
UNIVERSITY OF KANSAS
Department of Physics and Astronomy

Astrophysics I (ASTR 691) — Prof. Crossfield — Fall 2022

Problem Set 3
Due: Wednesday, Sep 21, 2022, before the start of class (by 1000), by email.

This problem set is worth 54 points.

As always, be sure to: show your work, circle or highlight your final answer, list units, use the appropriate number of
significant figures, type the Pset, and submit a printed copy.

Recommended tools for typesetting your problem set are either LibreOffice or the LaTeX typesetting system
available either by download at https://www.latex-project.org/get/ or in online-only mode via, e.g.,

https://www.overleaf.com/.

1. Equation of Radiative Transfer [21 pts].

(a) Write the general form of the Equation of Radiative Transfer (not the solution to the EoRT; also, ignore
terms of directionality such as µ or θ, which we haven’t discussed in lecture yet). Thoroughly explain the
meaning of all terms, and the meaning of the overall equation. [5 pts]
Solution: The equation of radiative transfer is

dIν
dτν

= Sν − Iν . (1)

i. The first (differential) term indicates that this is telling us how radiation (as measured by specific
intensity) varies with optical depth.

ii. The second term (Sν) is the so-called “Source Function” which indicates the contribution (emission)
of additional radiation into the beam. In many cases (when conditions are optically thick, and when
we are in LTE=local thermodynamic equilibrium), Sν ≈ Bν(T ), the Planck blackbody function.

iii. The final term (−Iν) is negative and so indicates the removal of radiation from the beam. Since
optical depth (dτ ) refers to a fractional absorption, this term is just “Iν” (rather than being modulated
by something like opacity or the absorption coefficient).

(b) Show that if emission is negligible, that the solution to the equation of radiative transfer is

I(τ) = I0e
−τ . (2)

Explain what this expression means, in words. [3 pts]
Solution: If emission is negligible, then Sν in Eq. 1 is zero and we have a relatively simple differential
equation. In this case, we can rearrange to get

dIν
Iν

= −dτ. (3)

If we integrate this from where τ = 0 (and where Iν = Iν,0) to some arbitrary optical depth τ (with
intensity Iν(τ)), we’ll have ∫

dIν
Iν

= −
∫
dτ (4)

ln Iν

∣∣∣∣I
I0

= −τ ′
∣∣∣∣τ
0

(5)

ln

(
I(τ)

I0

)
= −τ (6)

And so
I(τ) = I0e

−τ . (7)
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In words, this means that the initially incident intensity I0 is attenuated by absorption (indicated by nonzero
τ ). The more optically thick is the path traversed by the radiations, the more of the light will be absorbed
and the less total light will get through.

(c) Show that if the source function is constant and absorption is negligible, the solution is instead

I(τ) = I0 + τS. (8)

Explain what this expression means, in words. [3 pts]
Solution: If absorption is negligible, then Iν in Eq. 1 is zero and we have an even simpler differential
equation. In this case, we can rearrange to get

dIν = Sνdτ. (9)

If we integrate this from where τ = 0 (and where Iν = Iν,0) to some arbitrary optical depth τ (with
intensity Iν(τ)), we’ll have ∫

dIν = Sν
∫
dτ (10)

Iν

∣∣∣∣I
I0

= Sντ
′
∣∣∣∣τ
0

(11)

Iν(τν)− Iν,0 = Sντν (12)

And so
I(τ) = I0 + τS (13)

In words, this means that the initially incident intensity I0 is never attenuated by any absorption (which
we’ve set to zero) and that, furthermore, additional radiation is added to the beam via the source function
Sν . And the longer (i.e., the more optically thick) is the path traversed by the radiation, the more distance
there is for additional light to be emitted and the more light will finally be measured.
Note that this solution is however nonphysical, since if there is no absorption (i.e. α = 0) then actually
dτ = αds = 0 and so τ = 0 always. In practice when τ > 1 we still only get “Sν” worth of emission
added to the beam, though from the expression above we would have expected to get “τSν”. Hence we
need a more physically self-consistent solution; hence the next part of the problem.

(d) Show that if the source function is constant and neither absorption nor emission can be ignored, the general
solution is

I(τ) = I0e
−τ + S

(
1− e−τ

)
. (14)

Explain what each term in this expression means, in words. [5 pts]
Solution: If Sν is constant but both emission and absorption are occuring, then things are a bit more
complicated. We solve this by first multiplying both sides of the R.T. Equation by eτ and rearranging:(

dI

dτ
+ I

)
eτ = Seτ . (15)

We can simplify the left-hand side by noting that

d

dτ
(Ieτ ) =

(
dI

dτ
+ I

)
eτ (16)

and so
d (Ieτ ) = Seτdτ. (17)

If we integrate both sides of this from where τ = 0 (and where Iν = Iν,0) to some arbitrary optical depth
τ (with intensity Iν(τ)), we’ll have ∫

d (Ieτ ) = S
∫
eτdτ (18)

I0e
0 − I(τ)eτ = S

(
e0 − eτ

)
(19)

I0 − I(τ)eτ = S (1− eτ ) . (20)
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Multiplying each side by e−τ and rearranging then yields the desired solution,

I(τ) = I0e
−τ + S

(
1− e−τ

)
. (21)

In words, this means that the specific intensity that would be measured at some optical depth τ depends on
both the absorption of radiation by the medium, and on the emission of new radiation by the medium. The
first term on the right is the exponential decay of the incident intensity I0, as in the absorption-only case
above. The second term on the right involves the source function S and so involves emission: it shows that
extra radiation is emitted, but that as the optical depth of the path increases that emitted radiation will start
to be re-absorbed by the medium before the radiation ever reaches its “destination” at optical depth τ . So
for a perfectly crystal-clear path of τ = 0 there will be no extra emission, but even the most optically thick
path imagineable (τ →∞) will still only have emission “S” .

(e) In Eq. 14, what is the emergent intensity I(τ): (i) if τ = 0 ? (ii) if τ � 1 ? (iii) if 0 < τ � 1 ? [5 pts]
Solution: For each of these cases, we just plug the given value of τ in (or take the corresponding limit).

i. If τ = 0, then we simply have I(τ = 0) = I0 . Outgoing radiation equals incident radiation; surface
brightness is constant through empty space.

ii. For very large τ (i.e., as τ → ∞) our exponential terms will collapse down (since e−∞ → 0). We
will just be left with Iλ = Sλ . An optically thick medium radiates as its source function, and if its
in LTE then the medium is just radiating like a Planck blackbody (since in this case Sλ = Bλ(T )).

iii. In the optically thin (but not wholly clear) case we can Taylor-expand the exponentials, since for small
τ we’ll have e−τ ≈ 1− τ . So the result will be: I(τ) = I0 (1− τ) + τS .

2. Light-Absorbing Clouds, Part I [14 pts] In this and the next problem, you will consider how a few types
of clouds overhead affect the amount of starlight that reaches a ground-based astronomical observatory. In all
cases, assume that the cloud does not emit (or reflect, or scatter) any light. It only absorbs.

First, consider a homogeneous cloud deck: it extends all the way to the ground (z = 0) and up to an altitude of
z = H; above this the cloud is gone and above it the sky is perfectly clear. The cloud has a constant extinction
coefficient of αλ throughout.

A distant star’s light, with intensity Iλ,0 at the top of the atmosphere, is coming down toward your observatory.

(a) How much optical depth has the starlight passed through when it first reaches the top of the cloud, at
z = H? What fraction of the incident starlight (Iλ,0) reaches altitude z = H? [2 pts]
Solution: When the light reaches the top of the atmosphere it hasn’t been absorbed by anything at all. So
τ = 0 and all of the light reaches z = H , i.e. I(z = H) = I0 .

(b) How much optical depth has the starlight passed through when it reaches your observatory, at z = 0? What
fraction of the incident starlight reaches altitude z = 0? [4 pts]
Solution: Generally speaking dτ = αds for radiation traveling along a little increment of path length ds.
Since our radiation is coming down from space, we have ds = −dz, α is constant, and τ(z = H) = 0. So
we just have

τ(z = 0) =

∫
αds =

∫ z=0

z=H

−αdz = −α(0−H) (22)

or
τ(z = 0) = αH . (23)

And so similarly,
I

I0
= e−αH . (24)

(c) Write a general expression for τλ(z), for any altitude z ≤ H . (Make sure that you get the expected
behavior for small or large τ !). [4 pts]
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Figure 1: Plots for the Uniform Absorbing Cloud question. From left to right: absorption coefficient α, optical depth
τ , and total transmission of the starlight down to the ground (I/I0) for H=1 km.

Solution: Following the same approach as above, we have

τ(z) =

∫
αds =

∫ z′=0

z′=H

−αdz′ = −α(z −H) = α (H − z) . (25)

We should check that this has the desired behavior: at the top of the atmosphere (z = H) we have τ = 0,
and at ground level (z = 0) we have τ = αH . Looks right!

(d) Write a general expression for Iλ(z)/Iλ,0, the fraction of starlight reaching any altitude z ≤ H . [4 pts]
Solution: We already know the form of the solution to the radiative transfer equation when the source
function is constant – it’s given by Eq. 14 as I(τ) – and that it reduces further to Eq. 2 when emission is
negligible (as in this case). We now have an expression for τ(z), so we can just plug Eq. 25 into Eq. 2.
The result will be

I(z)

I0
= e−τ(z) = exp [α (H − z)] (26)

I didn’t ask you to plot anything for this problem, but a plot is often a useful way to see how a situation is
behaving. Using the same numerical values as in the variable-cloud case below, α, τ , and I/I0 are plotted
in Fig. 1.

3. Ozone [19 pts]. The Hartley band of the ozone molecule (O3) is a broad absorption band in the UV, and its
cross-section1 has an approximately Gaussian functional form of

σλ =
(
10−17 cm2

)
exp

[
− (λ− 255 nm)

2

2 (17 nm)
2

]
. (27)

(a) Plot the ozone cross-section across the full width of this absorption band. (For this and the other plots you
will make below, use a wavelength range no narrower than 200–310 nm). [3 pts]
Solution:
As usual, I’ll do this with Python (though you could use a spreadsheet program almost as easily). All plots
for this problem are shown in Fig. 2.

1See e.g., http://vpl.astro.washington.edu/spectra/o3uvimages.htm.
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# Import necessary modules
import numpy as np
from pylab import *

# Define wavelength grid, then calculate sigma:
lam = np.linspace(.2, .32, 100) # microns; I think in the infrared!
sigma = 1e-17 * exp(-(lam-.255)**2/(2*.017**2)) # cmˆ2

# Plot the figure:
plt.figure(1, figsize=[10, 10])
ax1=subplot(2,2,1)
plt.plot(lam, sigma / 1e-17, ’--c’, linewidth=3)
plt.xlabel(’Wavelength [microns]’, fontsize=16)
plt.minorticks_on()
plt.ylabel(’$\sigma_\lambda$ -- Cross Section [$10ˆ{-17}$ m$ˆ2$]’,
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Figure 2: Plots for the Ozone question: (a) σ; (b) α; (c) τ ; and (d) total transmission. [Note that the units in (a) and
(b) should be cm2 and cm−1.]
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fontsize=14)
plt.ylim(0,1.1)
plt.text(.05, .9, ’(a)’, fontsize=17, transform=ax1.transAxes)

(b) Ozone is mainly found in the Earth’s stratosphere, where a (very!) rough average for the number density
of ozone particles is n ∼ 3×1011 cm−3. Calculate and plot the absorption coefficient αλ for ozone across
the full width of the Hartley band. [4 pts]
Solution: Assuming everything is just constant, we can calculate

αλ = nσλ (28)

with n = 3 × 1011 cm−3, as given in the problem statement. So continuing the Python code above, we
have:

n = 3e11 # per cmˆ3
alpha = n * sigma # units are now 1/cm
ax2=subplot(2,2,2)
plt.plot(lam, alpha / 1e-6, ’-.’, color=’orange’, linewidth=3)
plt.xlabel(’Wavelength [microns]’, fontsize=16)
plt.minorticks_on()
plt.ylabel(’$\\alpha_\lambda$ -- Absorption Coefficient [$10ˆ{-6}$

m$ˆ{-1}$]’, fontsize=14)
plt.text(.05, .9, ’(b)’, fontsize=17, transform=ax2.transAxes)

(c) Earth’s ozone is mainly concentrated at altitudes from 15–35 km above the Earth’s surface. Assume that n
is constant with altitude in that range, and then calculate and plot the optical depth τλ of the Hartley band
in Earth’s ozone layer. [4 pts]
Solution: In our simple model, we have an ozone layer that is 20 km thick. Since generally dτλ = αλdz,
if we still assume everything is just constant we can calculate

τλ = ∆zαλ (29)

where ∆z = 20 km = 2× 106 cm. Still continuing from the Python code above, we now have:

deltaZ = 20 * 1000 * 100 # convert from km to cm
tau = deltaZ * alpha # unitless

ax3=subplot(2,2,3)
plt.plot(lam, tau, ’:’, color=’purple’, linewidth=3)
plt.xlabel(’Wavelength [microns]’, fontsize=16)
plt.minorticks_on()
plt.ylabel(’$\\tau$ -- Optical Depth’, fontsize=14)
plt.text(.05, .9, ’(c)’, fontsize=17, transform=ax3.transAxes)
plt.ylim(0, ax3.get_ylim()[1])

(d) Considering only this absorption band (and no other atmospheric absorption features), (i) calculate and
plot what fraction of incident Sunlight reaches the surface of the Earth across this ozone absorption band,
i.e. as a function of wavelength. What fraction of light reaches the Earth’s surface (ii) in the central ‘core’
of the Hartley band, around 255 nm, and (iii) far in the ‘wings’ of the band, say at 320 nm? [4 pts]
Solution: (i): We’re only interested in the fraction of incident light that reaches the surface through the
ozone layer: so, all we need is to calculate the absorption-only solution to the equation of radiative transfer,
namely

Iλ(τ)

Iλ,0
= e−τ . (30)
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transmission = np.exp(-tau)

ax4=subplot(2,2,4)
plt.plot(lam, transmission, ’-r’, linewidth=3.5)
plt.xlabel(’Wavelength [microns]’, fontsize=16)
plt.minorticks_on()
plt.ylabel(’$I(\\tau)\ /\ I_0$ -- Transmission’, fontsize=14)
plt.text(.05, .9, ’(d)’, fontsize=17, transform=ax4.transAxes)
plt.ylim(0, ax4.get_ylim()[1])

(ii)
The optical depth in the core of this absorption band is τ ≈ 6, so the UV light at this wavelength is roughly

e−6. A handy trick (impress your friends!) is that e3 ≈ 20, so only e−6 ≈ 1/400 ≈ 0.25% of the UV
light gets through. Basically none!
(iii)
We can see from the plot that this particular ozone band hardly absorbs at all at 320 nm. I calculate

τ ≈ 0.004, so hardly any of this light is blocked: approximately e−0.004 ≈ 1− 0.004 ≈ 99.6% gets
through.

(e) Fig. 3 shows the transmission of light through Earth’s atmosphere across a much wider range of wave-
lengths. Explain how one might extend the analysis you just completed (i.e., one absorption band of one
molecule over a narrow wavelength range) to generate a more complete transmission model such as this.
[4 pts]
Solution: One would need detailed models of all of the components we used in our simple analysis. We
would need to know (i) all important molecules, atoms, and other absorbing materials in the atmosphere;
(ii) the cross-sections per particle for all of these absorbers; (iii) and a detailed model of how the number
density n(z) of all these particles changes with altitude throughout the Earth’s atmosphere. Once we had
this, we could calculate αλ(z) for each type of particle, add them up for a total αλ,tot(z), and integrate
dτ = αλdz to calculate the total optical depth at each wavelength.
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Figure 3: Transmission of the Earth’s atmosphere vs. wavelength over optical and near-infrared wavelengths. Shaded
wavelengths are more opaque, while white wavelengths are more transparent.
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