UNIVERSITY OF KANSAS

Department of Physics

ASTR 794 — Prof. Crossfield — Spring 2025

Problem Set 5: Temperatures and Albedos

Due: Tuesday, April 22, 2025, in class This problem set is worth **45 points**.

- 1. Equilibrium Temperature [10 pts] Assume a planet with radius R_P and Bond albedo A_B on a circular orbit with separation a around a star with radius R_* and temperature T_{eff} . Assume that the planet's day and night sides emit as blackbodies with temperatures T_D and T_N , respectively, and that the planet's luminosity is driven entirely by absorbed incident radiation.
 - (a) Show that

$$T_D^4 + T_N^4 = \frac{1}{2} \left(\frac{R_*}{a}\right) T_{\text{eff}}^4 \left(1 - A_B\right).$$
(1)

(b) For the Earth, plot T_N vs. T_D under this simple model.

2. Bond Albedos Depend on the Star [20 pts]

In this problem, you will investigate how a planet's Bond albedo A_B depends not just on its albedo spectrum A_{λ} but also on the incident spectrum of the host star (e.g., the spectral type).

- (a) Assume a planet orbiting its star at the "Earth-equivalent insolation distance" (EEID) this is a crude approximation to the habitable zone that assumes a planet receives the same total incident flux F_{inc} from its star as does the Earth (call this F_{SC}, the Solar Constant flux). Derive the EEID in terms of T_{eff}, R_{*}, and F_{SC} [6 pts].
- (b) For main-sequence stars with $M_* \leq M_{\odot}$, a useful (but very approximate!) rule of thumb is that roughly speaking

$$\frac{R_*}{R_{\odot}} \approx \frac{T_*}{T_{\odot}} \approx \frac{M_*}{M_{\odot}}.$$
(2)

Under this approximation, determine how the EEID scales with stellar radius (or temperature, or mass) [6 pts].

(c) Assume a trivial but interesting planetary albedo spectrum that is zero for $\lambda \ge 1 \,\mu m$ and 0.4 at shorter wavelengths. Assume that all stars radiate as blackbodies, and calculate what fraction of incident starlight is reflected away from this planet if it orbits a star of (i) 1.25 M_{\odot} , (i) 1.0 M_{\odot} , (i) 0.4 M_{\odot} . What is the implied Bond albedo A_B in each case? [8 pts]

3. Brightness Temperatures [15 pts]

- (a) (5 pts) Calculate the surface flux density of an object emitting as a blackbody, (i.e., F_{λ,surf} = πB_λ), at a wavelength of 4.5 μm and with temperatures of 300 K, 1000 K, and 3000 K. Give your answers in units of W/m²/μm.
- (b) (3 pts) Assume that the objects above are Brown Dwarfs: the size of Jupiter, and 10 pc away. Calculate the observed F_{λ} for each of the three temperatures above.
- (c) (3 pts) Using JWST, you observe a brown dwarf 10 pc away and measure a flux density of 3×10^{-15} W/m²/ μ m. Assuming it is the size of Jupiter, what is its surface flux density?
- (d) (4 pts) What must the surface temperature of this brown dwarf be, in order to explain your observed flux density?