
Atmospheric characterization of the ultra-hot Jupiter WASP-33b: Detection of Ti and V emission lines and retrieval of a broadened line profile

Authors: D. Cont, F. Yan, A. Reiners, L. Nortmann, K. Molaverdikhani, E. Pallé, Th. Henning, I. Ribas, A. Quirrenbach, J. A. Caballero, P. J. Amado, S. Czesla, F. Lesjak, M. López-Puertas, P. Mollière, D. Montes, G. Morello, E. Nagel, S. Pedraz, A. Sánchez-López

Presentation by Camden Ruckman

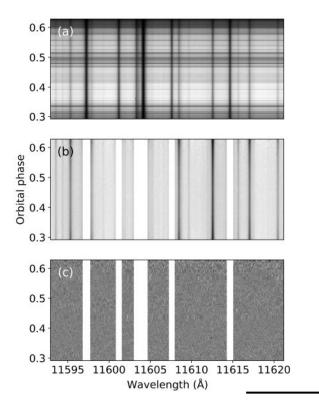
Introduction

- Atmospheric Characterization
 - UHJs
 - WASP-33b
- High Resolution Emission Spectroscopy
 - Collection of emitted photons from excited molecules
 - Titanium (Ti I)
 - Vanadium (V 1)
 - Others
- Orbital Phase Effects
 - Can alter the emission spectrum
 - Temperature profiles of phases

UHJs and WASP-33b

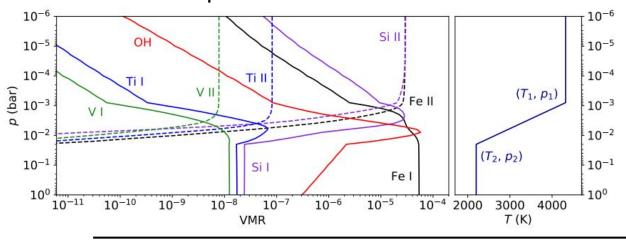
Ultra Hot Jupiters (UHJs)

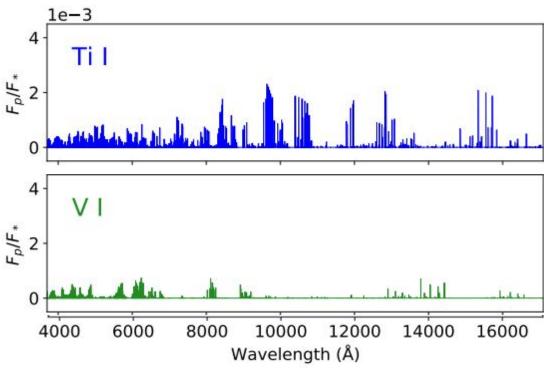
- Gas giants with the highest equilibrium temperatures measured to date(Teq≥2200K)
- Close orbits to their host stars
- $\circ \quad \ \ Usually tidally locked with host star$
 - High irradiated daysides
 - Different atmospheric composition between day and night hemispheres


Observational Instruments

- CARMENES
 - $\circ \quad {\sf Calar\,Alto\,Observatory,Spain}$
- HARPS-N
 - Galileo National Telescope, Spain
- ESPaDOnS
 - Canada-France-Hawaii Telescope, Hawaii

Instrument	Spectral resolution (R)	Wavelength range (Å)	Date
CARMENES	94 600 (VIS)	5200-9600	2017-11-15
	80 400 (NIR)	9600-17 100	2017-11-15
HARPS-N	115 000	3830-6900	2020-10-15
			2020-11-07
ESPaDOnS	68 000	3700-10 500	2013-09-15
			2013-09-26
			2014-09-04
			2014-09-15
			2014-11-05

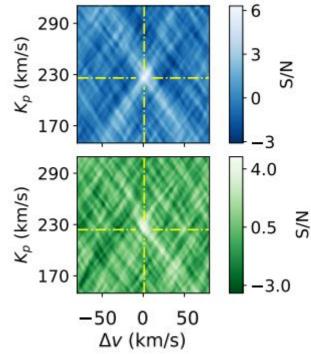

Data Reduction


- A. Unprocessed Spectral Matrix
- B. Spectral Matrix after normalization and outlier correction
- C. Spectrum after normalization, outlier correction, and removal of strong telluric and stellar lines

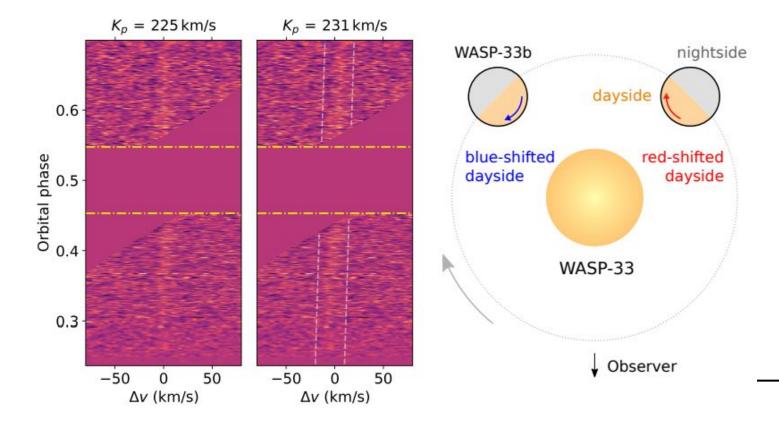
Atmospheric Model

 To create a model, they used WASP-189b T-p profile due to its similar properties to WASP-33b. 189b has also been used successfully to help characterize 33b's atmosphere before.

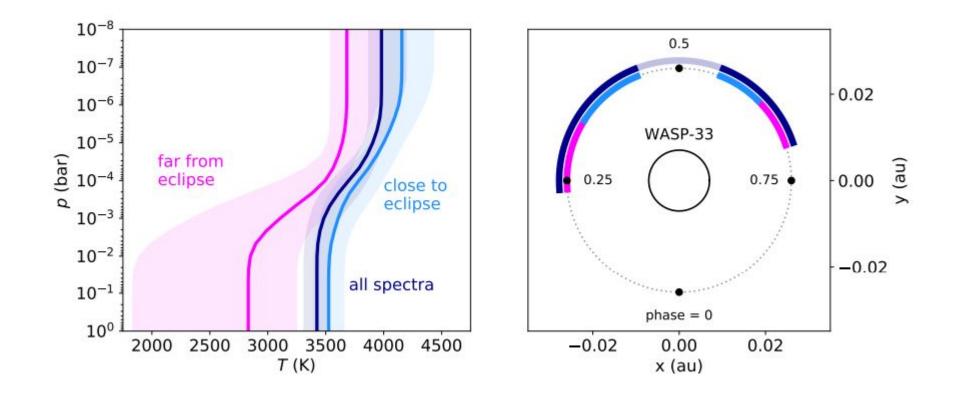
Ti I and V I Emission Line Models



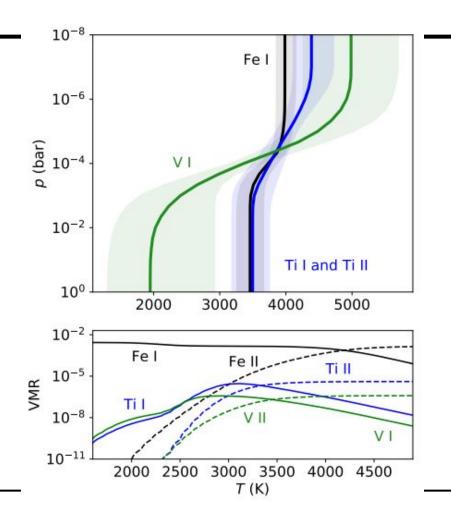
 Model Spectra were obtained through running petitRADTRANS, a radiative transfer code


Cross-Correlation Method and S/N Maps

Cross-Correlation Function: CCF=∑*rimi*(v)


- Combining the CCFs of datasets to form a two dimensional array or CCF map.
- Then the array is normalized by its standard deviation excluding the region around the strongest peak.

Orbital Phase Effects



Overall Temperature Profile

Individual Profiles

- Fe I, Ti I, and Ti II all match the overall result
- VI deviates possibly due to a depleted atmosphere
- This depletion could explain the weak thermal inversion compared to other UHJs

Summary

- Til and VI Detected
 - $\circ \quad \ \ {\rm First\ time\ for\ an\ exoplanet\ via\ emission\ spectroscopy}$
- High resolution emission spectroscopy can offer greater detail of information about atmospheric characterization.
- Matching temperature profiles of Fe I and Ti I to the overall profile shows reliability and confidence to the method used and values calculated.
- Thermal Inversion Confirmed
- Orbital Phase and possibly depletion of material both affect the thermal inversion of an atmosphere as shown through WASP-33b.