OoMA Fact Sheet

 $G = (2/3) \times 10^{-10} \text{ N-m}^2/\text{kg}^2$ $c = 3 \times 10^8 \text{ m/sec}$ $k = (1/7) \times 10^{-22} \text{ J/K}$ $h = (2/3) \times 10^{-33}$ J-sec $\hbar = 10^{-34} \text{ erg-sec}$ $N_A = 6 \times 10^{26}$ nucleons/kg $m_p/m_e = 1836$ $m_n c^2 = 938 \,\,{\rm MeV}$ $m_e \approx 10^{-27} \text{ gm}$ $m_e c^2 = 511 \text{ keV}$ $e = 4.8 \times 10^{-10}$ esu $= 1.6 \times 10^{-19}$ Coulomb $\alpha = e^2/\hbar c = 1/137$ $L_{\odot} = 4 \times 10^{26} \text{ W}$ Fusing H to He yields 0.7% of mc^2 He to C & C to Fe about 0.1% of mc^2 each Solar Constant = 1.4 kW/m^2 at 1 AU $R_{\odot} = 7 \times 10^8 \text{ m}$ $M_{\odot} = 2 \times 10^{30} \text{ kg}$ $R_{\oplus} = 6371 \text{ km}$ $M_{\oplus} = 3 \times 10^{-6} M_{\odot}$ $\pi R_{\oplus} \approx 20000$ km (by revolutionary fiat) $M_J = 10^{-3} M_{\odot}$ Hubble radius = $c/H_{\circ} = 1.3 \times 10^{30}$ m Critical density $\sim 10^{-26} \text{ kg/m}^3$ $\sigma_T = (2/3) \times 10^{-28} \text{ m}^2$ $\sigma_{SB} = 5.67 \times 10^{-8} \text{ J/m}^2/\text{sec/K}^4$ Flux from a blackbody surface is $\sigma_{SB}T^4$ 1 gram calorie = 4.2 Watt-sec or Joules Dietary calories are really kilocalories. 1 kiloton (kT) of TNT = KE of 1000 metric tonnes @ 2.9 km/sec. $[1 \text{ kT} = 10^9 \text{ kg-cal}]$ exactly] Supernova kinetic energy = 10^{44} J $1 \text{ AU} = (3/2) \times 10^{11} \text{ m}$ 1 radian = 2×10^5 arc-seconds 1 square arcsec = 2.4×10^{-11} steradians $1 \text{ pc} = 2 \times 10^5 \text{ AU} = 3 \times 10^{16} \text{ m}$ $1 \text{ J} = 10^7 \text{ erg} = 6 \times 10^{18} \text{ eV}$ $1 \text{ eV} \sim 12,000 \text{ K}$ $1 \text{ eV} \sim 1.2 \ \mu\text{m}$ $hc/k \approx 0.014 \text{ m-K}$ $1 \text{ Jy} = 10^{-26} \text{ J/m}^2/\text{sec/Hz}$ 1 year $\approx \pi \times 10^7$ seconds 1 Mpc is 1 km/sec for 1000 Gyr One atmosphere or 1 bar = 10^5 N/m^2 Maximum mass for white dwarfs: $1.4 M_{\odot}$ Typical mass of neutron stars: $1.4 M_{\odot}$

Stellar spectra – from "early" = hot to "late" = cool:

Oh Be A Fine (Guy/Gal) Kiss Me Later Tonight Luminosity class – the Roman numeral: "I" = supergiant = low surface gravity "III" = giant, "V" = dwarf = main sequence star = high surface gravity.

	1 (T / T)	25/25	
Sp.Type	$\log(L/L_{\odot})$	${\rm M/M}_{\odot}$	$T_{eff} K$
O5V	5.82	40	40,000
B0V	4.66	18	28,000
B5V	2.94	9	15,500
A0V	1.78	3	9900
A5V	1.15	2	8500
F0V	0.88	1.7	7400
F5V	0.54	1.3	6580
G0V	0.15	1.1	6030
G5V	-0.11	0.9	5520
K0V	-0.38	0.8	4900
K5V	-0.78	0.7	4130
M0V	-1.22	0.5	3480
M5V	-1.90	0.2	2800
LO	-3.65		2200
L5	-4.11		1700
Т0	-4.57		1300
T5	-5.02		1000
Y0	-6.23		500

1 magnitude is -4 db

A decibel (db) is a factor of $10^{0.1}$ in power. 0^{th} mag at V $\approx 10^7$ photons/m²/sec/Å. $m_{bol} = 0$ for 2.5×10^{-8} W/m². Bands central wavelengths in μ m: U = 0.36, B = 0.44, V = 0.55, R = 0.7, I = 0.9, Z = 1.0, J = 1.25, H = 1.6, K = 2.2, L = 3.5, M = 4.6, N = 10, Q = 20 AB magnitudes have the same zeropoint flux in F_{ν} (3631 Jy) in all bands. Johnson or "Vega" magnitudes have zeropoints that follow the spectrum of an A0V star.

 $10^{n/10} = 1.26, 1.6, 2, 2.5, 3.2, 4, 5, 6.3, 8.$