UNIVERSITY OF KANSAS

Department of Physics and Astronomy
Physical Astronomy (ASTR 792) — Prof. Crossfield — Fall 2021
Problem Set 2
Due: Tuesday, Oct 26, 2021, at the start of class
This problem set is worth 75 points

As always, be sure to: show your work, circle your final answer, and show uncertainties and/or the appropriate number of significant figures, where appropriate.

1. Direct Imaging [$\mathbf{1 5} \mathbf{p t s}$].

5 pts Assume a young, hot, gas giant exoplanet with a temperature of roughly 1000 K . Making reasonable assumptions, calculate and plot the ratio of planet to stellar flux density (F_{P} / F_{*}) assuming the planet and its star emit as simple blackbodies and assuming that the planet reflects no light (i.e., that it has an albedo of zero)

5 pts Assuming reasonable values for all relevant quantities, calculate and plot F_{P} / F_{*} for an old, cold gas giant with negligible thermal radiation but with a Jupiter-like albedo of ~ 0.3.
5 pts Calculate the diffraction-limited resolution, λ / D (in arcsec), for a typical modern direct-imaging system. Based on angular-resolution considerations alone, what diameter D would be required to angularly resolve an Earth-Twin system orbiting a Sun-like star at a distance of 10 pc ? (Note that this only sets a lower limit on D, since many considerations come into play beyond resolution alone.)

2. Microlensing [$\mathbf{2 0} \mathbf{~ p t s}$]

4 pts Calculate the Einstein radius, θ_{E} (in arcsec), for a typical stellar microlensing event (neglecting any additional bodies).

4 pts Calculate θ_{E}, in arcsec, for a typical exoplanetary microlensing event (neglecting any additional bodies, including the planet's own star).
5 pts Given typical stellar velocities in the Milky Way of order $\sim 100 \mathrm{~km} \mathrm{~s}^{-1}$, estimate the typical proper motion (in arcsec/yr) of a typical microlensing lens star.
7 pts If the true angle between a microlensing source and the unseen lens, β, varies as the proper motion (call it $\dot{\beta}$), then plot the magnification

$$
\begin{equation*}
M(t)=\frac{u^{2}+2}{u \sqrt{u^{2}+4}} \tag{1}
\end{equation*}
$$

as a function of time, where $u \equiv \beta / \theta_{E}$.
5 pts Calculate and indicate on your plots above the Einstein crossing time, $t_{E}=\theta_{E} / \dot{\beta}$.
3. Exoplanetary Discovery [15 pts] Plot, draw, or sketch a diagram showing the parameter space (e.g., M_{p} or R_{p} vs. P or a) in which each of the major exoplanetary discovery techniques are most sensitive.

4. Radiation [$\mathbf{2 5} \mathbf{~ p t s}$]

4 pts A handy rule of thumb is that a star with a V-band (visual) magnitude of 10 corresponds to a photon flux density of roughly 10^{4} photons $/ \mathrm{s} / \mathrm{m}^{2} / \mathrm{nm}$. Explain why this quantity corresponds to a flux density $\left(F_{\lambda}\right)$ despite the unusual appearance of 'photons' instead of energy units.
3 pts Assuming that the optical V band extends from roughly 400 to 600 nm , estimate the observed photon flux from such a star.
3 pts What is the observed photon rate from this star, as observed with a reasonably-sized telescope?

5 pts Neglecting all noise sources but Poisson noise (so $\mathrm{S} / \mathrm{N} \propto \sqrt{N_{\text {phot }}}$), how long would this telescope have to observe such a star to confidently measure a flux difference of 1% (corresponding to a typical transiting hot Jupiter)?
5 pts If the star were $1000 \times$ fainter (as in a typical microlensing event), how long would this telescope have to observe it to confidently measure a flux difference of a factor of two (corresponding to a moderate microlensing event)?
5 pts If the original star were instead $1000 \times$ brighter (as for some directly-imaged systems), how long would this telescope have to observe to confidently detect the photons from a cold, but highly reflective, exo-gas giant orbiting the star at 2 AU ? (Your result will be a lower bound, since in actuality many noise sources are far more punishing that the solely Poisson-limited statistics you are assuming here!).

