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ASTR 794 — Prof. Crossfield — Spring 2025

Problem Set 1
Due: Thursday, February 13, 2025, in class

This problem set is worth 74 points.

1. Blackbody radiation [16 pts]. The Planck radiation spectrum is given by

Bν =
2hν3

c2
1

exp(hν/kT )− 1
(erg cm−2 s−1 Hz−1 steradian−1),

per unit frequency.

(a) Wavelength spectrum [4 pts]. Show by explicit calculation that the equivalent Planck radiation spectrum
per unit wavelength is given by

Bλ =
2hc2

λ5

1

exp(hc/λkT )− 1
(erg cm−2 s−1 cm−1 steradian−1),

starting from the expression for Bν .

(b) Stefan-Boltzmann law. [4 pts] Derive the Stefan-Boltzmann law (F = σT 4) by integrating the Planck
blackbody spectrum over all wavelengths or frequencies. (Note that there is an extra factor of π to convert
from brightness per unit solid angle to total brightness, so that F = π

∫
Bνdν = π

∫
Bλdλ.) You may use

the fact that ∫ ∞

0

u3

eu − 1
du =

π4

15
.

Give an expression for the Stefan-Boltzmann constant σ in terms of fundamental physical constants, and
check its numerical value and units, σ = 5.67× 10−5 erg cm−2 s−1 K−4.

(c) Wavelength of radiation peak. [4 pts] Derive the Wien displacement law, which relates the wavelength
of the radiation at the peak of the Planck function Bλ to the temperature: Tλmax = 0.29 cm K. [When you
differentiate to find the maximum of Bλ, you will obtain a nonlinear equation of the form 5(1−e−y)−y =
0 which you can solve numerically.]

(d) Frequency of radiation peak. [4 pts] Repeat the previous part, but this time find the relation between
the frequency at the peak of the Planck function Bν and the temperature: νmax/T = 5.9× 1010 Hz K−1.
For a given temperature T , does the photon energy corresponding to νmax agree with that for λmax in the
previous part? Should they agree? Explain.

2. Angular diameters and effective temperatures [10 pts].

(a) Show that if you can measure the bolometric flux F and the angular diameter ϕ of a star, then you can de-
termine the effective temperature Teff even if you do not know the distance to the star. Note, “bolometric”
means “integrated over all frequencies.” [4 pts]

(b) In one recent application of this technique, astronomers used optical interferometry to measure the angular
diameters of both stars in the binary system β CrB. The results were 0.699 ± 0.017 mas for star A, and
0.415 ± 0.017 mas for star B, where “mas” means milli-arcseconds. The bolometric (total wavelength-
integrated) apparent magnitudes of stars A and B are 3.87 ± 0.05 and 5.83 ± 0.10, respectively. The
bolometric absolute magnitude of the Sun is 4.75, and the effective temperature of the Sun is 5777 K.
Use this information to calculate the effective temperatures of stars A and B. You need not calculate the
uncertainties (though if you care to try, it wouldn’t hurt). [6 pts]
(In case you are curious to learn more, the reference is Bruntt et al. 2010, Astron. & Astrophys., 512, 55.)

1



3. Protons or photons? [8 pts]
At the center of the Sun, the density is approximately 150 g cm−3 and the temperature is about 15 × 106 K.
Which is larger: the number density of protons, or the number density of photons? Give an order of magnitude
estimate of each.

4. The Eddington limit [20 pts]
A star with sufficiently high radiation pressure will spontaneously eject material from its surface. This sets a
practical limit on the maximum luminosity of a star of a given mass.

(a) [14 pts] Start with the radiative diffusion equation and the equation for hydrostatic equilibrium. Assume
the opacity to be frequency-independent, and show that the luminosity at which the radiation pressure
gradient equals the hydrostatic pressure gradient is given by

LEdd =
4πGMc

κ
, (1)

where M is the stellar mass. This is the “Eddington luminosity.”

(b) [6 pts] For ionized hydrogen, a minimum value for κ arises from Thomson scattering, which has cross-
section σT = 6.65× 10−25 cm2. Show that for this case

LEdd ≈ 3× 104 L⊙

(
M

M⊙

)
, (2)

where L⊙ = 3.839× 1033 erg s−1 and M⊙ = 1.989× 1033 g.

5. A fictional star [20 pts]
Consider a star of luminosity L with density distribution ρ = ρ0 × (R/r), where R is the star’s outer radius.
Please don’t ask how it manages to have such a simple density profile; this star exists only in the homework
universe.

All of the star’s energy is generated from a very small region near r = 0, and is transported entirely by radiation
(not convection). The opacity is dominated by electron (Thomson) scattering, with opacity κT (in cm−2/g).

(a) [4 pts] What is the star’s effective temperature Teff , in terms of the given quantities and fundamental
constants?

(b) [16 pts] Solve for the temperature as a function of r, in terms of ρ0, Teff , R, κT , and fundamental constants.
For the outer boundary condition, assume that when r = R then T (R) = Teff (this is just the gray-
atmosphere result that T (τ = 2/3) = Teff ).
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