
UNIVERSITY OF KANSAS
Department of Physics and Astronomy

Astrophysics I (ASTR 691) — Prof. Crossfield — Fall 2022

Problem Set 1
Due: Friday, 2022/09/02, at the start of class

This problem set is worth 48 points (+10 possible bonus points).

As always, be sure to: show your work, circle or highlight your final answer, list units, use the appropriate number of
significant figures, type the Pset, and submit a printed copy.

Recommended tools for typesetting your problem set are either LibreOffice or the LaTeX typesetting system
available either by download at https://www.latex-project.org/get/ or in online-only mode via, e.g.,

https://www.overleaf.com/.

1. Flux From A Nearby Star [8 pts]. Alpha Centauri A is one star in the triple-star Alpha Centauri system (1.3
parsecs away), and it is a fairly similar star to our Sun (for this problem, assume it is identical to the Sun).

(a) Roughly how many times weaker is the stellar flux from this star (F∗) that hits the Earth, relative to the
Solar flux from the Sun that reaches the Earth (F�)? [4 pts]
Solution: Eq. 2.19 of Seager’s book tells us that the observed flux Fobs on Earth depends on the object’s
radius, distance, and surface flux FS as:

Fobs =

(
R

D

)2

FS , (1)

Based on what the problem tells us, we can assume that the two stars are the same and emit the same
amount of energy (i.e., they have the same luminosity L). From Eq. 2.23 of Seager’s book, surface flux
FS = L/4πR2. Since the two objects also have the same radii, then their surface fluxes are also identical.
So the ratio of incident fluxes is

F∗

F�
=

(
D�
D∗

)2

=
(

1AU
1.3pc

)2

≈ 1.4× 10−11

(Note that we were only given two significant figures in the problem statement, so we only include two
here in the solution.)

(b) Roughly how many times weaker is the stellar flux density from this star (Fν,∗) that hits the Earth, relative
to the Solar flux density from the Sun that reaches the Earth (Fν,�)? [4 pts]
Solution: All of the same arguments made above apply to the flux density, too. So the answer is exactly

the same, 1.4× 10−11 .

2. Define Your Terms [10 pts].

(a) Explain why the radiation quantity “Intensity” is constant with distance (in empty space), and why this
quantity doesn’t behave like we’re used to when we think about how brightness changes with distance. [5
pts]
Solution: As one explanation, you saw above that flux and flux density both follow the inverse square law
(1/d2) with distance from a source. How does the specific intensity change with distance? The specific
intensity can be described as the flux divided by the angular size Ω of the source, or Iν ∝ Fν/∆Ω. Again,
flux decreases with distance, proportional to 1/d2. What about the angular source size? It happens that the
source size also decreases with distance – something 2× farther away looks half as tall and half as wide,
so its Ω ∝ 1/d2 as well. As a result, the specific intensity (just another name for surface brightness) is
independent of distance.
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Our intuition is more used to thinking about things looking fainter as they get further away – again, that’s
true with flux but not with intensity.

(b) Explain the concept of “solid angle,” and how it relates to the more usual angles that we learned about in
geometry class. [5 pts]
Solution: Wikipedia defines solid angle as “a measure of the amount of the field of view from some
particular point that a given object covers. That is, it is a measure of how large the object appears to
an observer looking from that point.” We measure it in steradians (sr), which act like two-dimensional
radians. Just like radians relate to the size of an arc around a circle of radius r = 1, sr relate to the total
field of view (or “visual area”) related to the surface area of a sphere with r = 1. So the entire sky in all
directions has Ω = 4π sr; the human eye can see a field of view (at varying resolutions) of roughly 4 sr, or
roughly one-third of the total area around you.

3. Radiative Quantities for the Sun and Earth [14 pts]. Consider two astronomical objects: the Earth with
T ≈ 300 K and the Sun with T ≈ 5800 K:

(a) Use the Stefan-Boltzmann Law to estimate the surface flux (F , in [W m−2]) of each object. [4 pts]
Solution: Since F = σT 4 with σSB ≈ 5.67× 10−8 W m−2 s−1 K−4, the surface fluxes
from these two objects should be

F⊕ =
(
5.67× 10−8

)
(300K)

4 ≈ 460 W m−2 . (2)

and
F� =

(
5.67× 10−8

)
(5800K)

4 ≈ 6.4× 107 W m−2 . (3)

That’s a lot of radiant energy! This is why people can walk around on the Earth, while they would be
immediately incinerated at the surface of the Sun.

(b) Estimate the total luminosity (L, in [W]) of each object. [4 pts]
Solution: Given the surface flux F of an object, we know that its luminosity is given by L = AF , where
A is its surface area. For a spherical planet or star, we then have:

L⊕ = 4πR2
⊕F⊕ ≈ 4π (6400 km)

2 (
460 W m−2

)
≈ 2.4× 1017 W m−2 . (4)

and
L� = 4πR2

�F� ≈ 4π (700, 000 km)
2 (

6.4× 107 W m−2
)
≈ 3.9× 1026 W m−2 . (5)

It shouldn’t surprise us that the Sun is a lot brighter than a planet!

(c) Use the Planck Blackbody function to calculate and plot the surface brightness (i.e. the intensity, Bν) for
the two objects on the same axes as a function of wavelength. (Note that all plots you make in this class
should have the axes and scales labeled, units specified, and can be either linearly or logarithmically scaled
on either axis. You can use your favorite program – Python, GNUPlot, Mathematica, or even a spreadsheet
program – to make your plots.) For this plot, your plotting range should extend at least from 0.2 to 20 µm,
and your Y-axis will need to be logarithmic to show both spectra at the same time. [6 pts]
Solution: Given the Planck function

Bν(T ) =
2hν3

c2
1

ehν/kBT − 1
, (6)

let’s define a function for this and then generate the appropriate plot, all using Python:

# Import necessary modules
import numpy as np
from pylab import *

# Define a function:
def bnu(T, lam):
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"""Planck function in frequency.

:INPUTS:
T : scalar or array
temperature in Kelvin

lam : scalar or array
wavelength in microns [but intensity will be per Hz]

Value returned is in SI units: W/mˆ2/Hz/sr
"""
from numpy import exp

c = 299792458 # speed of light, m/s
h = 6.626068e-34 # SI units: Planck’s constant
k = 1.3806503e-23 # SI units: Boltzmann constant, J/K
nu = c/(lam/1e6)
expo = h*nu/(k*T)
nuoverc = 1./ (lam/1e6)
return ((2*h*nuoverc**2 * nu)) / (exp(expo)-1)

# Set up wavelength grid:
wavelength_micron = np.linspace(0.1, 50, 10000)

#Calculate blackbodies:
bb_earth = bnu(300, wavelength_micron)
bb_sun = bnu(5800, wavelength_micron)

#Generate figure:
figure()
loglog(wavelength_micron, bb_sun, label=’5800 K’, color=’orange’)
loglog(wavelength_micron, bb_earth, label=’300 K’, color=’blue’)
xlabel(’Wavelength [microns]’, fontsize=16)
ylabel(’Surface Brightness (Intensity) [W/m2/Hz/sr]’, fontsize=12)
xlim(0.1, 50)
ylim(1e-16, 1e-7)
legend()

The result is shown in Fig. 1.

4. Taking it to the Limit [16 pts]. Consider the Planck blackbody function, Bν(T ).

(a) Since ex ≈ 1+x when x is small, show that when studying photons at energies much lower than the Wien
peak of the blackbody (or equivalently, when hν � kT ), the Planck function reduces to the somewhat
simpler form 2ν2kT/c2. This is called the “Rayleigh-Jeans Limit,” and it is usually applicable at radio
wavelengths and often in the infrared. [6 pts]
Solution: Again, we start with

Bν(T ) =
2hν3

c2
1

ehν/kBT − 1
. (7)

In the limit that hν � kT , the exponential component goes to:

exp

(
hν

kT

)
→ 1 +

hν

kT
, (8)

and so the entire right-hand half of Eq. 7 becomes

1

ehν/kBT − 1
→ 1

1 + hν/kBT − 1
→ 1

hν/kT
→ kT

hν
. (9)
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This means that the full relation for the Rayleigh-Jeans limit of the Placnk blackbody function then be-
comes:

Bν,RJ(T ) =
2hν3

c2
kT

hν
=

2ν2kT

c2
. (10)

(b) Generate the same plot as in the previous plot (Bν vs. wavelength), but now using the Rayleigh-Jeans
approximation instead. (If you want, you can even overplot all curves on the same axes to compare them).
[6 pts]
Solution:

# Import necessary modules
import numpy as np
from pylab import *

# Define a function:
def bnu_rj(T, lam):

"""Rayleigh-Jeans approximation to planck function in frequency.

:INPUTS:
T : scalar or array
temperature in Kelvin

lam : scalar or array
wavelength in microns [but intensity will be per Hz]

Value returned is in SI units: W/mˆ2/Hz/sr
"""
from numpy import exp

c = 299792458 # speed of light, m/s
k = 1.3806503e-23 # SI units: Boltzmann constant, J/K
nu = c/(lam/1e6)
return (2 * nu**2 * k * T)/c**2

# Set up wavelength grid:
wavelength_micron = np.linspace(0.1, 50, 10000)

#Calculate blackbodies:
rj_earth = bnu_rj(300, wavelength_micron)
rj_sun = bnu_rj(5800, wavelength_micron)

#Generate figure:
figure()
loglog(wavelength_micron, rj_sun, ’--’, label=’5800 K (RJ Limit)’,

color=’red’)
loglog(wavelength_micron, rj_earth, ’--’, label=’300 K (RJ Limit)’,

color=’cyan’)
xlabel(’Wavelength [microns]’, fontsize=16)
ylabel(’Surface Brightness (Intensity) [W/m2/Hz/sr]’, fontsize=12)
xlim(0.1, 50)
ylim(1e-16, 1e-7)
legend()

The result is shown in Fig. 1.

(c) Discuss the similarities and differences between the two curves that you plotted. [4 pts]
Solution: The two blackbody curves have the same overall shape, but one is lower and peaks at longer
wavelengths. Similarly, the two Rayleigh-Jeans limit curves have the same slope but different vertical
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offsets.
At very long wavelengths, the Rayleigh-Jeans approximation comes very close to matching the full Planck
curve. But at wavelengths comparable to or shorter than wavelength of peak intensity (roughly, for λ .
2λmax), the approximation breaks down.
So you would almost never use the RJ approximation for studies at, say, ultraviolet or X-ray wavelengths,
but it’s very frequently used at radio/submm wavelengths and often in the infrared as well.

5. BONUS [10 pts]. Prove the Wien Law: i.e., show that the wavelength λmax for which Bν(T ) is a maximum is
given approximately by λmaxT ≈ 3000 µm K.
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Figure 1: Blackbody spectra (solid curves) and the Rayleigh-Jeans approximations (dashed lines) for the two indicated
temperatures.
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