# GPI 2.0

Characterizing Self-Luminous Exoplanets Through Low-Resolution Infrared Spectroscopy

Aleman et. al.

# About GPI

- Gemini Planet Imager
- Uses direct imaging
- Obtains spectra of planets
- Spectra have 16 pixels each
- Uses 4 IR bands (YHJK)
- Getting an upgrade



# Direct Imaging

#### Taking Pictures of planets

# Shown here are 3 exoplanets



Upsides?

- Generally applicable
- Unique bias
- Can constrain certain properties of exoplanets



planetimager.org

# Downsides?

It's hard:

- Needs a decent telescope
- There's literally a star right there!
- Background stars



# Now the Paper

- How to make measurements?
- How accurate are they?
- Can it distinguish an exoplanet from a background star?

#### Methods

- Generate model spectra
- Make the real world happen



Joseph Hand

7

# Preliminary Results

- Temperature ✓
- Surface Gravity X



8

## Better "Real World"

- Nonlinear dispersion
- Line spread (blurring)



Joseph Hand

(Aleman et. al. 2022)

#### Results 1



9/23/2022

## Results 2

|  | Table 4. GPI 2.0 Medium Resolution Cases Summary |              |              |                |              |              |               |              |              |                |  |
|--|--------------------------------------------------|--------------|--------------|----------------|--------------|--------------|---------------|--------------|--------------|----------------|--|
|  |                                                  | 500 K        |              |                | 1000 K       |              |               | 1300 к       |              |                |  |
|  | Cases                                            | 68%<br>Conf. | 95%<br>Conf. | 99.7%<br>Conf. | 68%<br>Conf. | 95%<br>Conf. | 99.7<br>Conf. | 68%<br>Conf. | 95%<br>Conf. | 99.7%<br>Conf. |  |
|  | H (texp = 4 hrs)                                 | 5.1          | 21.1         | 35.7           | 7.9          | 30.7         | 49.7          | 31.1         | 113.3        | 192.5          |  |
|  | $H+Y (t_{exp} = 2 hrs each)$                     | 2.4          | 10.6         | 18.4           | 9.5          | 36.3         | 61.6          | 35.1         | 128.8        | 215            |  |
|  | H+J (t <sub>exp</sub> = 2 hrs<br>each)           | 1.2          | 6.9          | 12.2           | 6.3          | 26.1         | 44.3          | 21.5         | 77.7         | 130.4          |  |
|  | H+K (t <sub>exp</sub> = 2 hrs<br>each)           | 7.9          | 30.1         | 51.3           | 11.6         | 43.5         | 73.5          | 26.7         | 96.9         | 163.1          |  |
|  | Y+J+H+K (t <sub>exp</sub> =<br>1 hr each)        | 1.8          | 8.7          | 14.8           | 9            | 34.3         | 58            | 24.2         | 87.1         | 146.5          |  |

9/23/2022

#### Results 3

- <25% error when SNR>5
- 2 hours exposure



9/23/2022

Joseph Hand

12

# Conclusions

- GPI 2.0 can constrain temperature
- Not really surface gravity
- Best bands are H and J
- It can tell stars from planets