Revisiting the Iconic Spitzer Phase Curve of 55 Cancri e: Hotter Dayside, Cooler Nightside and Smaller Phase Offset

Paper by Samson Mercier, Lisa Dang, Alexander Gass, Nicolas B. Cowan, and Taylor J. Bell

Presentation by Kate Wienke

Background Image Credits: NASA, ESA, CSA, and STScI

A Brief Introduction

- 55 Cancri e has been analyzed several times to learn more about whether or not the planet has an atmosphere and what such an atmosphere might consist of.
- In this paper, a code known as Spitzer Phase Curve Analysis (SPCA) is used to look at 55 Cnc e, producing a phase curve that allows us to learn more about the planet's potential atmosphere.
- Their goal is to reproduce results from previous analyses of 55 Cnc e that suggest the possibility of an atmosphere.

What is 55 Cancri e?

An exoplanet

- Planets outside of our solar system
- Orbit stars

Ultra-short period

- Period ~0.7 days
- Tidally locked

Super-Earth

- \sim ~1.9x the size of Earth
- \sim ~8x the mass of the Earth

Orbits a bright star

- This is why we can observe the planet
- Causes some issues

Credit: NASA/JPL-Caltech

How Do We Study Exoplanets Like 55 Cnc e?

• Phase curves

• A phase curve shows the brightness of the planet-star system as the planet orbits its star. From the phase curve, we can learn about the exoplanet's temperature, reflectivity, and even it's atmosphere.

Credit: NASA/JPL-Caltech/Univ. of Cambridge

Its Atmosphere, You Say?

• Yes!

• The phase curve offset and the peak-to-trough amplitude of the transit can both tell us about the planet's atmosphere (or lack thereof).

Credit: Josh Winn

Enough background! Let's talk about the paper.

Goals and Challenges

- Reproduce previously published results for 55 Cnc e using SPCA
- However, Spitzer data is notoriously tricky due to a range of systematic errors
 - This is exacerbated by the adjustments that had to be made to accommodate the brightness of 55 Cnc e's star.

Credit: NASA/JPL-Caltech

Results

- Found phase offset of 12 +21/-18 degrees west, average dayside temperature of 3,771 +670/-520 K and a nightside temperature of Tnight < 1649 K.
 - Conclude that there is no significant offset present in the phase variations.
- Transit depth lines up with most previously published results, but not all
 - Enables them to tentatively excludes a cloud-free hydrogen-dominated atmosphere

Parameters	SPCA Values	D16b Values
Fixed Astrop	hysical Parameters	
$i \; (degrees)$	$83.59_{-0.4}^{+0.5}$	$83.3_{-0.8}^{+0.9}$
P (days)	$0.7365474_{-0.0000014}^{+0.0000013}$	0.736539 ± 0.000007
$T_0 ~({ m days})$	$2457063.2096^{+0.0006}_{-0.0004}$	2455733.013 ± 0.007
a/R_*	3.52 ± 0.01	3.514 ± 0.62
e	0.05 ± 0.03	$0.061^{+0.065}_{-0.043}$
$\omega \; (degrees)$	86^{+31}_{-33}	202^{+88}_{-70}
q_1	0.0286	0.0286
q_2	0.0554	0.0554
Stellar Effective Temperature (K)	5172 ± 18	5250^{+123}_{-172}
Stellar Surface Gravity $(log_{10}(cm/s^2))$	4.43 ± 0.02	$4.43\substack{+0.052\\-0.14}$
Stellar Metallicity (dex)	$0.35\pm0.10~\mathrm{[Fe/H]}$	$0.35 \pm 0.10 ~[{\rm M/H}]$
checkPhase	True	True
Free Astrop	hysical Parameters	
R_P/R_*	$0.01708\substack{+0.0016\\-0.0017}$	0.0187 ± 0.0007
F_P/F_*	$0.000209\substack{+0.000050\\-0.000047}$	0.000154 ± 0.000023
Photometric precision (ppm)	$445.4_{-7.3}^{+7.5}$	363
Α	$0.493\substack{+0.04\\-0.07}$	Unknown
В	0.108 ± 0.18	Unknown
Detector H	lyper Parameters	
x knot resolution	84	Unknown
y knot resolution	64	Unknown
Derive	d Parameters	
Phase Semi-Amplitude (ppm)	110.9^{+17}_{-16}	75.8 ± 17
Phase Offset (degrees east)	-12.43^{+21}_{-18}	41 ± 12
Average Dayside Temperature (K)	3771^{+669}_{-520}	2999^{+188}_{-193}
Average Nightside Temperature (K)	1045^{+302}_{-243}	1380 ± 400
Conservative Nightside Temperature (K)	$(< 1649 \ 2\sigma, < 1951 \ 3\sigma)$	_

Table 1. Fixed, Free and Derived Parameters for 55 Cancri e

Results, Cont'd

- Hypothesize that 55 Cnc e either has a global atmosphere covering both hemispheres of the planet or a local dayside atmosphere.
- Surprisingly high dayside brightness temperature can be explained with the presence of SiO in the atmosphere
 - Magma oceans evaporating

Credit: NASA

Conclusions

- Different results from Demory et al. (2016a) AKA D16b
 - Most likely caused by using different photometric extraction methods
- Found a phase offset of 12 +21/-18 degrees west, compared to D16b who found a large eastward offset, 2σ away from SPCA's findings.
- The meager phase offset and low nightside flux are consistent with weak heat redistribution, while the large dayside flux could be because of SiO absorption of UV and re-emission at 4.5 µm (the wavelength the data was taken in).

Sources

- Dang, Lisa, et al. "Detection of a Westward Hotspot Offset in the Atmosphere of Hot Gas Giant COROT-2b." Nature Astronomy, vol. 2, no. 3, 2018, pp. 220–227., https://doi.org/10.1038/s41550-017-0351-6.
- Dang, Lisa. "Lisadang27/SPCA: Spitzer Phase Curve Analysis." GitHub, <u>https://github.com/lisadang27/SPCA</u>.
- 3. Mercier, Samson J., et al. "Revisiting the Iconic Spitzer Phase Curve of 55 Cancri e: Hotter Dayside, Cooler Nightside and Smaller Phase Offset." *ArXiv.org*, 21 Sept. 2022, https://arxiv.org/abs/2209.02090.
- 4. "NASA Exoplanet Archive." NASA Exoplanet Archive, https://exoplanetarchive.ipac.caltech.edu/.
- 5. Spitzer Heritage Archive, https://sha.ipac.caltech.edu/applications/Spitzer/SHA/.