The process
of stimulated emission must occur if thermodynamic equilibrium can be achieved. The
Einstein A and B′s are properties of the atom and not of the gas temperature or pressure.

The total opacity of the gas depends upon the difference between true absorptions and
stimulated emissions. We may write that

κν = nL BLU hν
1
4π

φ(∆ν) − nU BUL hν
1
4π

φ(∆ν) (62)

Collecting terms, this means that:

κν = nL BLU hν
1
4π

φ(∆ν)
(

1 − nU BUL

nL BLU

)
(63)

In thermodynamic equilibrium, we therefore have that:

κν = nL BLU hν
1
4π

φ(∆ν)
(

1 − exp

[
− hν

kT

])
(64)

This is the “normal” condition of a gas.
A gas need not be in thermodynamic equilibrium. If, by some process the gas can be

kept out of equilibrium and if, in fact, the population in the upper energy level can be kept
high by some process, then, κν can become negative. That is, there can be more stimulated
emissions than absorptions. Therefore, when we write that

Iν = I0
ν e−κν s (65)

we find a net effect in the emergent intensity compared to the incident intensity, I0
ν , not a

decrease. A device which can do this is called a laser = light amplification [by] stimulated
emission [of] radiation.
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