Chapter Ten

Atmospheric Circulation

0.1 INTRODUCTION

is the large-scale movement of gas in a planetary atmo-
) for distributing energy absorbed from the star throughout
the planetary atmosphere. Curiously, many textbooks on atmospheric radiation
omit discussion of atmospheric circulation. Conversely, textbooks on atmospheric
sirculation often relegate a description of radiation in the atmosphere to one chapter
ot less. This segregation happens for two reasons. First, for solar system planets,
terpretation of spectra in terms of molecular abundances and vertical tempera-
wre structure often does not require atmospheric circulation. Second, calculation
of atmospheric circulation and dynamics is computationally time consuming, and

he timescales of atmospheric dynamics are very different from those of radiation.
tmospheric circulation codes can usually only afford to have a relatively crude
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great red spot.
sue is that on all of the solar system planets atmospheric

A very fundamental is
circulation acts to minimize temperature gradients, in part by transporting heat

poleward. This means that, despite all of the atmospheric phenomena on all plane-
tary atmospheres created by atmospheric circulation, the longitudinal and latitudi-
nal temperature variation is relatively small, as are the resultant emergent spectra.
herically integrated spectrum of Barth centered

(One notable exception is a hemisp
on Earth’s cold poles.) Figure 10.1 shows that the latitudinal temperature varies
ant planets. For these planets the

for less than a few degrees for the solar system gi

1D temperature profile approach described in (Chapter 9) and earlier chapters is
adequate to infer the vertical temperature gradient, surface temperature, and atmo-
spheric composition.
On some planets beyond our solar system, such as hot tidally locked exoplanets,
atmospheric dynamics does affect the emergent spectra. We then have a motivation
to study atmospheric circulation beyond basic planetary knowledge to use atmo-
spheric dynamics for interpreting spectra. The hot Jupiters are several times closer
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Figure 10.1 Temperature versus latitude on solar system giant planets. The solar system
giant planets show almost no temperature change with latitude. Adapted from

[1].

to their star than Mercury is 1o our Sun, receiving 400 times more radiation than
Earth and 10,000 times more than Jupiter. The energy from stellar heating domi-
nates any internal flux for hot Jupiters. Together with the permanent day and night
sides, this case of stellar forcing has no solar system analog. The fate of the ab-
sorbed stellar energy and the global temperature structure of the planet can only
be understood via atmospheric circulation. The question of energy redistribution
is especially significant for habitable-zone planets orbiting low-mass M stars. Like
their hot-Jupiter counterparts, such planets are so close to the star that they are
tidally locked, presenting the same face to the star at all times. Whether or not the
planet is habitable depends on the role played by atmospheric circulation. By “tidal
locking™ we are referring to the planet core; an additional complication is to what
extent the atmosphere departs from tidal locking. A reasonable picture for planets
with thick atmospheres is a tidally locked core with a thick mobile atmosphere.

To complete the picture of the thermal structure and emergent flux characteristics
of the tidally locked exoplanet atmospheres, the dynamical response of the atmo-
sphere to heat sources and sinks is the final major process we must consider, These
considerations are most significant for tidally locked exoplanets. Due to the com-
plexity and nonlinearity of the atmospheric circulation equations, the full derivation
and application of the equations are beyond the scope of this book. Similarly, be-
cause of the complexity of the equations, an intuitive, conceptual understanding
of atmospheric dynamics is often elusive. In this chapter we will focus mostly on



— s gy

iation than
ting domi-
7 and night

of the ab-
t can only
istribution
stars. Like
t they are
or not the
By “tidal
is to what
or planets
phere,
wcteristics
the atmo-
er. These
the com-
lerivation
larly, be-
'standing
10stly on

{OSPHERIC CIRCULATION 213

.

Trad

log P (bar)

1 10 0 1 2 3 4 5
Wavelength (um) Trad” Tadv

Fipure 10.2 Tlustration of Trad VS. Tadv. Left: pressure (as a proxy for altitude) at opti-
cal depth of 2/3 as a function of wavelength. Two different models are shown
(cloudy by the dashed curve and clear by the solid curve). Right: altitude depen-
dence of the ratio of the radiative to advective timescales (Trad /Tadv). A wind
speed U of 1000 m s~1 was adopted for illustration; the ratio scales linearly
with U so that other values can be considered. Adapted from [3].

E. . .
timescales and parameters that describe large-scale flow. We will also present a
schematic outline of the equations for atmospheric circulation.

10.2 RADIATIVE AND ADVECTIVE TIMESCALES

We begin by estimating the typical timescales that govern whether or not atmo-
spheric circulation is important in causing a longitudinal or latitudinal temperature
gradient. This discussion is necessarily oversimplified but helps to illustrate some

there is a competition between the radiative and the ad-

basic points. Essentially,
vective timescales. The radiative timescale (Teaq) is the time for absorbed stellar
) is the time for

energy to be reemitted as radiation. The advective timescale (Tadv

the absorbed stellar energy to be circulated around the planet.

If Traq <€ Tadv, the bulk of the absorbed stellar energy will be reemitted before
being advected around the planet. In this case, a strong latitudinal and longitudi-
nal temperature gradient are expected to arise. If, in contrast, Tagv < Trads the
temperature should be much more uniform, because heat would be transported and

redistributed efficiently over the entire planet.
The radiative timescale can be estimated by considering an atmosphere layer

of thickness Az that slightly perturbed from radiative equilibrium. Consider an

= e
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Table 10.1 Comparison of radiative and advective timescales of some solar system planets.

Planet Traud Taddv lon -i-rln:m Tadv, lat -i-rl;tt
Venus  years days < few K weeks few K
Earth weeks-months 1 day ~I0K weeks 20-30 K
Mars days 1 day ~50 K weeks ~ 100 K

Jupiter  years—decades  decades < few K decades < fewK
Estimated wemperature differences in longitude and latitede are also presented. Table
adapted from [2] and references therein.

atmospheric layver of pressure thickness AP that is out of radiative equilibrium by
an amount AT, This layer has excess energy per area pe, AT Az, Approximating
the radiation as black body, the layer will radiate a net excess of 4o T7dT. Taking
the above two statements and vsing the hydrostatic equilibrivm equation gives
P o |
P
Trad ™~ (10.1)
i q 'Il‘TIt I 3 |
Here T is temperature, g is surface gravity, ¢y, is the specific heat capacity, and o
is the radiation constant. P/ g is equivalent to mass/area. This estimate applies only
to regions of low optical depth. The advective timescale can be estimated by the
planet radius and the characteristic windspeed I,

[

Here [7 is unknown for exoplanets—indeed the windspeed is a key term one wants
to derive from atmospheric circulation models. We now use these timescale esti-
mates 1o investigate temperature contrasts on planets, at altitudes where the bulk of
solar energy is absorbed. We can see from Table 1001 that, indeed. a longer 7.9
leads to a smaller latitudinal and longitudinal temperature gradient. Although the
advective timescales on solar system giant planets such as Jupiter are long, the ra-
diative times are even longer. Furthermore, the fast rotation rate (~12 hours; see
Table A1) in part means that Jupiter is heated relatively uniformly.

We now turn to an important subtlety in our radiative versus advective timescale
analysis. The ratio of the radiative-to-advective timescales depends on the vertical
altitude where the stellar radiation is absorbed. This is primarily because 7,4 de-
creases rapidly deeper into the atmosphere: it depends linearly on pressure, which
increases exponentially deeper into the atmosphere (section 9.3.1). In general, the
above description of competing timescales is valid for the altitude where the bulk
of the stellar energy is absorbed.

Ditferent layers of the atmosphere may have different circulation regimes. Earth,
for example, has a relatively small latitudinal and longitudinal temperature differ-
ence in the troposphere where we live. High in the thermosphere. however, the
day-night temperature dilference can be as high as 1000 K. How can we observe
different atmospheric layers on exoplanets? Recall that the optical depth is fre-
gquency dependent; molecules absorb more strongly at specific frequencies. We

Ry,
Tadv ~ 1 ‘ (10.2)
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explained in previous chapters that this means we can see different layers of the
atmosphere depending on the frequency of observation. Figure 10,2 shows the op-
tical depth unity for a hot Jupiter atmosphere to illustrate that optical depth—and
hence radiative versus advective regimes—are at different altitudes for differemt
wavelengths,

Can we repeat the radiative versus advective timescale analysis for exoplanets?
The main issue i understanding which regime the atmosphere 15 i is the unknown
windspeed U7, This value is not known on exoplanets but can either be estimated (in
a circular fashion by using 7,4 vs. Ty and an estimated temperature) or obtained
from computer simulations.

10,3 LARGE-SCALE FLOW AND PATTERNS

Characteristic length scales can tell us something about the big picture of heat
transport and weather patterns on a given exoplanet. Belore describing two ma-
Jor characteristic scales, we discuss the transformation from an inertial to a rotating
reference frame.

10.3.1 The Rotating Reference Frame

In planetary atmospheric circulation it is natural to use the rotating frame of ref-
erence, where the so-called inertial or fictitious forces appear. These are the cen-
trifugal and Coriolis forces. Here we will present an outline of the derivation of
a transformation from the inertial to the rotating reference frame, that essentially
results in the addition of the centrifugal and Coriolos “forces.” We will follow [4,
5] in our derivation. Let us take A as an arbitrary vector in a Cartesian inertial
reference frame. The vector 1s described by

A= A0+ A5+ Ak, (10.3)

where i, j. and k are unit vectors, We will describe the same vector in a reference
frame rotating with angular velocity £2,
A=A+ ¢ ’Jj’ + ALK (10.4)
The total Lagrangian derivative of A in the inertial frame (subscript 1) is
A DA, DA,. DA

3 0.5
Dt Dt T At e & (10.3)
DA . DAY DAL o Dl oD o DRE

Z{ 4+ —X§' 4 7 et | et ] e i
I Dt i ] Dt ¥ Dt F

We can use the definition of the derivative in the rotating frame
x - ¢ ; P ~ F (]
DA . .‘r?’?‘.“_"i" + .u'.'.l-"j’ + _‘r"].‘.".*'.f{" (10.6)
Dt o ] Dt
and the cross product terms for the velocity of the unit vectors caused by rotation,
e.g.
D,i

= xi, 10,7
Dt A RRY
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to write equation [10.5] as

DA DA
Di = Dr XA (108).

We can similarly derive a transformation for the rate of change of velocity ]
the rotating frame of reference (again following [4]). We want to find an expressio,
for 2 =5t U’ . We may use a position vector r to write '

D[I‘ [
D =Uj. (10.9)
Applying our transformation equation [10.8] we have
Dir  Dr
De ~ Dp T (10.468
or
U;=U+Qxr. (10,1
We may now again apply our transformation equation [10.8] to U7 to find
D;U; DU, b
Dt = Dr + 2 x Uj. (10.12)
This equation can be worked out to
DUy DU 9
= +2 Q°R, )i
i~ o T AxU- (10.13)8

where the details are left as an exercise. Here €2 is taken to be a constant and R is
a vector perpendicular to the axis of rotation. The magnitude of R is equal to the
distance to the axis of rotation.

The second term on the right-hand side of equation [10.13] is known as the Cori-
olis force or the Coriolis acceleration and the second term is the centrifugal force.
Overall, equation [10.13] tells us that the acceleration following the motion in an
inertial frame is also described in the rotating frame as the rate of change of relative
velocity; and the Coriolis acceleration due to the relative motion; and the centripetal
acceleration caused by the rotation of the coordinates [4].

10.3.2 The Rossby Number: Rotation

The Rossby number can tell us whether or not planetary rotation is important for
a given phenomenon. Let us take a motion with a length scale L and consider the
speed U. We would say the rotation of the planet is important if

L _ 1

>

U—Q
where €2 is the angular velocity of planetary rotation. Rotation is more important
at high latitudes than at latitudes near the equator. We therefore replace (2 with the
term

(10.14)

[ =2Qsinb, (10.15)
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where # is latitude and [ is the Coriolis frequency. The Rossby number is

U
0= 0.16)
iy Lf (10.16)

The Rossby number indicates the importance of rotation on the flow., A small
Rossby number (taken to be < 1) means that the effects of planetary rotation are
large compared to the fluid motions, and a large Rossby number means the opposite.
Let us take the length scale of a planet as i, and consider a Jupiter-size planet with
R, =714 x 107 m. Jupiter's rotation rate gives a small Rossby number. A hot
Jupiter synchronously rotating gives a large number.

The Rossby number depends on £ and 7. What appears to be small scale from
an exoplanet view, such as a 100 m region in an ocean, may still have a small
Rossby number, For exoplanets, we are interested in much larger scales only,

10.3.3 The Burger Number: Vertical Streatification

The Burger number is a dimensionless number that indicates the vertical stratifica-
tion of a fluid, in this case the atmosphere. The Burger number is defined as [e.g.,

5]
! Lo\? |
Bu = (--;,’-’-) : (10.17)

Vgl
R

and U7, L, and H are characteristic velocity, length, and layer thickness scales,
respectively. Lo is the Rossby deformation radius. The Rossby deformation radius
is the horizontal length scale at which pressure perturbations are resisted by the
Coriolis force.

A Burger number of zero indicates a flow dominated by rotation, whereas a
Burger number near 2 indicates a flow dominated by stratification.

where

Lp= (10.18)

10.3.4 The Rhines Scale: Number of Bands

The Rhines scale [5] 1s the scale at which planetary rotation causes east-west elon-
gation (jets),

.

|I 2T -
o -\(E’) (10.19)

where {7 is the eddy windspeed and 7 is the latitudinal gradient of f,

COS ¢

3 =20- 10.20]
i, ( )
The number of bands, NV, on a planet might be approximately described by [6]
f
N ~ e]'. (10.21)

L;
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Fluid motions are free to grow in the longitudinal direction, but are confined in
the latitudinal direction by the characteristic Rhines scale—in other words, by the
gradient of the Coriolis force. The bands confine clouds, and may affect the cloud
structures and patterns we can see in a hemispherically integrated exoplanet spec-
trum.

10,4 ATMOSPHERIC DYNAMICS EQUATIONS

The fundamental equations that govern atmospheric motion come from the conser-
vation laws for momentum, mass, and energy—laws of basic physics. Typically,
the assumption of hydrostatic equilibrium (Section 9.3.1) is wsed 1o remove the
vertical dimension of the momentum conservation equation, An equation of state,
taken as the ideal gas law, is also needed. Many textbooks are devoted to the deriva-
tion and application of the atmospheric fluid dynamic equations. We aim here to
present an outline of derivation of the equations used for exoplanet atmospheric
circulation and some of the approximations that lead to models commonly used in
exoplanet studies. For our summary outline, we closely follow the introduction to
the meterological equations in [4, 7).

We consider an infinitesimal control volume fixed in an Eulerian reference frame
in the atmosphere. This is a parallelepiped with a fixed position relative to the mov-
ing atmosphere. In this infinitesimal control volume, we will account for conserva-
tion of mass, momentum, and energy.

The conservation laws that lead to the atmospheric equations involve the rates
of change (i.e.. derivatives) of the momenum, density, and energy. Because the
atmosphere is moving, the conservation laws must deal with a moving fluid. We
are using a fixed volume, and therefore our first step is to relate the local derivative
at a fixed point to the “total” derivative to the total rate of change of a variable of
interest. We leave it as an exercise to show that

DA JA
= — 4 TT-TA. (10.22
Dt ot [ !
where A is a vector function of interest (A = A, i 4 .«'l_,,j + Ak, where i, j and

k are unit vectors). This equation tells us that the total rate of change of A as the
particles move through some velocity field U is the sum of the local rate of change
and the rate of change of A following the motion. The velocity field U is
U = ui + vj + wk. (10.23)

where w. ¢, and w are conventional notation in atmospheric fluid dynamics, and the
unit vectors i, j, and k are conventionally taken to be directed eastward, northward,
and upward, respectively.

Remember that we are considering an infinetesimal control volume fixed relative
to the moving atmosphere, The derivative expression of interest, therefore (from
equation [10.22]) is

JA DA

U.VA. 10.24
o - Di v ReE)
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10.4.1 Conservation of Momentum

The conservation of momentum begins with the familiar Newton's First Law, in an
interial reference frame,

F=fim=a= ;—J& (10.25)

Dt

where [ is the net force, m is the mass, F is the net force per unit mass (not 1o be
confused with the radiative or convective flux described in previous chapters), U is
the velocity field, and ¢ is time as before. First, recall the expression for DU, /Dt
given in equation [ 10.13].

Second, we will describe the forces F on the atmosphere. We have previously
discussed the forces in a 1D atmosphere, namely, the forces in the vertical direction
as a balance of the pressure gradient and gravity (Section 9.3.1). In 3D the pressure
gradient force is a force acting in three dimensions,

L ps + o

VP = (10.26)

i iy iz

As an acceleration, the pressure force is written VIP/p. In atmospheric fluid dy-

namics, the gravitational force is written as an effective gravity term that includes

the centripetal acceleration term

g.r = —gk — (°R. (10.27)

The remaining forces in the atmosphere are lumped together as frictional forces per
unit mass, which we will denote as Fy.

For the conservation of momentum, we have the equation
(18]
ot

1
=20xU--VP+g+Fy. (10.28)
_p

This is the three-dimensional equation for the conservation of momentum,

We are not completely finished working with the conservation of momentum
equations. For further analysis, we further expand the equations into their scalar
form using a spherical coordinate system, The complication is in relating the Carte-
sian coordinate system (r, y, =) in our infinitesimal control volume to the spherical
coordinate system (A, @, 2) fixed to the Earth’s reference frame, where ¢ is the
latitude, A is the longitude, and = is the vertical distance above the surface of Earth.
The complication lies in that the (x, y, z) coordinate system is a function of loca-
tion and therefore the unit vectors i, j, k are also changing with location on Earth’s
surface. To continue we will adopt relationships between the coordinate systems,
and between the unit vectors and latitude, longitude, and vertical direction above
the surface, and take o instead of r in a thin shell approximation,

DA
il = A0S H—
Y B
D¢ (10.29)
Ul =i0—, i
"Dt
Dz

m [l
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and
DU _ (_D_E 3 uvtan @ +%>;
Dt Dt a a
+ (Pﬁ ywtmd ﬂ)i (10.30
Dt a a 30)

L (e
Dt a '

The interested reader can derive these by consulting the Figures in [4], and other

standard atmospheric dynamics textbooks.

We may next expand the Coriolis force by using the definition of the vector cross
product and considering Q in terms of the unit vectors: §2 = 0i + 2Qcos ¢ +
2Q sin ¢k; in other words, the angular velocity has no component parallel to the
unit vector i:

_2QxU = (2Qwcos ¢ — 20w sin ¢) 1 — 2Qusin ¢5 + 2Qucos pk.  (1031)
We finally write an expression for F; as
F; = Fipi + Frd + Fek. (10.32)

We now take the above three equations, as well as our vector notation expressions
for VP (equation [10.26]) and g.g (equation [10.27]). We substitute these equa-
tions into the conservation of momentum equation [10.28] and equate terms in each
of the the unit vector directions to find the eastward component of the momentum
equations,

1
Du _wvtan¢  ww _ __%13 4 20using — 20wcosd+ Frp,  (10.33)

Dt a a p Oz
the northward component of the momentum equations,
D 2¢ 10P
Dv  u'tand w29 _9Qusing + Fiy, (10.34)
Dt a a p Oy

and the vertical component of the momentum equations,
Dw u®+v? 10P
= 2 Fk,. 10.35
Di a Yy gest + 2Qucos @ + F. (10.35)

10.42 The Conservation of Mass

The conservation of mass is often referred to as the continuity equation. We con=
sider an infinitesimal volume and ask: what is the rate of increase of mass per unit
volume 8p/dt of the mass inside the volume (i.., the density change), due to mass
flowing in and out of the volume? We start with mass flowing into the volume along
the z direction through an area 6ydz (a face of a cube with sides dx, 6y, §z). The
mass flow rate (in units of kg s~1) into the volume along the z direction through

the area dydz is
(pu - M%) dydz, (10.36)
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and the mass flow rate (in units of kg s~1) out of the volume along the z direction
through the area dydz is

ox 2

Subtracting the above two equations, we find the net rate of mass flow through the
z-z sides of the volume to be

(pu + 6—(@@) 6ydz. (10.37)

9(pu)
o 0z0ybz. (10.38)

Taking similar expressions for the mass flow along the y and z directions, we have
for the net rate of mass flow into and out of the volume

Op __[9(pu) , 0(pu)  O(pu)
atéxéyéz— g + oy + 9% dzdydz. (10.39)

We can rewrite the above equation as

git’ + V- (pU) =0, (10.40)

This is called the mass divergence form of the continuity equation.

10.4.3 The Conservation of Energy

The law of conservation of energy is used to relate the temperature of the atmo-
sphere to heat sources and sinks. For example, with atmospheric dynamics in a
differential layer with thickness Az there is a net radiative flux

AF(z) = F(z) — F(z + Az), (1041)

where the absorbed radiation heats the layer. We may use similar arguments to

those preceding the estimate of the radiative timescale (equation [10.1]) to express

the layer heating by a rate of temperature change
o 1 AF(z)
at '

See, e.g., [9] for more details.

e A (10.42)
4

1044 The Ideal Gas Law
The ideal gas law remains the same as before and is included here for completeness.
P = pRT, (10.43)

where R is the specific gas constant.

10.4.5 Models and the System of Conservation Equations

Atmospheric circulation models are based on the above six fundamental conserva-
tion equations: the conservation of mass, conservation of momentum (one equation
for each dimension), conservation of energy, and the ideal gas law as the equation
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Figure 10.3 Simulated temperature of the tidally locked hot Jupiter HD 200458b. The ar-
rows represent winds. From top to bottom are three different isobars: 1.5, 220,
and 19.6 mbar. The substellar point is at (0,0) in longitude and latitude, Adapred
from [8].

of state. The system of equations is not closed because of the unknown terms for
friction and for the heating rate.

Many variations of conservation equations are used for atmospheric circulation
models. Some researchers use the full set of conservation equations. Others take
the traditional planetary atmospheres approach resulting from decades of study:
the primitive equations. The primitive equations replace the vertical momentum
equation with local hydrostatic balance, thereby dropping the vertical acceleration,
advection, Coriolis, and metric terms that are generally expected to be less im-
portant for the global-scale circulation, such that energy is still conserved. For an
example of the primitive equations in a general circulation model as applied to a hot
Jupiter exoplanet see Figure 10.3. The term “primitive” refers to the full set of basic
equations, before simplification by a suite of approximations. A different modeling
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Figure 10.4 Thermal phase curve of HD 189733b. This is a zoomed-in section of Figure 1.4.
Adapted from [10].

approach is to use a 2D version of the conservation equations, the shallow water
equations. Because of the short timescales involved for radiation transport, atmo-
spheric circulation models traditionally use somewhat elementary radiative transfer
schemes.

The primitive equations or even more approximate forms are not easy to imple-
ment. Many institutions have developed their own General Circulation Models for
public use. Many textbooks spend several chapters continuing the derivation of the
conservation equations into different vertical coordinate systems and making many
further approximations to make the equations more usable [e.g., 4, 7].

10.5 CONNECTION TO OBSERVATIONS

It is natural to ask what observations of exoplanets are directly connected to atmo-
spheric circulation. At present, these are thermal phase curves of tidally locked hot
exoplanets. The best example we have is shown in Figure 104, Spitzer Space Tele-
scope 8 um photometry of HD 189733b taken over 30 hours—half of the planet’s
2.5-day-period orbit. We assume that at 8 ym the thermal variation of the com-
bined planet and star flux is entirely due to the planet. It is fair to say, then, that the
variation in Figure 10.4 corresponds to about 20% variation in planet temperature
(from a brightness temperature of 1212 to 973 K) [10]. In contrast, other transiting
exoplanets appear to have massive day-night temperature contrasts, up to 1000 K
or even higher (e.g., [11]). The crude map shown in Figure 10.5 shows one possible
map of HD 189733’s 8 um surface temperature. This map is misleading, because
there is no real latitudinal information.

A second connection of atmospheric dynamics to observations is related to the
study of Earth as an exoplanet. A pale blue dot observed from afar, Earth is actually
the most variable object in our solar system at visible wavelengths. This is due to
water clouds and their high albedos in contrast to the dark oceans. Despite the
apparent variability of clouds, large-scale patterns persist long enough so that we
can determine the rotation rate of Earth as viewed from afar. By binning data to the
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Figure 10.5 Brightness estimates for 12 longitudinal strips on the surface of HD 189733h.
a) data are shown as an example a color map. b) data are shown in graphical
form. Adapted from [10].

rotation period, we can see variability and attribute the variability to the presence
of clouds [12, 13].

One intriguing and promising avenue to understanding what the data can really
tell us about exoplanet atmosphere observations may come from inversion of the
observed thermal phase functions [14]. This is akin to first trying to understand
where hot or cold spots are in the exoplanet atmosphere and next trying to under-
stand the degeneracy in terms of latitude and longitude (and with spectral observa-
tions, altitude). Then one could attempt to attribute physical mechanisms for the
specific variations. The method could also work for inverting the scattered light
phase functions of Earth-like exoplanets, whereby one could infer, very crudely,
the presence of continents.

In the future, with the launch of NASA's James Webb Space Telescope, spectra as
a function of orbital phase will give us a better picture of thermal phase variation. In
particular, high signal-to-noise data spectra will not only give us the longitudinally
averaged thermal flux but also enable us to understand the flux as a function of
altitude (see Chapter 6).
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10.6 SUMMARY

Atmospheric circulation is a fundamental topic for planetary atmospheres because
it plays such a significant role in how exoplanets look from afar. For many planets,
atmospheric circulation acts to minimize horizontal temperature gradients, includ-
ing equator-to-pole temperature gradients. For solar system planets, the tempera-
ture gradients are so small as to not be observable in the hemispherically averaged
spectra (except notably in a hemispherically integrated spectrum of Earth centered
on Earth’s cold poles). For such planets, the 1D average temperature-pressure struc-
ture calculations described in Chapter 9 can be used to understand the temperature
from observed spectra.

Alternatively, there are exoplanets where atmospheric circulation sets up strong
temperature gradients. Evidence comes from thermal phase curve measurements of
a few hot Jupiters. For some of these tidally locked planet cores, even the thick mo-
bile atmosphere is not able to circulate the absorbed stellar energy. Instead, hot and
cold spots and even hot and cold sides of the planet are maintained. Atmospheric
dynamics also plays a role in studies of Earth as an exoplnet—large-scale cloud
patterns and their variability may be detectable in the hemispherically integrated
signal of visible-wavelength scattered light.
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EXERCISES

1. Derive the radiative timescale in equation [10.1].
2. How many bands should Earth have, using equation [10.21]?

> 3. Derive equation [10.13] from equation [10.12]. Use the definition of DU/Dt
and explain and use the vector identity

Q2 x (Q2xr)=02x(2xR)=-0°R. (10.44)

: Here 2 is taken to be a constant and R is a vector perpendicular to the axis of
rotation. The magnitude of R is equal to the distance to the axis of rotation.

4. Show that the relation between the total rate of change of a variable is related
to the local derivative at a fixed point is

0A DA

— ==—-U-VA 45

ot Dt VA, (10.45)
where U is velocity.

" 5. A longitudinally averaged thermal flux of HD 189733b at 8um is shown
in the bottom panel of Figure 10.5, and a map is shown in the top panel.
Describe why the map is not unique. Sketch two other representations of the
ot map that also satisfy the actual measured data.



