UNIVERSITY OF KANSAS

Department of Physics and Astronomy
ASTR 691 — Prof. Crossfield — Fall 2022

Midterm \#1
Wednesday, 2022/10/05 - 1000 Central Time

This exam is worth 56 points. Please complete all FOUR questions in the exam. As always, be sure to: show your work, circle your final answer, and use the appropriate number of significant figures, and appropriately label all plots. Unlike a problem set for this midterm you may use only this equation sheet, the OoMA factoid sheet, and a 'dumb' calculator.

$$
\begin{align*}
& \text { Stefan - Boltzmann Law : } L=(\text { surface area }) \times \sigma_{S B} T^{4} \tag{1}\\
& \text { Wien's Law }: \frac{\lambda_{\max }}{1 \mu \mathrm{~m}} \approx \frac{3000 \mathrm{~K}}{T} \tag{2}\\
& c=\lambda \nu \quad E_{\text {photon }}=h \nu \quad \frac{E_{\text {photon }}}{1.2 \mathrm{eV}} \approx \frac{\lambda}{1 \mu \mathrm{~m}} \tag{3}\\
& P=n k_{B} T \quad n=\frac{\rho}{\left\langle m_{\text {particle }}\right\rangle} \tag{4}\\
& L=\frac{E}{\Delta t} \quad F=\frac{L}{\text { area }} \quad F_{\lambda}=\frac{F}{\Delta \lambda} \quad I_{\lambda}=\frac{F_{\lambda}}{\Omega} \tag{5}\\
& E=\int L d t \quad L=\int F d A \quad F=\int F_{\lambda} d \lambda \quad F_{\lambda}=\int I_{\lambda} d \Omega \tag{6}\\
& B_{\lambda}(T)=\frac{2 h c^{2}}{\lambda^{5}} \frac{1}{e^{\frac{h c}{\lambda k_{B} T}}-1} \quad B_{\nu}(T)=\frac{2 h \nu^{3}}{c^{2}} \frac{1}{e^{\frac{h \nu}{k_{B} T}}-1} \tag{7}\\
& d \tau_{\lambda}=\alpha_{\lambda} d x \quad \alpha_{\lambda}=n \sigma_{\lambda} \quad S_{\lambda}=\frac{j_{\lambda}}{\alpha_{\lambda}} \tag{8}\\
& \frac{d I_{\lambda}}{d \tau_{\lambda}}=S_{\lambda}-I_{\lambda} \quad I_{\lambda}\left(\tau_{\lambda}\right)=I_{\lambda, 0} e^{-\tau_{\lambda}}+S_{\lambda}\left(1-e^{-\tau_{\lambda}}\right) \tag{9}\\
& E_{n}=(-13.6 \mathrm{eV}) \frac{Z^{2}}{n^{2}} \quad E_{\ell}=h \nu_{0}\left(\ell+\frac{1}{2}\right) \quad E_{J}=\frac{\hbar^{2}}{2 I} J(J+1) \tag{10}\\
& j_{\nu}=\frac{1}{4 \pi} h \nu A_{U L} n_{u} \phi(\nu) \quad \alpha_{\nu}=\frac{1}{4 \pi} h \nu B_{L U} n_{L} \phi(\nu) \tag{11}
\end{align*}
$$

OoMA Fact Sheet

$G=(2 / 3) \times 10^{-10} \mathrm{~N}-\mathrm{m}^{2} / \mathrm{kg}^{2}$
$c=3 \times 10^{8} \mathrm{~m} / \mathrm{sec}$
$k=(1 / 7) \times 10^{-22} \mathrm{~J} / \mathrm{K}$
$h=(2 / 3) \times 10^{-33} \mathrm{~J}$-sec
$\hbar=10^{-34} \mathrm{erg}-\mathrm{sec}$
$N_{A}=6 \times 10^{26}$ nucleons $/ \mathrm{kg}$
$m_{p} / m_{e}=1836 \quad m_{p} c^{2}=938 \mathrm{MeV}$
$m_{e} \approx 10^{-27} \mathrm{gm} \quad m_{e} c^{2}=511 \mathrm{keV}$
$e=4.8 \times 10^{-10}$ esu $=1.6 \times 10^{-19}$ Coulomb
$\alpha=e^{2} / \hbar c=1 / 137$
$L_{\odot}=4 \times 10^{26} \mathrm{~W}$
Fusing H to He yields 0.7% of $m c^{2}$
He to $\mathrm{C} \& \mathrm{C}$ to Fe about 0.1% of $m c^{2}$ each
Solar Constant $=1.4 \mathrm{~kW} / \mathrm{m}^{2}$ at 1 AU
$R_{\odot}=7 \times 10^{8} \mathrm{~m}$
$M_{\odot}=2 \times 10^{30} \mathrm{~kg}$
$R_{\oplus}=6371 \mathrm{~km}$
$M_{\oplus}=3 \times 10^{-6} M_{\odot}$
$\pi R_{\oplus} \approx 20000 \mathrm{~km}$ (by revolutionary fiat)
$M_{J}=10^{-3} M_{\odot}$
Hubble radius $=c / H_{\circ}=1.3 \times 10^{30} \mathrm{~m}$
Critical density $\sim 10^{-26} \mathrm{~kg} / \mathrm{m}^{3}$
$\sigma_{T}=(2 / 3) \times 10^{-28} \mathrm{~m}^{2}$
$\sigma_{S B}=5.67 \times 10^{-8} \mathrm{~J} / \mathrm{m}^{2} / \mathrm{sec} / \mathrm{K}^{4}$
Flux from a blackbody surface is $\sigma_{S B} T^{4}$
1 gram calorie $=4.2 \mathrm{Watt}-\mathrm{sec}$ or Joules
Dietary calories are really kilocalories.
1 kiloton (kT) of TNT $=$ KE of 1000 metric
tonnes @ $2.9 \mathrm{~km} / \mathrm{sec} .\left[1 \mathrm{kT}=10^{9} \mathrm{~kg}\right.$-cal exactly]
Supernova kinetic energy $=10^{44} \mathrm{~J}$
$1 \mathrm{AU}=(3 / 2) \times 10^{11} \mathrm{~m}$
1 radian $=2 \times 10^{5}$ arc-seconds
1 square arcsec $=2.4 \times 10^{-11}$ steradians
$1 \mathrm{pc}=2 \times 10^{5} \mathrm{AU}=3 \times 10^{16} \mathrm{~m}$
$1 \mathrm{~J}=10^{7} \mathrm{erg}=6 \times 10^{18} \mathrm{eV}$
$1 \mathrm{eV} \sim 12,000 \mathrm{~K} \quad 1 \mathrm{eV} \sim 1.2 \mu \mathrm{~m}$
$h c / k \approx 0.014 \mathrm{~m}-\mathrm{K}$
$1 \mathrm{Jy}=10^{-26} \mathrm{~J} / \mathrm{m}^{2} / \mathrm{sec} / \mathrm{Hz}$
1 year $\approx \pi \times 10^{7}$ seconds
1 Mpc is $1 \mathrm{~km} / \mathrm{sec}$ for 1000 Gyr
One atmosphere or 1 bar $=10^{5} \mathrm{~N} / \mathrm{m}^{2}$
Maximum mass for white dwarfs: $1.4 \mathrm{M}_{\odot}$
Typical mass of neutron stars: $1.4 \mathrm{M}_{\odot}$

Stellar spectra - from "early" = hot to "late" = cool:
Oh Be A Fine (Guy/Gal) Kiss Me Later Tonight Luminosity class - the Roman numeral: "I" = supergiant = low surface gravity "III" = giant, "V" = dwarf = main sequence star $=$ high surface gravity.

Sp.Type	$\log \left(L / L_{\odot}\right)$	$\mathrm{M} / \mathrm{M}_{\odot}$	$\mathrm{T}_{\text {eff }} \mathrm{K}$
O5V	5.82	40	40,000
B0V	4.66	18	28,000
B5V	2.94	9	15,500
A0V	1.78	3	9900
A5V	1.15	2	8500
F0V	0.88	1.7	7400
F5V	0.54	1.3	6580
G0V	0.15	1.1	6030
G5V	-0.11	0.9	5520
K0V	-0.38	0.8	4900
K5V	-0.78	0.7	4130
M0V	-1.22	0.5	3480
M5V	-1.90	0.2	2800
L0	-3.65		2200
L5	-4.11		1700
T0	-4.57		1300
T5	-5.02		1000
Y0	-6.23		500

1 magnitude is -4 db
A decibel (db) is a factor of $10^{0.1}$ in power.
$0^{\text {th }}$ mag at $\mathrm{V} \approx 10^{7}$ photons $/ \mathrm{m}^{2} / \mathrm{sec} / \AA$.
$m_{\text {bol }}=0$ for $2.5 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2}$.
Bands central wavelengths in $\mu \mathrm{m}$:
$\mathrm{U}=0.36, \mathrm{~B}=0.44, \mathrm{~V}=0.55, \mathrm{R}=0.7$, $\mathrm{I}=0.9, \mathrm{Z}=1.0, \mathrm{~J}=1.25, \mathrm{H}=1.6, \mathrm{~K}=$ $2.2, \mathrm{~L}=3.5, \mathrm{M}=4.6, \mathrm{~N}=10, \mathrm{Q}=20$
AB magnitudes have the same zeropoint flux in F_{ν} (3631 Jy) in all bands.
Johnson or "Vega" magnitudes have zeropoints that follow the spectrum of an A0V star.
$10^{n / 10}=1.26,1.6,2,2.5,3.2,4,5,6.3,8$.

