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llative Transfer |: Fundamentals
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THODUCTION

Gibbs Free Energy

ainler describes how radiation changes as it travels through a medium.
Lutiety of absorption and emission processes from atoms, molecules, and
I len contribute to the radiation that emerges at the top of the planetary at-
Although we can observe only the radiation emerging from the planet’s
i much information is contained in the emergent spectrum, including
A the ntmospheric temperature, pressure, and composition.

sulintive transfer equation describes the change in a beam of radiation as it
Lanie distance s through a volume of gas. The changes are due to losses
e r(x,v)I(x,9,v), where & is the extinction coefficient and I is the
\ unil additions to the beam &(x, #1, v/), where € is the emission coefficient.
uj the losses and gains, for an atmosphere that is not changing with time
1), the radiative transfer equation is
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Figure 4.17 Gibbs free energies of NH; and Ns.

dl(x,h,v)
ds

hipter we will omit the t-dependence of the intensity, flux, and other terms.
e lonn, we must still keep in mind that radiation involves energy flow: energy
Wi e,

ol of this chapter is to lay the foundation for the equation of radiative
. We first introduce several fundamental quantities and concepts needed
(i terize the radiation field. Next we decribe the full equation of radiative
i derive the plane-parallel approximation. We finish with an outline
{ormal solution to the radiative transfer equation. We leave details of the
Wi of the equation of radiative transfer until Chapter 6.

EXERCISES = —k(x,v)I(x,0,v) + e(x,0,v). (5.1

1. Derive the Gil?bs free energy equation (equation [4.1 1]) from the fin
thermodynamics (equation [4.3]) by filling in any missing steps.

2. Figure 4.17 shows the Gibbs free energy of the nitrogen compou )
and Ng. Can you use Figure 4.17 to determine which nitrogen molecul
dominate at a given temperature and pressure? Why or why not? ‘

3. Compute the escape velocity of the Earth, Venus, and Mars, in m/y |
eV. Based on their exobase temperatures compute the escape, energl
and O, as well as the Jeans escape parameter \.. Should H and O ther
escape on Earth, Venus, or Mars? "

4. Make a plot of relative stellar heating (in units of the solar luming ' Y

Earth, Lgy = L /4ma2) (y-axis) vs. escape velocity (z-axis) for all

system planets, Pluto, Europa, Titan, Triton, and the Moon. On the |

graph, plot all transiting exoplanets (take data from the Extrasolar Plang

C}{clopaedia at http://exoplanet.eu/catalog.php, but consider only exop

V\;lth measured masses and radii). Because star luminosity data are not

able, assume that /L~ = 22

i i /Lo = (M/Mgy)*”. Use a log-log plot. Commel

| Definition of Opacity -

{1t important physical quantity in the atmosphere that affects the transfer of
1allon |s the opacity. The opacity describes how opaque a substance is: how hard
Il radiation to pass through that substance. Opacity depends on the number
Uty of particles in the atmosphere, and the particles’ absorbing, scattering, and
Wil properties, which may in turn depend on temperature, pressure, and fre-
Wiy (i.c., wavelength). In order to describe radiative transfer we therefore must
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define coefficients for the absorption and emission of radiation, The wal
ity refers to absorption and scattering (i.e., extinction) coefficients of il
particles. We emphasize that the underlying physical processes of photon u
tion and emission, will, for now, be hidden in these macroscopic coelficie
microscopic details of the absorption and emission coefficients will be o
Chapter 8. i

Before we describe the opacity in more detail, we should keep in mind (I
different symbols for the opacity coefficients are used in other textbooks i
ous papers in the literature. ‘

1,P(®)

Figure 5.1 Definition of scattering angle used in P(©).

322 The Extinction Coefficient: Absorption and Scattering e eeall that B(x, v) is black body radiation, and x depends on temperature.

Juation for thermal radiation is valid in local thermodynamic e'qt.lilibriun'l,
uiher desceribed in Section 5.4. The thermal emission is isotropic ina static
0 because atoms and molecules have no preferred direction of radiation.
lmluuhm coefficient for pure scattering is

The monochromatic extinction coefficient K(x, v) describes the amount
removed from a beam of radiation from a volume 4V and a solid angle (S},
time per unit frequency, E

liE = w(x,v)I(x, A, y)dVdewE,

See Chapter 2 and Figure 2.1 for a description of the intensity 7. :

We use « (with units of m~1) to include all processes that remove enery
a beam of radiation. True absorption describes processes that destroy (he
This can happen, for example, when a photon is absorbed by a particle, ui
is converted to kinetic energy of the gas by a subsequent collision. We will {
the true absorption coefficient by a(x,v). Scattering describes photony (I
removed from the beam by a change of direction (and possibly a change of ¢
We denote the scattering coefficient by os(x, v), where we use the subsotl|
distinguish the scattering coefficient s inm~! from the cross section o in i
extinction coefficient is therefore comprised of '

1 A
Eyont (X, A2, I/) = OS(X? V)E /Q P(G)I(xla nl7 V)dQ" (5.6)

B0 e weattering angle, © = - €, where in general the terms with.pri.n.les
the direction of incidence and the terms without primes r'efer. to the élrectlon
Siallering (Higure 5.1 and see ahead to a related _discussmln in Se'ctlon 8.5).
~Ln 1) i the scattering coefficient, with dimensions m™*. In t.hlS book we
liler only coherent scattering, the case where the photon retains the same
¥ile, lrequency). . . -
e can be anisotropic and so we define P(©) as the d}meqsm’ﬂess s1‘ng1'e
up phinse function. The phase function denotes the red.lrect'lon in the inci-
Sty 1o the outgoing intensity and describes the 3D directional scattering
iy, The phase function is normalized to 1. (R should not be cqnfused
e dlumination phase function ® () used in Section ?.4.3 to descnpe op-
Wi We will describe the origin of the single scattering phase function in
i The phase function is normalized:

K(X, ) = a(x,v) + o(x, v).

Extinction is isotropic in a static medium because the absorbing or scatterl
ticle does not care which direction the photon is coming from. Hence 4 |
fi-dependence.

1 : i f 2 / P(©)d0 = 1. 57
5.2.3 The Emission Coefficient: Thermal Emission and Scattering I o

The monochromatic emission coefficient £(x, A1, v) describes the amoun( of
emitted into a volume dV within a solid angle dS2 per unit time, per unit frequ

|dE = e(x, 8, v)dV dQdtdy, |

Salieting s isotropic, P(©) = 1, and the emission coefficient for scattering
Wi [5.6]) reduces to

Sliat (% W)i=ay (X)) (5.8)

with dimensions J m—3 sr—! s—1 Hz -1, Planetary atmosphere emission ; i :
both thermal emission and scattering, because both processes can add (o the | B cuding our description of scattering we cn?pl?usqe two points. First, scat-
il . 0 bathon souree and asink for the beam of rmlml:_on in the |)l'unet' zltmosphgre.

Thermal emission can be described by the KizchhoffPlanck relation also ki B Alive, seattering is counted as emission, As a sink, scullcrlngl 4 couplcd At
as Kirchhoff’s Law of thermal radiation, or IKirehhol! s Law for short, ' B 80cond, acaitering:ds angle dependant,dn dontraat to the isotropic ther-
silandon. Hence the emission coefficient dependency on fi,

it /(% 17) is the mean intensity (equation [2.2]).

Ehorm (X 1) # “(N.")N(ﬂ,l’),




Baiade oo gl o o0 adanh O

90 \ i
J THANGEER I FUNDAMENTALS 91

5.2.4 Number Densities, Cross Sections or |
) ss Sections, and the Absorption Coeffiel i Opuneities

The absorption and scattering coefficients are the sum of the number denul
units of m~—?) of particles times their absorption or scattering cross seciie
units of m?). The number densities of different gas or solid species origly
elemental abundances in the planetary atmosphere and from atmospheric |
and escape (Chapter 4).

The number densities and absorption cross sections come into play vi
sorption coefficient

Weatments of radiative transfer we desire a mean opacity so that we may
Suations averaged over frequency (i.e., wavelength). At first thought, we
wider (he average or mean opacity taken literally as the average opacity
4 all frequencies. In practice such an opacity average would not be very
4 ainider the following: the flux of a planet approximated as a black body
'll. und o planet with exceedingly high opacity at UV frequencies, but
“iu upacity at all other frequencies. In this case an opacity average is not
e high opacity is at UV frequencies where there is virtually no planetary
W atilicinl example, a better representation would be simply zero opacity.
Lot In that in radiative transfer we are interested in how much flux is
Iy (or ullowed to pass through) the atmosphere at different frequencies
Lthing or emitting particles. Useful mean opacities are therefore those
Solphted by a function of the intensity. Because the intensity of a planet
© In unknown—and indeed the quantity we are trying to solve for—the
Iy Intensity is used.
Wik mean opacity is defined as
Jo° &(T, P,v)B(T,v)dv
Jy° B(T,v)dv
| ienn opacity is the opacity weighted by the black body intensity at a
W titure, Where the opacity is high, the contribution to the mean opacity
Wil The Planck mean opacity is valid in “optically thin” regimes (see
© 4 lur i definition of optically thin).
e lind mean opacity is defined as

o) i— Zaj(T, P — Z Znﬁ(T, P)oyi (T8 I/)
. s

7 i

Here j refers to different atomic and molecular species and i refery 0
atomic or molecular states (i.e., energy level populations). We note (I
we have previously used the location x to describe the absorption coel
an atmosphere (by a(x,)), for a general description we prefer (o e |
Flependencies. Recall that the temperature 7" and pressure P vary witli It
in an atmosphere; therefore for the extinction coefficient we can conml
T, P interchangeable. We could write an expression similar to equation
the scattering coefficient o, using number densities and scattering Crons
for solid particles or Rayleigh scattering. )

Considerable inputs go into the computation of the absorption and el
efficients. For example, to compute (T, P, v/) for a broad range of freq
water vapor, up to hundreds of millions of molecular lines must be conul

(5.11)

I-.'vl)(T, P, V) ==

to the numerous transitions possible among the many electronic, ot
vibrational states of the wat ’ ' J; > ey o dy
water vapor molecules. 1 o R@PP) T (5.12)
kr(T, P,v) i %’ldu

Clund mean opacity is a harmonic mean, weighted by the temperature
ul the black body intensity. The Rosseland mean is useful because it
2 Wpher weight to frequencies with a small opacity than to frequencies with
Sty - this captures the physical situation where more radiation travels
e ntmosphere at frequencies where opacity is smallest. This is in contrast
Sanek mean opacity. Typically the Planck mean opacity is valid in optically
Wi ol the atmosphere and the Rosseland mean opacity is valid in optically

ien (nee Section 5.3 for definitions of optically thin and thick). To fur-
deiatind the definition of the Rosseland mean opacity, we must wait until a
Sl ol adiative diffusion in Section 6.4.4.

5.2.5 Mass-Independent Opacity

Until now we have defined the opacity as the extinction coefficient in unifs
Many books and articles instead use the mass-independent opacity, defii

km(T,Pv) = Y M’

i

in units of m?/kg. Here j refers to a gas species j. p is the gas dcnully1
planetary atmospheres can be described by the ideal gas law. ’

The mass-independent opacity is useful because it is independent of the |
density of molecules in the atmosphere. To further explore the utility of (hi
ity, let us revisit the opacity definition equation [5.9]. The opacity 18 e
number density times the absorption (or scattering) cross section, The numl
sity itself depends heavily on pressure and temperature through the idenl
The simplicity of the mass-independent opucity, therefore, is that it vl
less with pressure and temperature than does the muss dependent opacity,

FICAL DEPTH

Wative finnsfer we are aiming to understand the interactions of photons (or a
ul photons) as they travel through a planetary atmosphere. From our view-
W atdghtforward to think of a distanee in meters or kilometers in a plane-
Shnsphere, A more natural distance seale for photon interactions is the optical
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depth scale. As we shall see in this chapter and the next, the optical deptl
ables a simplification of the radiative transfer equation and its solutions,
The optical depth 7 is a measure of transparency and describes how

tecover the mean free path more formally by starting with d/ = —xldz,

part of the planetary atmosphere is to radiation traveling through it, A (—Ili = — (I,Tz7 (5.19)
is completely transparent has an optical depth of zero. A planetary ati _ '
ally has some optical depth. In the optically thin case, 7 < 1; a photon (¢ pition
the distance s without being absorbed or scattered. The opposite 14 (i T =heiid/ ! (5.20)
thick case, 7 > 1. We will later see that 7 is the dimensionless e-foldi pubiblity that a photon is absorbed between z and z + dz is
absorption of hot radiation through a cooler gas layer. The optical depth 1 L ) 1
to the absorbing particles in a planetary atmosphere. Because the exiiis Rl (%)= sl W S ——cmrlid (521)
ficient depends on frequency and on location in the planet atmosphere, & To !
the optical depth. We therefore write the optical depth as 7(x, /). Sl finlly use the expectation value to show that the mean free path is [,
The definition of the optical depth along a one-dimensional path & Iy 20 e
(@hi= / ZdP(2) = / Ze 4z = 1. (5.22)
LdT(S, v) = —k(s, l/)ds.l J0 o
The optical depth is dimensionless.
The optical depth is often used as a distance scale in planetary atin ‘
plane-parallel atmospheres (see Section 5.6.2) the optical depth scale &
the convention of being measured backward along the ray of traveling ) AL THERMODYNAMIC EQUILIBRIUM
other words, the plane-parallel atmosphere optical depth scale has 7« (I ]
the top of the atmosphere, because the observer is looking down into the L Dofinition
atmosphere. This convention introduces a negative sign for the opticidl Sve atone of the most important fundamental concepts in radiative trans-

14 the concept of local thermodynamic equilibrium (LTE). Complete ther-
Wi cuuilibrium applies when the material is in thermal, chemical, and me-
Sutlibrium, On the contrary, across a planet atmosphere, we expect huge
Il (emperature and pressure, especially because of the open boundary
4 ol e atmosphere. LTE is valid in a local area of the atmosphere where
el pressure, or chemical gradients are small compared to the pho-
fiee path, LTE is therefore a local version of complete thermodynamic
i Muore specfically, in LTE, we assume that all of the conditions in ther-
Wil cquilibrium hold, except we let the radiation field depart from that of
Iy This is because one of the fundamental properties of planetary atmo-
10 tudintion field that is very different from the black body radiation. We

Zmax z=0
alev) = —/ k(2 v)dz' E/ k(' v)d2,

=0 max

For notational simplicity we use 7,, and take the z-dependence as implied

We can relate the optical depth to the mean free path of a photou, |
description we will drop the variable dependencies for clarity.) The
path is defined as the mean distance a photon can travel before it (4 i
interaction with a molecule or other atmospheric particle. Let us ol
with area A%, volume A%dz, and number density 7. The probability of
photon stopping in the slab can be calculated as the ratio of the net
molecules to the slab area,

noAZdz * the tndintive transfer equation to compute the intensity.
P(z) = Ao dz, i ETE s one of the most important fundamental concepts in radiative
where o is the cross section. But we have already described the drop {1 i 1t it provides a sweeping simplification of the radiative transfer prob-
Will, i fact, enable us both to understand radiative transfer and spectral

a beam of radiation, Ly ; ; ;
Sl coneeptually, and to simplify the numerical solutions to the equation

dl = —kldz = —noldz. Ve lnnnler,

We can now see a reasonable definition for the mean free path
E wnd Level Populations

! 1 1
ne K sl may be wondering: what is the magical simplification using LTE
and we can relate dien it help to solve the radiative transfer equation? Let us go back to
o l«l Aption coefficient o (equation [5.31) and the emission coefficient & (equa-

A Iecall that these coefficients are made up of n number density times an
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il deexcitation, the photon is said to be destroyed and converted into
sty of the gas. In this way the collisional processes couple the photons
Wi feld) (o the matter temperature via the kinetic energy of the gas. (On a
Subitle note, a8 long as the colliding particles have velocities in a Maxwellian
Hin, (he energy level populations will have their Boltzmann “equilibrium”™

i

Sovond sltuation in which LTE is valid is not really relevant for planetary at-
W tes . This situation is where the mean radiation field is a black body. (Note
i (e nbove example, this is not a necessary condition of LTE). In the case
% 1) l(x,v), the radiative rate equations that control the level popula-
U give an equilibrium (ie., Boltzmann) distribution for the level populations

Hon 8.2.4).
4 plven situation one could try to determine the validity of LTE by comput-
| omparing radiative and collisional rates, but to accurately validate LTE a
U caleulation itself may be necessary. LTE is actually valid in Earth’s atmo-
{1 (he ground up to about 60 km. This is largely because collisional rates
W molecules dominate radiative rates, driving a Boltzmann distribution. We
I apectral measurements of Earth at the top of the atmosphere and also at
Lout ultitides that the Earth atmosphere radiation field is not a black body.
Splle the fact that LTE is commonly used in exoplanet atmosphere calcula-
e nre some regions of the atmosphere where LTE is not valid. One ex-
I (i the very upper layers of the planet atmosphere where radiation freely
o (hiotigh the open boundary. Here, both the radiation field is very different
1 4 Wlack body and collisions do not dominate over radiative transition rates,

W 0 departare from LTE.

absorption (or scattering) cross section (see Section 5.2.4 and equation [§ 4
total number density times cross sections are summed over all level )x; ' !
By level populations we mean the numbers of an atom or molecule in :hep
quantum mechanical energy states. In order to compute s and &, we need |
(1) the overall number densities of atoms or molecules and (2) thc; fraction o
lc(>r molecules in each quantum state. More formally, we would say that wi
pg}(;\:; atgg nsstf:lte of the matter, the chemical partitioning of the matter, and (!
T_he heart of the problem is that all of the above (in particular the I|
ulaFlons) are determined by the radiation field—yet the radiation field in :
variable that we are trying to solve for in the radiative transfer equation.
example gf how the radiation field and the level populations are coupled, It
photoexc1tgtion followed by photodeexcitation. An electron in an atom (;r
may be excited to a higher level by absorption of a photon. Later, due to cllh
taneql{s or stimulated emission, the electron will cascade dowm’zvard Thin ¢l
tra-msmon will release photons, that is, release energy as radiation -Wc col
tt.us'photoexcitation (and stimulated emission) is controlled by prop‘erlicn
dlat'10{1 field. Therefore, in this example, the level populations are controlll
%‘ﬂd]aFIOI% field. This coupled nature of the radiation field and the level popi
;i, la ts.lgmﬁfc?;lt hL:irdle in solving the radiative transfer equation. In principle
ution of the radiati ions i i i
i ion field and the level populations is possible; in prach
LTE makes the solution of radiative transfer easier because we can iau l’
know how energy levels of different atoms and molecules are populated; (h
pend only on the local kinetic temperature and one other variable (such u;l :!-
More fgnnally we say that LTE assumes a decoupling of the state of the il
the radiation field by explicitly assuming that all properties of the mutlc :
only on the local kinetic temperature and density (or pressure). In LTE, (li¢ |
anq molecular energy level populations can be computed usiné the equ‘illbd
lations of statistical mechanics (see Chapter 8). For atomic and moleculif
levels, the relevant equation is the Boltzmann distribution, equation [8.30)],

1 11 und Kirchhoff’s Law

Ww i to Kirchhoff’s Law, one of the LTE expressions that simplifies the
Ll (insfer equation. Kirchhoff’s Law of radiation states that at thermal equi-
Wi (e emissivity of a body equals its absorptivity. Kirchhoff’s Law is

[etnerm (36, ) = a(x,¥)B(x, v). | (5.23)

Wi the thermal emission is related to the absorptive properties of the gas.
el emission at a given location x in the planetary atmosphere is black
4 tulintion weighted by the the absorptive properties of the gas. In other words,
S e i photon is absorbed in a gas in LTE, the energy will be reemitted as radi-
L Wit the amount and wavelength depending on the Planck function weighted
i ihnorption coefficient.

ol s Law, is, technically, valid only under conditions of complete thermo-
Waiile equilibrivm. In planetary atmospheres we justify using Kirchhoff’s Law
sl localized areas of the atmosphere where gradients in thermodynamic

54.3 Conditions for LTE

Under what conditions is LTE valid? The concept of LTE implies a stricl ot
tion of the matter component to the local temperature. LTE is therefonre valid '
this matter-tgmperature connection is physically realized. ‘
The cgndltions relevant for planetary atmospheres are at high enough ey
that. c.0111siona1 processes dominate over competing radiative process'cs" (“
collisions enable matter and radiation to share the same temperatl‘J;‘c’ .un:| 1
LTE to be valid. For example, an electron in an atom or molecule may l;c exe
a higher level by absorption of a photon. Later, due to a collision the electiun
cascade downward, releasing energy as the colliding particles’ kil;clic cncf |
energy eventually ends up as a part of the thermal pool, after the particles ﬁz

fl th Cl IS Ty 1 " I 5 I N | \ Y l l '“““‘ I m l I
ireher astic C()”l.\l ms '
( W"h ()lh(.l N"""H Or molecules in the ,.,"‘"l' n hl“ . .
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5.5 THE SOURCE FUNCTION

WE THANSFER I FUNDAMEN TALS

- . ‘
;‘lhe squrce functhn (.also sometimes called the contribution function) ig def
e ratio of the emission coefficient to the extinction coefficient: ‘

E(X,ﬁ,y) = M

K Y

{
|

|

The source function is used to simplify the radiative transfer equation an u
fmd tq provide physical insight. The source function has the same di ‘
intensity. T

We can expand the source function by breaking it up into a thermal
;:(());r;ﬁgﬁ:;tl z:ﬁizl scattering component. We have previously used Kirchhoff

_CMmussion, Egherm = a.B. For isotropic scattering, ¢ =

under conditions of LTE where Kirchhoff’s Law is valid and ,wlsxcef;ia ¢ ‘(
coherent and isotropic we may write the source function as M-“l‘

S(x, 1/) L a(X, I/)B(X, 1/) 4 O's(X, U)J(x’ ;’

OK(X, V) G5 US(X, V)

|'lpure 5.2 Schematic description of a 1D plane-parallel atmosphere.

Il (he beam of radiation along the pathlength of the beam, but now we also
101 (he losses and gains as functions of time,
[I(x + Ax, #, v, t + At) — I(x,1,v,t)]dAdQdvdt
[« r(x, B, v, t)I(x, R, v, t) + e(x, i, v,t)]dsd AdSddvdt. (527)
putlilength As and the time interval At are related by At = As/c, and so
[I(x + Ax,f,v,t + At) — I(x,1,v,t)]

, [1 (BI(x,ﬁ,l/,t)) i <6I(x,ﬁ,v,t)>} 5 (5.28)

‘S:I&his expression differs from the strict LTE value of the source function

i :;,C:)fuz t'B(x., I/i, daccordmg to Kirchoff’s Law, equation [5 23] T'h.
nction inc i il

P udes scattering terms and therefore allows a slight dey

¢ ot Os
W substitute equation [5.28] into equation [5.27] to get the time-dependent
slive trnnsfer equation

() 0 g 2 ji i
S(x,v) = Blx,). 1 (51) 1 (2)] 1 st) = =)0 8, 0,8) <G 80,1
: (529)

4o (he rest of this chapter (and for some future chapters) we will discuss the
\ Line, Independent of time. We will therefore drop the time-dependent terms
Wi above radiative transfer equation, including the fi-dependence of the extinc-
cuelficient k. As previously in this chapter, we will omit the ¢-dependence of
Witennity, flux, and other terms. Nevertheless, we must still keep in mind that

Lo involves energy flow: energy per unit time.

;ngfzsri}t::;{il;;rvﬁhiﬁl(: 10:%) =.B (x, v) for black body radiation, /It
equal B. y black body radiation. Therefore in LTE 7 is not requir

£

5.6 THE EQUATION OF RADIATIVE TRANSFER

5.6.1 The Time-Dependent E .
quation
4 ! 1he Plane-Parallel Approximation

E(;Irlsclcz?pletepess We now return to a derivation of the time-dependent ridin
equanon.. Here we follow both the outline at the beginning of thig ¢

as well as the deriviation in [1]. i 1
theVZ;l tilsrssito;:loir:)te })fl;(t: ‘thatt, fﬁr moving material, both the extinction coefficient nl
S0 A inlsp € have a dependence on angle, This is because in (I
15 Ch,oose £ inertil;;:ctlond(.z'md hence angle) result from the Doppler shift,
i iy f:lgor 1tlt;c syslcn'l ,{md want to understand the energy i
L il e ection Al into a differentinl volid angle d$). The intenn
1 1s traveling through a fixed volume element of longth ds and er !

dA normal to fi, in a time interval df. Ax hetore, we mhl‘up lvllc- l«(’w:;:)ﬁlt'(::lu :

pline parallel atmosphere is a good framework in which to study the radia-
funsler equation (Figure 5.2). For a 1D planar atmosphere the atmosphere is
jeil by n stratified plane with each layer having homogeneous properties such
I 1" and p. This 1D plane represents a location on the surface of the planet.
Whint case is the plane-parallel approximation valid? If the radial depth of the
nphere iy much smaller than the planetary radius.

e plane-parallel definition assumes axinl symmetry, Considering the axial
ety and adopting 2 as our (1D) vertical coordinate, we have

4 g 0 (5.30)
o )y
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upper houndary condition for this differentinl equation i the stellar radiation

and
dz _ i | on the planet atmosphere as a function of direction /i,
5T i cos ) = p,
100, p,v) = L, (0, o, v) (=1 < p<0). (5.40)

where 0 is the angle between the surface normal and a beam of intensit 2
above we therefore have the plane-parallel radiative transfer equation

dI(z,n,v) A
'U'T = —fﬁ(z, I/)I(Z, n, V) o €(Z, ﬁ7 V)'

If we further consider axial symmetry, that is, no ¢ dependence,

e prrallel radiation, the incoming stellar radiation is incident at one angle
Iy (hee Section 2.7.) For planets with no incident radiation, for calculations
Ll wavelengths when the planetary emission completely dominates any
Wi stellar radiation, or for the “dark,” nonilluminated hemisphere of a planet,

]

Jiwer boundary condition is the intensity coming from the planet interior
I("'nn\‘x,m 1y V) = int(Tmax,w/l': V) (0 <p = 1) (541)

Wennity in this lower boundary condition is matched to the planet’s interior
(e energy coming from the deep interior and incident on the lower bound-

dl(z,p,v)
/‘LT = —I{(Z,I/)I(Z, My V) +€(Z,,U,, V)'

As w.ritten, the plane-parallel radiative transfer equation is an integro-difls
equation: because € = egcat + Etherm and the scattering term contains ar 1l
grals of 7, b

I e ntmosphere.

27 1
T (Z, s V) i US(Z’ V) 117; /0 / 1 P(/ny ¢; /J'/a ¢I)I(za /-l'la V)dﬂ/dd)l' ’"“‘ Qs Solution

/ In a plane-parallel atmosphere the mean intensity (equation [2.2]) and ﬂux
tl;)n [2.5]) can also be rewritten considering azimuthal symmetry and the defi
of 1, :

Wil solution to the 1D plane-parallel radiative transfer equation (equa-
” 1)) miy be obtained with the integrating factor e~"v/F whereby the ra-
tnnuler equation is written

, / 1
: R R T e — (s Dler B (542)
7

1 2m il )
Je)i= i / / I(z, 1, v)dpds, { iry,
Wl Jullon from an initial optical depth 7, ; to a final optical depth 7, ¢ gives the

or
|

0 1, 1, V) = (5.43)
1 Tyt ’
)0_(7'u,i_7'u,f)/li il S(r!, ,,)e~(T.,—Tu.f)/ude/,_
Hida,
sliition has two terms on the right side of the equation. The first term describes
{iial Intensity diminished by exponential attenuation of absorption. The sec-
I eiint describes the emission from the atmosphere: an exponentially weighted
“upe ol the source function along the beam up to the location of interest.
Ui ponl in solving the radiative transfer equation is to derive a planet spectrum:
Siergent flux at the top of the atmosphere. The emergent flux is the measurable
Wity for exoplanetary atmospheres. For a semi-infinite atmosphere, integration
i e In the planetary atmosphere 7,,; = oo to the top of the planet atmosphere

' 0, the emergent intensity is

1 it
J(z7y):§/ I(Z,/,L,I/)dp,,
4y

I Ty oy V

2m 1
F(z,v) = /0 /_ IMI (2, 4, v)dpdg,

or

1

Flz:iv) = 27r/1 wl(z, p,v)dp. (

(We nc1>te tl‘lat in the stellar atmosphere literature the so-called astrophysicil
H = Fis f)ften used because it is similar to the form for J and K o) ‘
In preparation for solving the radiative transfer equation we first rewrite the @

tion [5.33] using the optical depth distance scale (described in Secti ‘ I
% ection 5.3) und -1
definition of the source function (described in Section 5.5): 'S G wJo S 0 el
,udI(Tu,l% i 1( g ‘ e we have used
dTu — = TV)M?V) i (Tllilllq I/)- (s ’ oy I(T,,,/l',l/)(“ T/ RO (545)

e cmergent intensity is the amount of intensity at each altitude that reaches the

We emphasize the difference between incoming rays (71 < 0) and outgoing il
e along o path with angle 0 to the line of sight.

(10 > 0).
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The emergent surface flux can be derived from equation 2,101,

1 poo T TR
BO, v,t) = 27r/ / S(7, 1, V)e_"“/"dr,,d,u,.
0o Jo

If the source function S (7, v, 1) is known, the emergent intensity and (ly
gent flux (i.e., the planet’s spectrum) can be computed directly from the u
equations. In many cases, however, this straightforward solution is not
The main complication is that the source function itself depends on / (7 4y
Quantity we are trying to solve for.

As a specific example let us consider that the source function dependy
intensity through any scattering terms that may also be y-dependent, Reg
the source function may be described as

(1, v, )
S 3y T T
(1, v, 1) T
where the emission coefficient & has an angle-independent thermal emissi
ponent eperm (7, v) = aB(7,,v) and an angle dependent scattering cq
of € (equation [5 .34)),

¥

27 i
Escat (T’ My V) =T G(T’ 1/)_1— P(ﬂ', ¢; /«LI, ¢,)[(7', ‘u/’ V)d,u/d(b’.
Ao,

Physically the scattering term (whether angle dependent or isotropic) meni
the intensity is decoupled from local conditions: the photons may scatter
large distances in the atmosphere without interacting with the thermal pool
gas via absorption and thermal reemission. The Scattering term requires 4 i
solution of an integro-differential equation.

To further investigate the hidden complication in solving the 1D plane-
radiative transfer equation [5.39] we return to a discussion of the boundaryl’
ditions, equations [5.40] and [5.41]. To solve for intensity from thig firy
ordinary differential equation we require two full boundary conditions, thaf
upper and a lower boundary condition on the full range (-1 < 4 < 1))
information we have is the stellar radiation incident on the planet and (ray
downward (-1 < # < 0), and an estimate of the interior energy that we ity
Vert to an outward-going intensity (0 < p < 1) at the lower boundary, B
the boundary conditions are not fully specified, iterative techniques or a (i
formulation of the radiative transfer equation are needed to solve for /.

5.7 SUMMARY

We have presented fundamental concepts leading up to the foundational equll

of radiative transfer. We started with opacity, the macroscopic description thut
tures the interaction of radiation with gases or solids in the atmosphere, Op

is a major component of the radiative transfer equation, The concept of opils

depth is related to opacity; an opaque atmosphere is optically thick and a trany
ent atmosphere is optically thin, The quantitative optical depth scale is a un

aase o0 st Sl <
T ———

AVE THANSEER 1 FUNDAMENTAL S 101
Hon for the distance seale in solving the t‘alflinflivv lrnn.s.'l'cr .cquz_l(m‘n.l W(.
the wource function, a convenient ratio of emission to cx(mcll.on k)r';% ving
wtlon transfer equation. The concept of Incu.l |'|1j.:!‘lll()dyllzllnlc equi ; rlun;
Wwan described in some detail. The situation ()I. L1 l: enables a fle?oup 1ngfor
i from the local temperature, which greatly simplifies the radiative transfe

i und wolutions the atomic and molecular energy pop}xlatlon lev§ls alie sg;c;

Wy the local temperature and do not have to be determined by a illmtuV :?r o
W with the radiative transfer equation. We ﬁna}lly came to the ra 1fa 1h o
Wition itself, an equation that can be set out in .lD as the rate lo c framg i
1y (1 beam of traveling photons) with distance is equal to tge osslut;)omnS i
anil the additions to the beam. We are now ready to proceed to so

Hitive transfer equation.
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FHCISE

I Kirchhoff’s Law of radiation. Explain why Kirchhoff ’s Law is valitc)i in tilizrr;
modynamic equilibrium. Use a conceptual explanation, based on ansTrp ;
uiidl emission in a black body enclosure. Also use the 1D plane-parallel equa

Hion of radiative transfer.




