Quantifying the evidence against a mass gap between black holes and neutron stars

L.M. de Sá, A. Bernardo, R.R.A. Bachega, J.E. Horvath, L.S. Rocha, and P.H.R.S. Moraes

https://arxiv.org/pdf/2211.01447.pdf

Presenter : Tom Huynh

Key terms :

Neutron stars :

Formed from the collapse of the iron core inside of stars at the end of their life. (~8-25 Solar Masses)

Maximum mass : ~2.2-2.6 Solar masses

Black holes :

Also formed from death of stars, but only the biggest ones (>25 Solar masses)

```
Minimum mass : ~4-5 Solar masses.
```


Table 1. Mass	Distributions	for	the	12	New	Objects	Used in	n This	Work

Name	M	Reference				
	(M_{\odot})					
GW 200115 prim.	AN(5.9, 1.22, 1.52)	The LIGO Scientific Collaboration et al. (2021b)				
GW 190924 sec.	AN(5, 0.85, 1.16)	Abbott et al. (2021b)				
OGLE-2011-BLG-0463 (DW)	AN(3.79, 0.62, 0.57)	Lam et al. (2022)				
OGLE-2011-BLG-0463 (EW)	AN(2.15, 0.67, 0.54)	Lam et al. (2022)				
2MASS J05215658+4359220 comp.	AN(3.3, 1.4, 0.35)	Thompson et al. (2019)				
V723 Mon comp.	N(3.04, 0.06)	Jayasinghe et al. (2021)				
GW 200210 sec.	AN(2.83, 0.29, 0.26)	The LIGO Scientific Collaboration et al. (2021b)				
GW 190814 sec.	N(2.59, 0.05)	Abbott et al. (2020)				
GW 170817 rem.	AN(2.44, 0.15, 0.12)	Shibata et al. (2019)				
PSR J0952-0607	N(2.35, 0.17)	Romani et al. (2022)				
PSR J2215+5135	AN(2.27, 0.17, 0.15)	Linares et al. (2018)				
GW 190917 sec.	AN(2.1, 0.91, 0.3)	The LIGO Scientific Collaboration et al. (2021a)				
GW 190425 prim.	AN(2, 0.37, 0.18)	Abbott et al. (2021b)				

Analysis methods :

Joint probability and cumulative distribution function test

Used to determine the probability of an absolute gap below 4 Solar masses Likelihood ratio test

Compares the mass distribution of the surveyed objects against a plateau between the mass distribution of the Neutron stars and Black holes, then determine how they prove or disprove the gap theories.

Summary

Existence of a gap between Neutron stars and Black holes have long been proposed

Using newly obtained observational data, this paper disproved the existence of an absolute gap, instead favouring the existence of a relative gap

More research is needed to determine the exact shape of the distribution, as well as whenever it is just a relative gap or no gap at all.