UNIVERSITY OF KANSAS

Department of Physics ASTR 794 — Prof. Crossfield — Spring 2025

Problem Set 2: Transport, Distributions, Eqns of State Due: Thursday, March 6, 2025, in class This problem set is worth **70 points**.

- 1. Saha equation and pure hydrogen [15 pts]. Consider a gas of pure hydrogen at fixed density and temperature. The ionization energy of hydrogen is $\chi_0 = 13.6$ eV. You may assume that all the hydrogen atoms (whether neutral or ionized) are in their ground energy state.
 - (a) Write down the Saha equation relating the number densities of neutral and ionized hydrogen (n_0 and n_1 , respectively). Make reasonable approximations to use numerical values for the partition functions.
 - (b) To find the individual densities, further constraints are required. Reasonable constraints are charge neutrality (n_e = n₁) and conservation of nucleon number (n₁ + n₀ = n), where the total hydrogen number density n is a constant if the density ρ is fixed. Rewrite the Saha equation in terms of the hydrogen ionization fraction x = n₁/n, eliminating n₁, n₀, and n_e. Does this equation have the expected limiting behavior for T → 0 and T → ∞?
 - (c) Use the relation $\rho = m_{\rm H}n$ (where $m_{\rm H} = 1 \text{ gm/}N_{\rm A}$, where $N_{\rm A} = 6.023 \times 10^{23}$ is Avogadro's number) to replace n with ρ . Find an expression for the half-ionized (x = 0.5) path in the ρ -T plane. Plot this path on a log-log plot for densities in the interesting range from 10^{-10} - 10^{-2} g cm⁻³

2. Saha equation and pure helium [20 pts].

Consider a gas of pure helium at fixed density and temperature. The ionization energies for helium are $\chi_0 = 24.6 \text{ eV}$ (from neutral to singly ionized) and $\chi_1 = 54.4 \text{ eV}$ (from singly to doubly ionized). You may assume that all the helium atoms (whether neutral, singly ionized, or doubly ionized) are in their ground energy state. Let n_e , n_0 , n_1 , and n_2 be the number densities of, respectively, free electrons, neutral atoms, singly-ionized atoms, and doubly-ionized atoms. The total number density of neutral atoms and ions is denoted by n. Define x_e as the ratio n_e/n , and let x_i be n_i/n where i = 0, 1, 2. You should assume that the gas is electrically neutral. The degeneracy factors you need for the atoms and ions are 2 for He, 4 for He⁺, and 2 for He²⁺.

- (a) Construct the ratios n_1/n_0 and n_2/n_1 using the Saha equation. In doing so, take care in establishing the zero points of energy for the various constituents.
- (b) Apply charge neutrality and nucleon number conservation $(n = n_0 + n_1 + n_2)$ and recast the above Saha equations so that only x_1 and x_2 appear as unknowns. The resulting two equations have T and n [or, equivalently, $\rho = nm_{\text{He}} = n(4 \text{ gm}/N_{\text{A}})$] as parameters.
- (c) Simultaneously solve the two Saha equations for x_1 and x_2 for temperatures in the range $4 \times 10^4 \le T \le 2 \times 10^5$ K. Do this for a fixed density with the three values $\rho = 10^{-4}$, 10^{-6} , or 10^{-8} g cm⁻³. You may find it more convenient to use the logarithm of your equations. Choose a dense grid in temperature because you will soon plot the results. Once you have found x_1 and x_2 , also find x_e and x_0 for the same range of temperature. Note that this is a numerical exercise; you will want to use a tool like Mathematica or Matlab for this.
- (d) Plot all your xs as a function of temperature for your chosen value of ρ . (Plot x_0, x_1 , and x_2 on the same graph.) Identify the transition temperatures (half-ionization) for the two ionization stages.

3. Stability against convection [10 pts]

(a) In lecture, we derived the condition

$$\left|\frac{dT}{dr}\right| < \frac{T}{P} \left(1 - \frac{1}{\gamma_a}\right) \left|\frac{dP}{dr}\right|$$

for stability against convection. Using the appropriate equation(s) of stellar structure and noting the sign of the radial gradients, show that this can be recast as a condition on the luminosity profile:

$$L(r) < \left(1 - \frac{1}{\gamma_a}\right) \frac{64\pi\sigma_{\rm SB}T^4GM(r)}{3\kappa_R P}$$

(b) Show that to avoid convection in a stellar region where the equation of state is that of an ideal monatomic gas, the luminosity at a given radius must be limited by

$$L(r) < 1.22 \times 10^{-18} \frac{\mu T^3}{\kappa_R \rho} M(r)$$

where μ is the mean molecular weight, T(r), κ_R is the Rosseland mean opacity, and M(r) is the mass enclosed at radius r. All quantities are measured in the appropriate cgs units.

4. Protons or photons? [10 pts]

At the center of the Sun, the density is approximately 150 g cm⁻³ and the temperature is about 15×10^6 K. Which is larger: the number density of protons, or the number density of photons? Give an order of magnitude estimate of each.

5. The Eddington limit [15 pts]

A star with sufficiently high radiation pressure will spontaneously eject material from its surface. This sets a practical limit on the maximum luminosity of a star of a given mass.

(a) [10 pts] Start with the radiative diffusion equation and the equation for hydrostatic equilibrium. Assume the opacity to be frequency-independent, and show that the luminosity at which the radiation pressure gradient equals the hydrostatic pressure gradient is given by

$$L_{\rm Edd} = \frac{4\pi GMc}{\kappa},\tag{1}$$

where M is the stellar mass. This is the "Eddington luminosity."

(b) [5 pts] For ionized hydrogen, a minimum value for κ arises from Thomson scattering, which has crosssection $\sigma_T = 6.65 \times 10^{-25} \text{ cm}^2$. Show that for this case

$$L_{\rm Edd} \approx 3 \times 10^4 L_{\odot} \left(\frac{M}{M_{\odot}}\right),$$
 (2)

where $L_{\odot} = 3.839 \times 10^{33} \text{ erg s}^{-1}$ and $M_{\odot} = 1.989 \times 10^{33} \text{ g}.$