Chapter Nine

Vertical Thermal Structure of a Planetary
Atmosphere

9.1 INTRODUCTION

The vertical temperature structure of the planet atmosphere is fundamental to un-
derstanding exoplanets for several different reasons. The most significant reason is
that the temperature of the planetary surface tells us whether or not a planet is hab-
itable. If the surface is too hot for covalent bonds to form complex molecules, then
life cannot exist. More conventionally, people believe that liquid water is necessary
at the surface for life to exist. The surface temperature and pressure define whether
or not liquid water is stable. Beyond habitability, the vertical temperature pres-
sure structure is the starting point for computing equilibrium and nonequilibrium
chemistry to understand the composition of the planetary atmosphere.

Each of the solar system planet atmospheres has a qualitatively similar vertical
temperature profile (Figure 9.1). This motivates us to begin with an understanding
of the vertical temperature profile. Atmospheric temperatures can and do vary in
the horizontal as well as in the vertical direction. This is especially true for hot exo-
planets tidally locked to have permanent day and night sides. We defer a discussion
of horizontal heat transport until the next chapter.

In this chapter we describe the 1D vertical pressure and temperature structure of
a planet atmosphere. It is common to use pressure as a proxy for altitude (they are
connected by hydrostatic equilibrium). We will use the abbrievation T-F profile.
There is no simple equation to describe the vertical T- P structure, but rather many
physical ingredients are at play.

9.2 EARTH’S VERTICAL ATMOSPHERIC STRUCTURE

We will begin with an overview of Earth’s vertical temperature, pressure, and den-
sity structure, simply because Earth’s atmosphere is the most accessible planetary
atmosphere to us. Figure 9.2 shows the Earth’s vertical structure typical of midlat-
itudes.

Earth has several different regions of the atmosphere, the lower four correspond-
ing to altitudes of temperature reversals. These are regions of differing temperature
profiles, caused by absorption of and subsequent heating by solar radiation. Solar
radiation is absorbed at different altitudes, depending on the wavelength of light
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Figure 9.1 The vertical structure of solar system planet atmosphere temperatures. Notice the
overall similarity in the temperature profiles. The thermal inversion, or strato-
sphere, on most planets comes from CH4-induced hazes for the giant planets and
from O3 for Earth. Adapted from [1].

and the atmospheric composition. In Chapter 6 we described how radiation pene-
trates to different altitudes depending on the wavelength. For Earth, see Figure 9.3.

The lowest layer of Earth’s atmosphere is the “troposphere.” This is the region
where we live and where most of what we call the weather occurs. For scale,
note that Mt. Everest, at 8,856 m, reaches less than halfway through the tropo-
sphere. Most of the mass of Earth’s atmosphere is in the troposphere—around
85%—because the atmospheric density decreases exponentially with increasing al-
titude (see the left-hand y-axis of Figure 9.2). The exponentially decreasing den-
sity is caused by hydrostatic equilibrium (Section 9.3.1) and is also familiar to Mt.
Everest climbers, who require bottled oxygen to combat the decreasing amount of
oxygen as they ascend. Because the troposphere contains the highest density, the
troposphere is where most of the strong spectral features at visible and infrared
wavelengths originate.

In the troposphere the temperature is hottest at the ground and decreases with in-
creasing altitude. The ground is heated by solar radiation that makes it through the
atmosphere unimpeded. We see from Figure 9.3 that most of the visible-wavelength
solar radiation penetrates Earth’s atmosphere to the surface. The ground reradiates
the absorbed solar energy to heat the atmosphere. Some solar radiation is absorbed
in the troposphere (by water vapor, carbon dioxide, and other gases at infrared
wavelengths). The greenhouse effect also plays a role.

The stratosphere is the layer above the troposphere. There is a temperature
inversion in the stratosphere. In other words, the temperature increases with in-
creasing altitude, opposite to the troposphere. The stratopause marks the beginning
of the temperature inversion. Why is there a temperature inversion in the strato-



==TICAL THERMAL STRUCTURE OF A PLANETARY ATMOSPHERE

Thermosphere

Mesosphere

Altitude (km)
p (kg/m3)

Stratosphere

1 Troposphere
0 ‘J_—'_—'ﬁl__l_"—yk‘ T T T T
-50 0
()

Szure 9.2 The vertical structure of Earth’s atmosphere typical of midlatitudes. From the
1976 U.S. Standard Atmosphere [2]. Notice how the highest densities near the
surface imply that most of Earth’s mass is in the troposphere.

where? The stratosphere is heated from above by absorption of UV solar radiation
ozone. This UV radiation is detrimental to most biological cells, making the
atosphere a protective layer to life on Earth.
The stratosphere and the troposphere are the layers of the atmosphere that are
=ost relevant for us. They are the regions where the spectral features occur and in
where the surface lies and weather happens. The upper layers do have some
iect on the lower levels, via photochemistry and atmospheric escape (Chapter 4).

ghty-ﬁve percent of the mass of Earth’s atmosphere is in the lower 10 km, out
an atmosphere that extends to about 100 km. Mountain climbers know this;
or example, most climbers require bottled oxygen when hiking up Mt. Everest.
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Figure 9.3 Transmission of solar radiation. Adapted from [1] and references therein.

9.3.1 Hydrostatic Equilibrium

Hydrostatic equilibrium is the balance between gravitational and pressure forces.
Gravity acts to compress the atmosphere. The gas pressure balances this com-
pression. In the case of a planet atmosphere, hydrostatic equilibrium is a balance
between the outward pressure gradient force and inward gravitational force from
the weight of the overlying material. The “static” in hydrostatic equilibrium refers
to stationary conditions.

Hydrostatic equilibrium is required for a planet atmosphere to be stable. For
example, Earth’s atmosphere would collapse into a thin shell if it weren’t for the
outward pressure force. Without the force of gravity, the gas in a planetary atmo-
sphere would diffuse into space, leaving an atmosphereless planet.

We now proceed with the derivation of the hydrostatic equilibrium equation. We
consider a volume element of homogeneous gas where the pressure forces Fip(z) in
the volume element balance the gravitational forces Fy(z). Here V' is the volume
element, d A is the cross-sectional area, and dz is the distance along the column.
We define the sign convention as positive downward toward the planetary surface.

The gravitational force on the volume element is described by

Fy(z) = mg = pgdV = pgdzdA, (9.1)
where g is the gravitational acceleration. The pressure force
Fp(z) = dPéA 9.2)

is related to the pressure difference d P between the pressure on the upper and lower
surfaces of the volume element:
dP dP
dP = P(z; + dz) — P(z) = P(z) + d—fiz — P(z) = d—ﬁz, (9.3)
z 2
where the first term in the second equality is expanded to first order using Taylor’s
expansion. Equating the gravitational and pressure forces from the above three
equations, we obtain

dpP X
—d20A = —gpdzd A. (9.4)
dz

Here the negative sign arises because the gravitational force is acting downward on

the planetary volume element and the pressure force is acting upward, and we have
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set the net force equal to zero. In the limit as dz becomes infinitesimally small, we
have the hydrostatic equilibrium equation,

apP
el ©.5)

We have previously described a planetary atmosphere in terms of an optical depth
scale rather than an altitude scale. To convert the hydrostatic equilibrium equation
from an altitude scale to an optical depth scale, we use the definition of optical
depth (equation [5.14])

L 90 9.6)

dr &

Here we have used the mean optical depth scale together with the mean opacity %,
but any reference scale is adequate as long as 7, and &, correspond to each other
at the specified frequency.

Hydrostatic equilibrium means that the atmosphere is stable; it is neither col-
lapsing, nor expanding, nor escaping. For almost all situations in a planetary atmo-
sphere, the above hydrostatic equilibrium equation is the form we want to use.

One assumption we have made is in omitting any vertical acceleration, whereby

. the net force on a volume element need not be zero. There are situations where ver-

tical accelerations do occur, for example, hydrodynamic escape in the very upper
atmosphere of an evolving planetary atmosphere. Another example is on very small
scales—much smaller than we are considering in this book. Vigorous small-scale
systems, such as tornadoes, thunderstorms, and convection, have nonzero vertical
acceleration.

9.3.2 The Equation of State

The equation of state relates the temperature, pressure, and density of a given ma-

terial. For planetary atmospheres it is adequate to use the ideal gas law
pkT

HmMH ;

Here n is the number density, & is Boltzmann’s constant and (i, is the mean molec-
ular weight,

P kil —

9.7)

m=—, 8
7 e ©.8)

where 7 is the number-weighted average mass of the molecules and atoms in the
gas and my is the mass of the hydrogen atom. :

9.3.3 The Pressure Scale Height

The pressure scale height H is a characteristic length scale of the planetary at-
mosphere. H is important because we can use it to estimate the total height and
volume of the atmosphere.

Ii?f‘ (S haa
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As we shall see, the pressure scale height is the e-folding distance for pressure
for an isothermal atmosphere with a constant mean molecular weight. The pressure
scale height, in other words, is the altitude above which the pressure drops by a
factor of e (e = 2.71). The pressure scale height is a characteristic length which
is a good measure for the radial extent of a planetary atmosphere—the spectra we
can observe come from a region in the atmosphere limited to several scale heights.

We derive H from the hydrostatic equilibrium equation [9.5]

dP
d-z - gp,
and the ideal gas law (equation [9.7]
kT
P=nkT =
Hm Ty

Combining these equations gives
dP  pmmug

d 9.9
P kT *:3)
with a solution

P = Pye */H (9.10)
where we have defined the pressure scale height to be

T
H = - : 9.11)
HmMyyg

Here again my is the mass of the hydrogen atom and y,, is the mean molecular
weight. We emphasize that the pressure scale height we have derived is for constant
T and constant yi,,,, and we have neglected the variation of g with altitude.

The scale height H for solar system planets is on the order of 5 to 20 km, and
is given in Table 3.1. For hot Jupiter exoplanets, the scale height can be several
hundred kilometers. We may estimate the total atmosphere relevant for spectral
lines as approximately 5 scale heights.

With the pressure scale height we can also get a handle on how the pressure and
density vary as a function of altitude. Even though we have assumed an isothermal
atmosphere, equation [9.11] shows us that the pressure (and density via the ideal
gas law) varies exponentially with altitude. The temperature for a typical planetary
atmosphere varies by only a factor of a few (see Figure 9.1).

9.4 SURFACE TEMPERATURE FOR A SIMPLIFIED ATMOSPHERE

We begin our investigation into the vertical thermal structure of a planetary atmo-
sphere by estimating the difference between the atmosphere and surface tempera-
tures in a very simple model. We will use a previous derivation of the equilibrium
temperature 75, in Chapter 3. In Chapter 3 and Figure 3.1 we used the concept
of energy balance to equate the total flux from a star incident on a planet (equa-
tion [3.3]),

- %
(1 — Ap)Fs.. (?) mR2, 9.12)
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with the total flux emerging from a planet,

AmR2Fs p, (9.13)
to find
g 1 4 7RRE

ORI oq = E"BT«;H.* T (1 - Ag) 9.14)

and the equilibrium temperature (equation [3.3])

R, Ve 1/4

T =gl — 1-A oL 9.15
q f, (2@) ( B) (9.15)

Here we have assumed that the absorbed stellar radiation is circulated evenly
around the planet. We have also used the Stefan-Boltzmann Law (equation [3.6]),
equating flux with temperature F = o T* where o is the radiation constant and
T is temperature.

Recall that 7, is a theoretical number that is the temperature attained by an
isothermal planet after it has reached complete equilibrium with the radiation from
its parent star. In the context of an idealized planetary atmosphere, the equilibrium
temperature is essentially the temperature at the layer where most of the radiation
is emitted. For this subsection we will refer to the equilibrium temperature as the
emission temperature, 7., = 7.. We also denote the stellar effective temperature
Tci[.,t =T..

We now move to describe a simple greenhouse atmosphere (Figure 9.4), still
considering uniform redistribution of absorbed stellar radiation, and following [3].
In this atmosphere there are two layers. The bottom layer is the surface. We assume
that all of the radiation from the star (in the form of stellar flux) reaches the surface,
that is, there is no scattering. This is a reasonable approximation for stars with
most of their energy output at visible wavelengths and for a planet atmosphere
composed of molecules that primarly absorb and emit at infrared wavelengths. We
assume the radiation that reaches the ground is absorbed, heats the surface, and is
reemitted at longer wavelengths characteristic of the atmospheric temperature (see
the discussion of black body radiation in Section 2.8 and Figure 2.7).

The reprocessed flux (in the amount of the absorbed incident stellar flux) then
travels upward and is absorbed by the second layer. We will call this second layer
the atmosphere layer. In this picture, the atmospheric layer absorbs at infrared
wavelengths; we have already assumed the planetary atmosphere is composed of
molecules that primarily emit at IR wavelengths.

We assign a temperature 7T, to the atmosphere layer and T to the surface layer.
Our goal is to estimate the surface temperature in terms of the planet’s equilibrium
temperature (7;) and in terms of the atmosphere layer temperature. Let us focus
first on the atmospheric layer. From energy balance, the radiation emerging from
the top of the atmosphere layer must be equivalent to the absorbed stellar radiation,

R 2
ETRTZ_: = t‘TRTj (2—*) (l = AB} (9'6}
l‘.'.'.
But the definition of equilibrium temperature 7, comes from the same energy bal-
ance requirement (equation [9.15]). We therefore equate the atmospheric and emis-
sion temperatures,

orTe = or T2 (9.17)
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Figure 9.4 The simple greenhouse. Adapted from [3].

The atmosphere layer is the layer emitting to space, so it makes sense that t
atmosphere and emission temperatures are equivalent.

At the surface, energy balance again means that all of the incoming stellar ==
diation absorbed must be subsequently reradiated. There are two contributions =
the absorbed radiation at the surface: the radiation incoming from the star and
downward radiation from the atmosphere layer,

R*

2
a'RTsd‘ZO_RT;1 (%) (1—AB)+0RT:. (9.1%

We have previously shown above that the first term on the right-hand side is equive
lentto orTs and the second term on the right-hand side is also equivalent to o= 7
giving

=Dl (918
We see that the surface temperature is about 1.19 times the atmospheric temme
ature. In this simplified greenhouse model, the atmosphere layer contributzs =
heating the planet surface. This simple greenhouse model overestimates Ea==
surface temperature but significantly underestimates Venus’s surface temperat==
For Earth the model gives Ty ~ 303 K, based on Tt ~ 255 K, compared to the =
erage surface temperature 75 ~ 280 K. For Venus, the model surface temperzsus
is Ty ~ 274 K based on T, = 230 K, compared to the measured 73 = 730 K.

In the simple greenhouse model we have assumed that the absorbed stellzr ==
diation is trapped by the atmospheric layer. In a slightly more realistic mods’ w=
consider a “leaky” greenhouse [3]. In the leaky greenhouse (Figure 9.5) the «m
gle atmosphere layer is optically thin. Again, we make the simplifying assumptus
that all of the radiation from the star not scattered back to space reaches the plams
surface. We will write down two equations to solve for 7 in terms of 7.

By energy balance the radiation leaving the planet must be equal to the =
amount of radiation absorbed by the planet. There are two contributions = &
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Figure 9.5 The leaky greenhouse. Adapted from [3].

radiation leaving the planet. The first contribution is from the atmosphere layer and
the second contribution is the surface radiation that leaks through the atmosphere.
We therefore have

orTd = orT} + orTY (1 — @), (9.20)

where a € (0,1) is the fraction of radiation that is absorbed by the atmosphere
layer. At the planet surface, we again have

orT} = orT) + orT). (9.21)

Solution of the above two equations yields

9 1/4
T, = (—) T. (9.22)

2 -«

The greenhouse warming effect is reduced by the paritally transparent atmo-
sphere layer. We can see that if & = 1 all radiation is trapped by the atmosphere
layer, in agreement with the simple greenhouse model (also showing that the simple
greenhouse model is a special case of the more general leaky atmosphere model).
In the limit &« — 0, we recover T; = T, the case where the atmosphere layer is
transparent to radiation (or there is no atmosphere layer). The surface layer is al-
ways warmer than the atmosphere layer in the leaky greenhouse model. We could
further show, using Kirchhoff’s Law, that T, > T, > T,.

In the above simple greenhouse and leaky greenhouse models we have effectively
explored a radiative equilibrium model for a one-layer atmosphere in the case of
no scattering. If we were to extend the simple models to many layers, with the
appropriate value for o in each layer, considering all wavelengths, molecules, and
clouds, we would approach a multilayer radiative equilibrium model.
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9.5 CONVECTION VERSUS RADIATION

In a planetary atmosphere energy can be transported by radiation, convection, or
thermal conduction. The competing heat transport methods are radiation and con-
vection. In the relatively dense lower atmospheres that we are considering, thermal
conduction is not important. What determines whether or not convection is taking
place in a planetary atmosphere? Energy will be transported by the most efficient
method—that is, via the “path of least resistance.” If the opacity (the absorption
or scattering of photons) is low, then the energy is most likely to be transported by
photons. If the opacity is high then the resistance to the flow of photons is high,
and energy is more likely to be carried by convection.

To quantify which energy transport mechanism dominates, we turn to a discus-
sion of temperature gradients (d1'/dz). We begin with a qualitative discussion on
how the temperature gradient determines whether or not convection will occur. If
convection will occur we call the atmosphere unstable against convection. We call
a situation stable if, after a disturbance, the system will return to its original state.

Consider an air parcel that is slightly unstable, rises a slight distance, and ex-
pands adiabatically to the ambient pressure. Adiabatic expansion means that there
is no heat exchange with its surroundings; the air parcel will have the same pressure
as the surrounding atmosphere, but its own (possibly different) temperature and
density. If the air parcel is colder and therefore more dense than its surroundings it
will sink, and convection will not occur. The atmosphere is said to be stable against
convection. In contrast, the atmosphere is said to be unstable against convection if,
after rising a slight distance and expanding, the air parcel continues to rise. This
happens if the air parcel is hotter and therefore less dense than its surroundings, so
that the buoyancy force will cause the air parcel to continue to rise.

The criterion for convection, then, is related to two temperature gradients: (1) the
adiabatic temperature gradient (the temperature gradient followed by the rising air
parcel) and (2) the surrounding atmospheric temperature gradient. If the adiabatic
temperature gradient is shallower than the atmospheric temperature gradient, the
atmosphere is unstable and convection occurs. This criterion for convection is then

a criterion for buoyancy,
(E) > (@) | 9.23)
dz ad dz atm

Convective stability and instability in terms of the atmospheric and adiabatic tem-
perature gradients are described in Figure 9.6.

In order to understand under what conditions a temperature gradient is small or
large we now turn to a quantitative discussion of the adiabatic and radiative tem-
perature gradients. The adiabatic temperature gradient is (derived in Section 9.7.2)

a__9 (9.24)
dz Cp
where g is the surface gravity and ¢, is the specific heat capacity at constant pres-
sure in units of J kg~ s~
Convection will set in when the adiabatic gradient becomes small, or when the
radiative temperature gradient becomes large. The adiabatic temperature gradient
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Figure 9.6 Illustration of temperature profiles stable or unstable against convection.

(equation [9.24]) becomes small when the heat capacity becomes large. The spe-
cific heat capacity is the amount of energy that must be transferred to the gas per
unit mass at constant pressure to increase the temperature by 1 K. In a situation
where a large amount of energy is needed to heat the gas by 1 K, the adiabatic
temperature gradient will become very small. A typical example in stars is the
layer where an abundant element such as hydrogen starts to ionize. The tempera-
ture increase goes into energy to remove the electrons from the atoms, rather than
to increase the kinetic energy in the gas; the heat capacity becomes large because
a lot of energy is needed to heat the gas. A similar situation also occurs in the
hot interiors of giant planets like Jupiter, where at T > 4000 K hydrogen starts to
ionize.

The radiative equilibrium temperature gradient in the limit of the diffusion ap-
proximation is (Section 6.4.4)

dT 3 R
) el 9.25
( dz ) rad 16 ' GH_T3 ( )

While the above equation is valid only deep in a planetary atmosphere where the
diffusion approximation holds, the equation serves to illustrate criteria where the
radiative temperature gradient becomes large. The radiative temperature gradient
becomes large when either the radiative flux I* or the mean opacity x becomes
large. In planet interiors, the fluxes may be large for giant planets, driving con-
vective interiors. In the atmospheres, the fluxes may not be large enough to force
convection.

The opacity, on the other hand, is a driving factor for convection. The opac-
ity becomes large where the number density of absorbing particles becomes large.
Hence, deep in a planetary atmosphere where high opacities and optically thick
conditions prevail, convection almost always sets in. In the upper part of the plan-
etary atmosphere, transport of energy by radiation usually dominates over convec-
tion. In addition, the opacity can change from large to small (or vice versa) due
to changes in temperature and pressure versus altitude in a planetary atmosphere—
these change the atomic or molecular makeup of the atmosphere. Jupiter, for ex-
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ample, follows the above description of a radiative zone in the upper atmosphere
and a convection zone in the lower atmosphere. But, beneath the convection zone.
Jupiter may have another radiative zone, because of a minimum in the mean opac-
ities at high temperatures (1300-1800 K [4]). Hot J upiter exoplanets are differen:
examples of the interplay between radiative and convective regions. In contrast ic
Jupiter, the radiative zones in hot Jupiter atmospheres are expected to continue deep
into the atmosphere on their permanent day sides because the strong heating from
the parent star causes the temperature gradient to be close to isothermal or even
inverted.

Planets like Earth with solid surfaces beneath relatively thin atmospheres arz
always expected to have convection zones just above the solid surface. The rea-
son is that most of the visible-wavelength incident stellar energy is absorbed at the
planet surface, while only some is absorbed in the planet atmosphere. This uneven
energy absorption by the atmosphere and surface makes the surface hotter thas
the overlying atmosphere layers heated only by absorption of radiation. A signifi-
cant temperature discontinuity will arise between the atmosphere and the planetary
surface. This temperature discontinuity will drive convection. On Earth convec-
tion is occurring in most of the troposphere, but may be limited to a thinner layer
on exoplanets with different atmospheric conditions. According to the criterion
for convection (equation [9.23]) and the radiative equilibrium temperature gradien:
(equation [9.25]), we can think of a very large radiative flux being emitted from ths
ground layer. This causes the radiative temperature gradient to be large enough tha:
convection sets in.

Atmosphere layers with temperature inversions are very stable against convec-
tion. Almost all of the solar system planets have temperature inversions in the upper
atmospheres, where the temperature rises with increasing altitude from the plane:
surface. Recall that these temperature inversions are typically caused by absorptior
of UV radiation. The temperature inversion layers are stable against convection be-
cause the restoring force to a perturbed, lifted air parcel is very strong. Recall tha:
as an air parcel rises, it expands and cools. Being cooler—and hence denser—
than the surrouding temperature-inverted atmosphere (which increases with rising
height), the air parcel will sink again.

In the next two sections we will describe the T- P profile in the atmosphere from
radiative equilibrium and from convective equilibrium.

9.6 THE RADIATIVE EQUILIBRIUM TEMPERATURE PROFILE

We embark on a description of the 1D vertical temperature profile in the case wher=
energy is transported only by radiation. We will show that, if we know the to-
tal amount of energy passing through the planetary atmosphere, we can derive the
temperature profile. We begin by outlining the general case where there is no ana-
lytic solution.
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9.6.1 Radiative Equilibrium

In a planetary atmosphere, no energy is created or destroyed. Therefore, the amount
of radiation passing into a given volume of the atmosphere must equal the amount
of radiation leaving that volume. This is called radiative equilibrium. We can also
express radiative equilibrium as a flux constancy,

dF(t)
dr

Here F'(7) is the total radiative flux (equation [5.37]) integrated over all frequen-
cies, and 7 is the optical depth scale (Section 5.3). The radiative equilibrium tem-
perature profile is the temperature profile that satisfies the radiative equilibrium
constraint.

To continue with an expression for radiative equilibrium we consider the total
amount of radiation absorbed in a given atmospheric volume:

[ [ K(Tv, V) I(Ty, p, v)dQdv. 9.27)
Jo Ja

Here “total” means integrated over all angles and frequencies. Because absorption
is isotropic we may integrate over the solid angle 2 to find

/ k(Ty, v)J (1, v)dv. (9.28)
0

= (). (9.26)

The total amount of radiation emitted in a given atmospheric volume is

/ /E(T,,,,f.t,y}dﬂdu. (9.29)
0o Ja

If we make the assumption of isotropic emission, and consider the definition of the
source function (Section 5.5 and equation [5.24]), we have for the total emission

/ &(7,, v)}S(1, v)dv. (9.30)
Jo

We may now equate the total amount of radiation absorbed (equation [9.28]) and
emitted (equation [9.30]) in a given volume to find

dFR(T) - ./OC H-(Tiu y) [J(T,,._ !") - S(TV! y:]] dv = 0. (93]}
dT 0

We now have a mathematical expression for radiative equilibrium: radiative absorp-
tion is balanced by radiative emission, in a given layer. It is important to realize
that radiative emission and absorption in a given layer do not have to balance at a
given frequency.

What is the constant flux being driven through the atmosphere? By radiative
energy balance, the flux in each layer is the same as emitted at the top of the atmo-
sphere, namely,

F() = orTy + polo. (9.32)
The first term og T}

- 18 the flux coming from the planetary interior that passes
through the planet atmosphere. Giant planets have a source of interior energy from
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the gradual loss of residual gravitational potential energy from the planet’s forma-
tion. Indeed, Jupiter has an internal luminosity over twice as high as its luminosity
from reradiated absorbed stellar energy. Earth has an interior energy source partly
from residual gravitational potential energy but mostly from decay of radioactive
isotopes (of uranium, thorium, and potassium). For many planets, including Earth
and the hot exoplanets in short-period orbits, the second term, the flux from the star,
overwhelms the interior flux. (For a derivation of the term p [, see Section 6.4.3.1
and equation [6.37].)

The equation of radiative equilibrium is coupled to the radiation field, through
the angle-averaged quantity J(7,,v). The radiative equilibrium equation and the
radiative transfer equation [5.39] must therefore be solved simultaneously. We em-
phasize that this radiative equilibrium equation shows how the opacity as a function
of frequency plays into determining the temperature profile. A temperature inver-
sion could arise naturally by solving the radiative transfer and radiative equilibrium
equations together.

There is no analytic solution of the radiative equilibrium temperature profile in
the general case. We now proceed with a gray atmosphere, where analytic solutions
to the temperature profile are possible.

9.6.2 Gray Atmosphere Heated from Below

We will derive a temperature profile using the condition of radiative equilibrium
(equation [9.31]) under the assumption of LTE and in an atmosphere with no scat-
tering. In order to find an analytical solution, we must make a further simplification:
that of a gray atmosphere. A gray atmosphere is one where the radiation quantities
(i.e., intensity, absorption, and emission coefficients) do not vary with frequency.

We first consider an atmosphere heated from below. By this, we mean an atmo-
sphere for which the source of radiation is from the interior or ground only. One
example is a giant planet atmosphere, dominated by interior flux and heated as the
interior flux travels through the atmosphere out to space. Another example is a
planet with a thin atmosphere such as Mars (or even, approximately, Earth) which
is completely transparent at visible wavelengths. The bulk of the stellar energy is
at visible wavelength and reaches the planet surface. There, the stellar radiation is
absorbed by and heats the surface and is reemitted at longer wavelengths related
to the characteristic temperature of the planet. Terrestrial planet atmospheres are
typically not transparent at IR wavelengths where molecules can absorb and reemit
radiation, heating the atmosphere in the process. The infrared radiation coming
from below therefore heats the atmosphere as it travels out through the atmosphere
to space. We call the interior temperature T;,;. For the giant planet example above,
Tini = T.g. For the thin atmosphere transparent to visible radiation, 7;,,; is the
surface temperature 7.

For a gray atmosphere we use the total mean radiation field J(7) =
IS I, v)dv, I(7) = [;° I(1y,v)dv, and S(7) = [;° S(7y, v)dv. In the gray
case, the radiative equilibrium equation [9.31] becomes

J(r) = 8(7). (9.33)
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With the assumption of LTE and the frequency-integrated black body flux, we have

4

J(r) = 5(r) = B(r)) = "RWT : 9.34)

We now have enough background information to derive a temperature profile.
Our goal is to show that the temperature profile in a gray, LTE, radiative equilbrium
atmosphere with no scattering is

3
Tt~ ZL-T;;t [r+2/3]. 9.35)
Using the definition of optical depth (equation [5.13]) the temperature versus opti-
cal depth can subsequently be converted to a temperature versus altitude.

We follow [5] and start with the radiative transfer equation [5.39]

dI
W) _ 1(7, ) = S(r,0).

Integrating over all frequencies, we have

uéI—Eigﬂ = I(r,p) — S(7). (9.36)

Given J (1) = S(7) for a gray radiative equilibrium atmosphere (equation [9.34]),
the gray radiative transfer equation is

dl
W OB _ 17, )~ J(r). ©37)

We now proceed to multiply the radiative equilibrium version of the gray radia-
tive transfer equation by successive orders of y and integrate over solid angle (the
so-called moments of the radiative transfer equation). For the zeroth moment we
integrate the above equation [9.37] over the range —1 < p < 1and 0 < ¢ < 2w to
find

1 dF(r)

SNl = =0. 3

o J(r)=J(1)=0 (9.38)
This result is the flux constancy that we had already assumed at the beginning of
this subsection. We will now refer to F/() as a constant F. The first moment,
again integrating over the range —1l<pu<land0<¢< 2,18

dRE(T) L
= =
dr A

with a solution using dF'(1)/dr = 0,

(9.39)

1
K(r)= -Fr+¢ (9.40)

where c is an integration constant we wish to find. We can relate K(7) to J(7) by
the Eddington approximation K (7) = 1J(7) (equation [6 34]) to find

J(r) = %FT + 3c. 9.41)
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We use the radiative equilibrium LTE relationship in equation [9.34] for J(7) =
orT? /7 and the constant flux that is passing through each layer of atmosphere
F = orT?, to conclude that

nt

T4~ 37

4 mnt [T + 2,/3] B {942)

We leave the evaluation of 3¢ = o7}, /27 as an exercise, with a general outline
here. To find ¢ we calculate the flux emerging at the top of the atmosphere using a

frequency-integrated version of the emergent flux (equation [5.46]),

-1 00
F(0) =2m / / S(r, p)e” " *drdp. (9.43)
0 0

Using the condition for radiative equilibrium S(7) = J(7), our solution for .J(7)
in equation [9.41], and the upper boundary condition that the emergent flux at the
top of the atmosphere is o7}, we have to solve the equation

1 o0
F(0) =2n / [ liFT + 3@} e~ "/Mdrdp = orTh, (9.44)
Jo Jo 4m

in order to derive ¢. We reiterate that F'(7) is a constant denoted here by F' and
we use F'(0) for the same constant flux that is emerging at the top of the planet
atmosphere.

What can the gray atmosphere radiative equilibrium temperature profile tell us
about planetary atmospheres? First, the derived temperature profile gives us an ap-
proximate prescription for a temperature profile in a planetary atmosphere, given
that we have the appropriate atmospheric composition and opacities and their de-
pendence on temperature and pressure (Figure 9.7).

Second, the gray atmosphere radiative equilibrium temperature at the top of the
atmosphere (equation [9.42] at 7 = 0) matches our estimate for a simple green-
house atmosphere (equation [9.19]), T. ~ (1/2)'/4T;,., where here Tj,; is the
surface temperature.

Third, taking the derivative of our temperature profile (equation [9.42]) with
respect to 7, we find a temperature gradient

. 4
aT m_iﬁ{z)Ti_l}t, (9.45)
dz 16 s
recovering the diffusion approximation temperature gradient if we associate the op-
tical depth scale and the x(z) with the Rosseland mean. This temperature gradient,
again, shows that either a high net radiative flux (in the form of F' = ogT}} ) ora
high x generates a large temperature gradient.

9.6.3 Gray Atmosphere Heated from Above and Below

We have above just computed a temperature profile for a gray, LTE, radiative equi-
librium atmosphere heated from below. Such an atmosphere could represent a gi-
ant planet with an interior energy source heating the atmosphere. Alternatively, the
heating from below scenario could be a rocky planet with a surface, where all of
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Figure 9.7 Temperature-pressure profiles computed using the gray atmosphere approxima-
tion in equation [9.62] with a scaling factor to convert from 7 to P. The curves
are for different incoming po; from left to right for po = cos 00 =00,02,04,
0.6,0.8, 1.0. Adapted from [5].

the incident radiation travels down through a transparent atmosphere, is absorbed
by the ground, and is reradiated upward.

We now turn to the case of an atmosphere heated from above and below, where
the stellar radiation plays a role throughout the atmosphere, following [5]. In order
to arrive at an analytic equation for a temperature profile, we still work under the
same simplifying assumptions, that of a gray atmosphere in LTE and in radiative
equilibrium with no scattering. Recall that the gray atmosphere assumption means
we use frequency-integrated terms of radiation quantities.

To consider heating from stellar radiation, we must consider the basic point com-
mon to all planetary atmospheres: the star is always hotter than the planet by def-
inition. This implies that stellar radiation is absorbed at visible wavelengths and
reradiated at infrared wavelengths. Molecular absorption typically dominates at IR
wavelengths.

The approach to finding a temperature profile in an atmosphere heated both from
above and below therefore involves two different intensities (and other quantities of
radiation). One intensity is at visible wavelengths, [y, where we assume radiation
is only absorbed and not emitted. The second intensity is at infrared wavelengths
I,,, where we assume that all of the absorbed energy is reradiated. The total inten-
sity is Iyis + Iir, and similar addition rules apply for other radiation quantities.

The motivation of the visible versus infrared separation of radiation is that the
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altitudes at which radiation is absorbed and emitted are different. Earth is 2
example: our atmosphere, in the absence of clouds, is transparent at visible w:
lengths. We know this because we can see the stars on a cloudless night. Maos:
the radiation at visible wavelengths is absorbed by the ground. At most IR w
lengths (with the exception of a few narrow windows), the night sky is opagus.

We will therefore assume that there is no emission at visible wavelengiis.
other words £(7) = 0, so that

-

£(7)
Svi =—==0.
S (T) K (T) (9
Our radiative equilibrium constraint is still the equivalency of absorbed and e
radiation in each atmospheric layer, but now takes on the form

Kovis (T) Jvis (T) + Kix (T) Jie (T) = i (1) Sie (7)), 9%

which can be rewritten as

Si (T) = Jir(T) S /ers((:)) JViS(T) = Jir(T) =+ 7Jvis(7)~ 2.

Here we have defined
Y = Kvis / Kir (94
as the ratio of the visible and infrared mean absorption coefficients.

The two radiative transfer equations for the visible and infrared beams of =
esity are

dIvis (7—, :u')

— Lis(T, 1b), .
dTvis (T ’u,) -

dIir 7,
WO g, = Sl ) = Tl ) = ) = 1)

The zeroth-order moment equations are
L dlibe(f)
T Jus(7),
1 dF;(7)
L L )
dm  dTiy 7 Jvis(7)
Adding the above two equations together, considering that d7yis = yd7i; We 22
see in the expression of radiative equilibrium that the total flux derivative is 2=
meaning that a constant net flux passes through the atmosphere.
The first-order moment equations of the infrared radiative transfer equation &=
dJ ir ('T ) 3
= —F;
dTir 47'(' 1r (T) %) (9
where we have used the Eddington approximation J = 3K (equation [6.34]).

As before, for the gray atmosphere heated from below, we find the tempes: }
profile by starting with an expression for Ji, (7). The complication compared o S
case of the atmosphere heated from below is that the infrared equations alse &=
pend on the visible wavelength radiation quantities. Conceptually, this is becamss
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although in each layer the total absorbed and emitted radiation is constant, the ra-
diation is absorbed at visible and infrared wavelenghts, and in this framework only
emitted in IR wavelengths. Explicitly, the equation for .J;.(7) (equation [9.54])
depends on Fj.(7), which itself depends on Jys(7),

To find J,;5(7), recall from Section 6.4.3.1 that the incoming intensity from one
direction fig, ¢ 1s the attenuation of the incident intensity,

Lis(T) = I(0, p)e™™/# = Ioe /B §(u + pg)d(¢ — ¢o). (9.55)

The mean intensity for an inward beam (—1 < g < 0) from one direction g is

i 2m 0 . -
@) =32 [ [ B8+ 10)3(0 - doduds 056
0 -1
or
1 P
Jvis(T) = EIUQ YTie/ } 0 (95?)

Integrating equation [9.53] with this Jys(7), we find

Fie(7) = polpe™ "4 + Fiw, (9.58)

where the integration constant Fj,, is determined by considering the upper bound-
ary condition at i, = 0, F};(0) = polp + Fint. Here Fyy, = orThhy-

With expressions for Fi,(7) and Jyis(7), we can now find an expression for
Jir(7) by integrating equation [9.54],

3 ”3 —Tir/ po 3 !
Jir(1) = ~ 1 — Tge™ 7 + —Fmie +C. (9.59)
ol s 4
To reach a temperature profile we use Ji,(7) = orT* /7 and Fiy,y = 0Ty, to find
3 31 42 . /
TA(r) = STt e — = | — 8 Ipe=1me/uo| 4 27 (9.60)
4 4 OR 7Y OR

We may find the constant ¢’ as before for the atmosphere heated from below,
by writing down the integral for the emergent flux and solving for the constant.
We also use the condition for radiative equilibrium (equation [9.48]), the equations
for .Ji.(7) and .J,;<(7), and the upper boundary condition that the emergent flux is

equal to pigly + orT;,. To find ¢ we then have to solve

1 o0
Fie(0) = 27 f [ [Sie(mie)e™ /] driedps = o Tih + oo (9.61)
0 J0

Evaluating ¢’ leads to

3
T(r)* = 11’”;:‘1,, [1ie +2/3] + (9.62)

¢ ‘ 2 3
_é”_uc_‘?’fir,ltﬁ(t},_l_é E_i_.('”-l) _(&) ln (1—+—l) .
| 4~ 2\3 i i o

Ho Tél

Here we have associated a temperature with the incident intensity via Iy = o‘RTé.
The temperature profile we have just derived can be used for exoplanet atmo-
spheres. Figure 9.7 shows temperature profiles for different values of .
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9.7 THE ADIABATIC TEMPERATURE PRONT LE
9.7.1 Convection Basics

In a pl i
i %izréiirydatmosphere there is a net transport of energy outward, So fir
el Witheat Oenergydtranlsport by radiation (i.e., the microscopic interactiony ol
ms and molecules). In this i ill di
ek ) section we will discuss energy (ranspi
Convection i ;
M diséh;t;zngsgﬂof energy py bulk motions of matter in the atmosplie
/ g convection, heat flows f; i ‘
hi ; 5 s from hotter to cooler 1
dzive;: g;agzstcoplc movement of matter. Convection in a planetary atmosphere
emperature gradient and is enabled b A
4y . ’ : ed because of the gravity field,
heatedd;:g;bgelan ov;;we};y of convection we consider a local air pa)ll'cel that s
OW. 1he heated air parcel become '
: s less dense than i
n : an i
gs a.nd buoyancy forces will cause the air parcel to rise. As the air parcel ri

than th, i i
e ance1 ;?;l(;l;lzgmg atmosphere, the air parcel sinks to a level with higher i A
mperature. The parcel is again he in ri |

‘ : ¢/ ated, again rises t
smés aga(lim, and repeats this in the convective energy cyclf i
ve i ‘

it gr}‘/N ;Zrei(amll)les of conxecpon occur on many different scales and inc¢lud :
»1avalamps, and “shimmering” air above hot pavement. Convection i
|

release houl,

I
9.7.2 Derivation of the Adiabatic Temperature Profile |

We want to deri G

s 2:r;V§ta gﬂtmpe.rature change with altitude (a temperature profile) lh&lf

e b iabatically expands or is compressed as it rises under hyi
q rium. We begin with basic thermodynamic principles; describi ng thom .

n rms 01 p T p lel b

dU = dQ — dw,

where dQ i : i
i li)nls fthe amount of energy added to the system by heating and dV iy (e
COnservatioo ef:nergy lost by Vvia work done by the system. We should comidcnl' (i
i 1(11 : ' ene}rlgy dfescrlptlon as applied to an air parcel, and we will use thi
it [912\?/’eF e adiabatic temperature gradient, We will now take each lerm

) ' .63] in t.urn and describe it in terms of 7' and I, From the defini
0 §pec1ﬁc heat capacity and the relation be e cp

I internal energy diJ as
dt/

ol 1 ) ol K & ol
tween o, and ¢, we rewrite the change

megdd s (e, Kt

(9.0:1)
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where m is mass, ¢, and ¢, are the specific heat capacities at constant volume and
constant pressure respectively, and Ry is the specific gas constant; all have units of
I kg=" K~'. An adiabatic process has no heat exchanged with the surroundings so
that d@Q = 0. In an expanding volume work is defined as dW = PdV . Taking the
derivative of the equation of state for an ideal gas, we obtain

PdV = mR,dT — VdP = mRdT — ﬁp’-dp. (9.65)
We can now rewrite the conservation of energy in equation [9.63] as
ar 1
—_—= . 9.66
dRyipe, T

To convert this temperature-pressure relation to a temperature gradient we relate
the pressure P to altitude z by using the hydrostatic equilibrium equation [9.5]

dP = —pgdz (9.67)
to derive the adiabatic temperature gradient
ar
el B 9.68)
dzthico

We may also write the adiabatic temperature gradient as a function of optical depth

i (9.69)
di R R

where the negative sign on the right-hand side comes from the increase of the op-

tical depth scale with decreasing altitude. The adiabatic temperature gradient is

called the adiabatic lapse rate, I, for planets. Note the sign convention; I" is pos-

itive for a decrease in temperature with altitude. The adiabatic lapse rate is the

temperature change that occurs in the gas as it adiabatically expands or is com-

pressed. Returning to the air parcel scenario, the adiabatic lapse rate means that
an air parcel moving in a hydrostatic atmosphere has a fixed rate of change of both
temperature and density with altitude. The air parcel will have its own temperature
and density, as given by the adiabatic lapse rate, but will share the pressure of the
surrounding atmosphere.

The above equation for the adiabatic lapse rate is for a “dry” atmosphere. In
Earth’s atmosphere, the release of latent heat from condensation of water vapor
must be considered in the lapse rate. Although it is not strictly adiabatic, we can
compute the temperature profile by considering the heat deposited in the condens-
ing layer, dQ = —dmsL, where dms is the change in the mass of the condensing
vapor per unit mass of noncondensible gas and L is the specific latent heat for the
vapor (in units of J kg~1). The negative sign arises because the air parcel absorbs
heat—the latent heat deposited in the layer by the condensing vapor. Keeping d()
in the first law of thermodynamics we may follow the above derivation to find the

I, =

moist adiabatic lapse rate

dT. g !

4 9,70
ol (el I (Iz/(',,)(l/lu,./(/'/')] } ( )

e et e e s e e e e e L e e e e
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Fo;l‘]gz;lt;lfference between the dry and moist adiabatic lapse rates can be significant
iin i 1s troposphere, the dry adiabatic lapse rate is about 9.8 K/km. The moisl: ;
IC lapse rate is about 5 K/km. Typically, an : : |
be used, because convection in Earth’ sty
: arth’s trophosphere is partiall i ially
dry. Remarkably, with the dr iabati s i
' ) y adiabatic lapse rate Earth’s atm. here i
against convection, and with the moist adiabati cton s
> and wi tic lapse rate, convection sets in
L Ill\gzﬁzai?spla;lets w1t}lll different atmospheric temperatures from Earth’s willihave g
1 of gas other than water vapor. We could use '
: 8as 0 ! the same formulation
for the moist adiabatic lapse rate, substituting the relevant change in mass:slz?’i'

and the equation of radiative equilibrium (equation [9.31]).

dF o
al) / w(r, ) [ (7 0) = S(r, )] dwi= 0.
dr 0

Outputs. In these equations there are three unknowns: the radiation field
I(r, u,v), the temperature T'(7), and the pressure P(7). The three equations can
be solved simultaneously for the three unknowns; thus the atmospheric 7'- P profile

and the radiation field emerge simultaneously.
Inputs. The additional parameters in the three vertical structure equations are the

(9.73)

A

saturated gas and specific latent heat values.

9.8 THE ONE-DIMENSIONAL TEMPERATURE-PRESSURE PROFILE

9.8.1 Conceptual Overview

The approach to determining the temperature profile with altitude in a planetary |

the radiati ; e equationy
( diative transfer equation, the radiative and convective equilibrium equation,

atmosphere in radiative-convective equilibrium is to solve a set of three

; ; O :
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pressure profile and then to iterate unti
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9.8.2 A Radiative Equilibrium Atmosphere

Or an atmosphere in radiative equilibrium, we wish to solve three

equation of hydrostatic equilibrium (equation [9.6]), ST
aP " ap
g } il d R .74
the equation of radiative transfer (equation [5.19]),
/'l//(l,/l.l’)
0 Lry )~ S, 10), (V.72)

interior temperature 7}, and the surface gravity g and these are classifications of
the model. g is known for transiting exoplanets, and T;,; comes from evolution
calculations or is a free parameter of the model. The opacities are another set
of inputs. The opacities depend upon the composition of the atmosphere. The
elemental abundance is an input variable and chemical equilibrium is assumed or a
photochemical model must be used (Chapter 4).

Subtleties. The above system of equations is highly coupled and benefits from a
simultaneous solution. For example, if the radiative transfer equation were solved
on its own, and the solution did not satisfy radiative equilibrium, a new temperature
profile T'(7) would have to be found that did satisfy radiative equilibrium. But, for
a different temperature structure, the number densities of different chemical species
would change. As a result the gas pressure would change, as well as the opacities
and emissivities x(7,») and &(7, 1, v), leading to a change in the radiation field
(T, i, v) at all depths.

The radiative transfer equation itself is highly nonlinear, as the scattering term
means that photons decouple the radiation field from the local temperature. For
the case of exoplanets irradiated by their parent stars, the radiation field at the top
of the atmosphere is coupled to the deeper atmosphere by scattering—photons can
travel long distances down into the atmosphere before heating the atmosphere.

To solve the equations, iterations are usually required, beginning with an esti-
mated temperature pressure profile, typically from a gray atmosphere solution.

9.8.3 Radiative and Convective Equilibrium

To determine whether or not convection should be occurring in a planetary atmo-
sphere, we take a radiative equilibrium temperature profile, and check if the at-
mosphere is stable against convection, with the previously described criterion for
convection in equation [9.23] (but replacing “atm” with “rad”),

ary (o
dz i dz rad'

In planetary atmosphere models one usually assumes that if convection is occur-
ring, convection is so efficient that it is the dominant process for energy transport.
This means that the temperature gradient comes directly from the adiabatic lapse
rate (equation [9.69]). In the lapse rate equation, hydrostatic equilibrium has al-
rendy been included. The temperature as a function of pressure can be computed
fram the adinbatic lapse rate and with the idenl gas law,

(9.74)
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The adiabatic lapse rate by itself gives the slope of the temperature gradient, but

describes any of a number of “parallel” lines in temperature versus altitude (or in
temperature versus pressure depth). We need to derive a temperature profile con-

sistent with the temperature profile in the radiative equilibrium part of the planetary
atmosphere. To do this we use as a boundary condition the radiative equilibrium

temperature at the upper end of the convection zone. Here we are assuming that

convective equilibrium holds, that is,
I i (T) = O'pri‘xl]t A ,UOIO-

There may be a region in a real atmosphere where some of the energy is trang-
ported by radiation and the rest by convection. It is complicated to solve explicitly

for the fraction of the radiation transported by convection. To proceed we would
substitute radiative and convective equilibrium

Hraa(m) () = o e LT (9.76)
for the radiative equilibrium in equations [9.71]-{9.73] above. The major compli-
cation arises in developing an expression for the convective flux. Indeed, only an
approximate expression is derivable, and here we will provide only an overview,

In order to determine how much energy is transported by convection compare

L

©75)

i
i
|
i

to radiation, we will need to know the convective flux. Recall from Section 9.7.1

that during convection, heat flows from hotter to cooler regions by the macroscopie

movement of matter. The excess energy deposited per unit volume when a magy

element merges with the surrounding atmosphere is pc, AT The heat flux is then ,
Besud = vpe, AT Chi) |
where @ is the mean velocity of the mass element. Here AT arises from the differ
ence between the temperature gradient of the rising material and the temperatuie
gradient of the surrounding atmosphere. Following [8], AT can be expressed I
terms of the temperature gradients for mass elements moving over the distance A+,

dr dr
o[

where the first temperature gradient on the right hand side is that of the surrounding
atmosphere in the sought after state of radiative and convective equilibrium, ‘The
second temperature gradient is that of the convective elements.

Let us take a look at the above two equations to see what we would need (o
derive the convective flux. The heat capacity should be known, the temperature I
what we are trying to solve for, and the density comes from the ideal gas via (¢
hydrostatic equilibrium equation. We are left with the convective velocity and the
distance convective elements travel before releasing heat to the surroundings,

The derivation of an expression for the convective velocity, the temperature g
dient, and the distance a convective element travels is complex with many cavenis
and takes several pages. We leave the details to the excellent references (6,7 4],
These references are to stellar atmospheres, where the theory of convection Iy i

1D approximation called the mixing length theory, This theory is a local theory
because no definitive 3D convective theory is availuble, The main assumption
the mixing length theory is the scale length /, the distance over which a convective
bubble rises and relenses it hent, before sinking aguin, The choice of [ is somewhnt

arbitrary, but it in npproximately comparg O PTENNULe seile he
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9.9 TEMPERATURE RETRIEVAL

Up until now we have described the so-called forward problem, starting with basic
physics to derive a planet’s vertical temperature structure. The forwg.rd probl.em
involves solution of a set of coupled equations, beginning with a starting s;plutlon
and iterating to convergence. A direct solution for the temPerature, or the “inverse
problem,” is possible if a highly detailed spectrum is available. Studles- of sqlar
system planetary atmospheres use temperature retrieval methods by first mferrmg
a basic T-P profile and then perturbing that fiducial temperature profile until data
is fit well. The fiducial temperature profile is perturbed over both temperature and
molecular abundances (see, e.g., [1]).

For exoplanets—in contrast to solar system planets —the spectra are nf)t of suffi-
cient quality to infer a unique fiducial temperature-pressure profile (see Figures 6 167
6.7, and 6.8). In other words, there is no starting point from the data to derive
a fiducial model. A suitable approach is to computationally derive the range of
temperature-pressure profiles and molecular and atomic abundances gllov.ved by
a given spectrum. The forward temperature-pressure structu.re determination dfa—
scribed in this chapter, however, is too computationally intensive to use to run mil-
lions of models to find a good fit. ( ‘

A new method for exoplanet temperature and abundance retrieval hag therefore
been proposed [9]. This new method uses a parametric 1'-F p.ro.ﬁle (Figure 9.8),
running tens of thousands of them that fit the data, and requiring 7-P 'pr(?ﬁles
to satisfy hydrostatic equilibrium and global energy balance. The quanthltauvely
allowed ranges of T-P profiles and molecular abundances can be‘descrlbed. In
addition, constraints on the albedo and day-night energy redistribution and on the
effective temperature can be determined. : i

The parametric 7'-P profile in this example is motivated by physical principles,
solar system planet T-P profiles, and 1D exoplanet 7-F profiles generateq from
model atmosphere calculations reported in the literature. The P-7" parametric pro-
file is a generalized exponential profile of the form

PP )7 9.79)

where P is the pressure in bars, 71" is the temperature in K, and Py, Tp, o, and 3 .are
free parameters. For layer 3, the model profile is given by 1" = T3, where T3 is a
free parameter. Furthermore,

Ph<siPe<ai Py ¢ P= Poe””(T_T")ﬁl layerl
PL<P<Ps: P pyeoa(T-Ta) layer2 (9.80)
RSB =% layer3
and P is typically used as the independent coordinate. The above parametric profile
is in fact overspecified. The /3 parameter turns out to be a redundant' parameter and
can be set /4 3y = 0.5. Then the model profile in (9.80) has nine .parameters,
namely, I, 1o, cyy Py, Py, T, g, Py, and T, Furthermore, two of the param-
eters ean be eliminated based on the two constraints of continuity at the two layer
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Figure 9.8 The parametric pressure-temperature profile. In the general form, the profile
includes a thermal inversion layer (layer 2) and has six free parameters. All
isothermal profile is assumed below the pressure Ps (layer 3). Altematively{f
for cooler atmospheres with no isothermal layer, layer 2 could extend to deepor
layers and layer 3 could be absent. Adapted from [9].

4
that is, at the top of the model atmosphere. The parametric profile in its complele
generality therefore has six free parameters.

The parametric 7-P profile shown in Figure 9.8 is motivated by the physics thil
sets a planet atmosphere’s vertical structure. In general the temperature structure
at a given altitude depends on the opacity at that altitude, along with density and
gravity. |

The T'-P profile shown in Figure 9.8 is divided into three representative luyel‘lgt
Above layer 1, at pressures below P ~ 105 bar, the optical depth at all wave
lengths becomes low enough so that the layers of the atmosphere are transparent
to the incoming and outgoing radiation and not relevant for spectral features, The
uppermost layer, layer 1, has no thermal inversions. Here the atmosphere is being
heated by lower layers and cools with increasing altitude. The middle layer, layer
2, is where most spectral features are formed. In layer 2, the temperature struciuie
is governed by radiative process and possibly by atmospheric dynamics, These
optically thin layers are at altitudes where thermal inversions may be formed, de
pending on the level of irradiation from the parent star and the presence of strong
absorbing gases or solid particles (see Figure 9.1), The bottom-mos layer, layer §,
is the regime where a high optical depth leads to radintive diffusion and (he relnted
isothermal temperature structure. Faventially the strong dreadintion heating from
above doen not reach the deep atmosphere layer, which in heated from the i
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rior energy outflow. Below layer 3, in the deepest layers of the planet atmosphere,
convection is the dominant energy transport mechanism. The high pressure (equiv-
alently, high density) implies a high opacity, making energy transport by convection
a more efficient energy transport mechanism than radiation.

The description of the 7-P profile in Figure 9.8 is focused on hot Jupiters. For
cooler planets layer 3 could be absent, with layer 2 extending to deeper layers. In
additicn, the radiative-convective boundary occurs at a higher altitude in the planet
atmosphere than for hot Jupiters, meaning convection may play a role in layers 2
and 3, making the temperature profile an adiabat.

9.10 SUMMARY

The vertical temperature structure of a planetary atmosphere is intimately con-
nected to energy conservation: energy is neither created nor destroyed in an atmo-
spheric layer. We began with a description of Earth’s vertical atmospheric structure.
We continued with a derivation of the hydrostatic equilibrium equation, which de-
scribes how atmospheric pressure supports the atmosphere against gravity. The ver-
tical thermal structure is also connected to energy transport. We described the two
major mechanisms of energy transport, radiation and convection, and the criterion
that determines which energy transport mechanism dominates. If energy transport
by radiation dominates, then the vertical thermal structure comes from radiative
equilibrium. If convection dominates, the vertical thermal structure is defined by
the adiabatic lapse rate.

The planetary spectrum can be connected to the vertical thermal structure — that
is, the temperature gradient—by energy conservation, hydrostatic equilibrium, ra-
diative transfer, and opacities. The 1D temperature structure (by which we really
mean the temperature-pressure structure) and the emergent planetary spectrum can
be solved with three equations (radiative transfer, radiative and convective equilib-
rium, and hydrostatic equilibrium) for three unknowns as a function of altitude (the
temperature, pressure, and frequency-dependent radiation field).

Ultimately the vertical temperature-pressure structure is tied to the opacities and
radiative transfer: if energy transport is by radiation, the opacity governs the tem-
perature structure. If energy transport by radiation is inhibited, then convection
takes over.
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EXERCISES ]
o

1. Rewrite the ideal gas law in a form that uses the universal gas constant /f,
2. What is the value of the scale height /1 for exoplanets? Consider o hot

Jupiter, a hot super Earth with an Hy-dominated atmosphere, a hot super
Earth dominated by a COy atmosphere, and Furth itself, Use equation [9,11]

(4 DYV, where
Wl ntmosphere Ty

 Show that for an -layer leaky greenhouse model, 7,
Ly the eminsion temperatine i
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4. Complete the derivation of the gray, radiative equilibrium, LTE, no-scattering
atmosphere.

GRT]

a. Derive 3¢ = 2t by solution of the equation [9.44].

b. Do the same for equation [9.62].

5. Assumptions in the gray radiative equilibrum temperature profile.

a. In the derivation of the gray radiative equilibrum temperature profile, we
have used the Eddington approximation J = 3K . What limitations does this
assumption put on the temperature profile?

b. We derived the same temperature gradient from the gray radiative equi-
librum temperature profile (equation [9.45]) as was derived in the diffusion
approximation (Section 6.4.4, equation [6.53]). What assumptions that went
into the gray radiative equilibrium temperature profile cause this to be the
same?

6. Estimate the surface pressure of an exoplanet, given an atmospheric mass
and composition.

7. Derive the equation for the moist adiabatic lapse rate, equation [9.70].

8. The solar system planet atmosphere vertical temperature-pressure profiles
shown in Figure 9.1 have remarkable similarity because temperature pro-
files of planetary atmospheres are governed by basic physics. Qualitatively
describe the physics that causes the characteristic shape of the temperature-
pressure profiles.




