UNIVERSITY OF KANSAS

Department of Physics and Astronomy
Astrophysics I (ASTR 691) — Prof. Crossfield — Fall 2022

Problem Set 2

Due: Wednesday, Sep 14, 2022, before the start of class (by 1000), by email. This problem set is worth $\mathbf{5 2}$ points.

As always, be sure to: show your work, circle or highlight your final answer, list units, use the appropriate number of significant figures, type the Pset, and submit a printed copy.
Recommended tools for typesetting your problem set are either LibreOffice or the LaTeX typesetting system available either by download athttps://www.latex-project.org/get/or in online-only mode via, e.g., https://www.overleaf.com/

1. How Do You Say "Absorption" in Astrophysics? [12 pts]

(a) Define α_{λ}, extinction coefficient (in words, not just an equation!), and give its typical units. [3 pts]
(b) Define σ_{λ}, cross-section (in words, not just an equation!), and give its typical units. [3 pts]
(c) Define κ_{λ}, opacity (in words, not just an equation!), and give its typical units. [3 pts]
(d) Define τ_{λ}, the optical depth (in words, not just an equation!), and give its typical units. [3 pts]
2. A Hazy Morning [$\mathbf{1 5} \mathbf{~ p t s}$] On a given day the weather report mentions that visibility is about one km. Take that as the distance at which $\tau_{\lambda} \approx 1$:
(a) Estimate the atmosphere's extinction coefficient α_{λ} that morning. [3 pts]
(b) If the visibility is mainly limited by smoke from nearby fires, estimate the effective cross-section σ_{λ} of the smoke particles and the number density n of these particles in the atmosphere. [4 pts]
(c) Given the typical density ρ of air at sea level, estimate the opacity κ_{λ} of the smoky air (in SI units). [4 pts]
(d) Now assume that this same smoke layer is confined to a thin layer near the ground with a thickness of just 100 m (due to some unknown atmospheric phenomenon; the reason isn't important here). What is the optical depth at visible wavelengths when looking straight overhead? and when looking up at a 45° angle (halfway between straight up and parallel to the ground)? [4 pts]
3. Radiation Quantities [15 pts] Consider two astronomical objects: an Earth-size planet with $T \approx 300 \mathrm{~K}$ and a Sun-like star $T \approx 5800 \mathrm{~K}$. Assume that both objects radiate as blackbodies. Recalling that $F_{\lambda}=\pi I_{\lambda}\left(\frac{R}{d}\right)^{2}$ (Rybicki, Eq. 1.13; where R is the object's radius and d is the distance from the object's center):
(a) Plot the flux density, F_{λ}, at the surface of each of these objects. [4 pts]
(b) Plot the flux density, F_{λ}, at a distance of 10 parsecs (pc) from each of these objects. [4 pts]
(c) Plot the wavelength-dependent planet-star flux ratio, $F_{\lambda, p} / F_{\lambda, *}$, of these two blackbody spectra. What does this plot suggest about the best wavelengths to look for radiation emitted by Earth-like planets in other Solar systems? [4 pts]
(d) Calculate the bolometric (wavelength-integrated) planet-star flux ratio, $F_{p} / F_{*} .[3 \mathrm{pts}]$
4. A Very Simple Scattering Model [10 pts] As we talked about in class, very large objects (like basketballs) absorb visible light based on their geometric cross-section, $\sigma_{\lambda}=$ constant. But for small objects (or very long wavelengths), when $\lambda \gg r$, we enter the Rayleigh Scattering regime where $\sigma_{\lambda} \propto \lambda^{-4}$.
Construct and write down an approximate, continuous expression for σ_{λ}, and then plot it for a range of λ extending from $\lambda<r$ to $\lambda>r$.

MY HOBBY: TEACHING TRICKY QUESTIONS TO THE CHILDREN OF MY SCIENTIST FRIENDS.

Figure 1: A cruel trick involving Rayleigh scattering, from https: //xkcd.com/1145/ Bonus points if you answer this child's second question.

