Chapter Iwo

Intensity and Flux

2.1 INTRODUCTION

The main goal of this book is to understand the origin of and physical processes
affecting a planetary spectrum. We shall see just how much information can be
derived from a planetary spectrum: the kinds of gases and solid particles present,
the planetary albedo, and constraints on the vertical temperature structure. We
begin with concepts and variables used to quantify radiation traveling through a
planetary atmosphere.

As a foundational language for exoplanet atmospheres, these radiation terms are
so important that we spend a chapter defining them carefully. This is especially
important because the definitions of intensity, surface flux, and flux at Earth are
used differently in other books and in the literature. In this chapter we will use the
term “surface™ to describe either the solid surface of a planet or the layers of the
atmosphere from which radiation emerges.

2.2 INTENSITY

To begin with we need a description of radiation in the exoplanet atmosphere. We
may think of radiation as energy in the form of photons traveling through the planet
atmosphere. This radiation interacts with different matter particles. The conven-
tional description of radiation considers the energy of a number of identical photons
in a single beam of radiation, called the intensity 1.

As the beam of radiation travels through the planet atmosphere, photons will be
absorbed into and emitted out of the beam. Different parts of the planet, there-
fore, have different intensities, and the intensity varies with frequency. We cannot
measure the intensity coming from a specific part of the interior or exterior of an
exoplanet. This is because the exoplanet is so distant that the planet atmosphere
cannot be spatially resolved. Nevertheless, [ 1s a macroscopic parameter describ-
ing the sum of all microscopic processes going on in the beam of radiation. We
therefore need to compute [ in detail and carry it along through calculations of ra-
diative transfer until we are ready to compute the final quantities of radiation that
we are interested in.

The intensity [ is formally defined as the amount of energy passing through a sur-
face area dA, within a differential solid angle df? centered about i, per frequency
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Figure 2.1 Definition of the specific intensity I(x, 1, v, t).

interval, per unit time (Figure 2.1),

dE(v,t) = I(x, 71, v, t)i - kdQd Advdt. (2.1)

The SI units of T are Jm~2 sr~! s~! Hz~!. I is the intensity at location x, going
into direction fi; directionality is implied despite the point that [ is a scalar quantity.
We denote vectors in boldface, using italic for 1D and 2D vectors and roman for
3D vectors. When necessary to specify the direction of [ or other scalars, we will
denote a direction with a subscript.
The mean intensity is the intensity averaged over a solid angle,

S ) = L / I(x, i, v, t)dSd. (2.2)
0

m

See Figure 2.2 for a definition of solid angle.

2.3 FLUX AND OTHER INTENSITY MOMENTS

The quantity of radiation that we do measure from exoplanets is related to the flux.
The flux is the net flow of energy through an arbitrarily oriented surface area dA
with normal fi, per frequency interval, per unit time. The flux F is derived from the
intensity in direction i integrated over solid angle {1 ,

F(x,v,t) = f I(x, &, v, t)AdQ. (2.3)
£

F(x,v,t) has units of J m=2 s~! Hz=!. F(x, 1) is defined at each location x in
the planetary atmosphere.
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Figure 2.2 Definition of a radian (left panel) and a steradian (right panel). A steradian is
related to the surface area of a sphere as a radian is related to the circumference
of a circle. In 2D 1 radian is the angle subtended at the center of a circle by an
arc length equal to the radius of a circle. In 3D 1 steradian is a measure of solid

angle and is the solid angle subtended at the center of a sphere of radius r having

dan arca 1"2.

Flux is a vector and so we may write it in terms of its vector components. In a
rectangular Cartesian coordinate system,

F(x,v,t) = Fi(x, v, t)i+ Fal= v, t)j + Fr(x, v, t)k. (2.4)

In describing planetary atmospheres we are usually interested in the flux in one
direction, the direction toward us, the observer. It is customary to take one compo-
nent of the flux vector Fj,(x, i, )k, writing only the magnitude Fj.(x, v, t), a scalar
quantity. We are essentially describing the energy flow in one direction

Fi(x,v,t) = G el f I(x, 1, v, t)i - kdQ. (2.5)
L1

= dAdvdt

To further complicate the issue, the directional subscript is usually dropped so as to
just write the flux in the direction of the observer as F'(x, v, t).

The flux is also called the first moment of intensity. The zeroth moment of the
intensity is the mean intensity, defined above in equation [2.2]. The second moment
of intensity 1s

K(x,v,t) = ﬁ fﬂ I(x, #i, v, £)AdQ. (2.6)

K(x, v, 1) is a tensor quantity related to the radiation pressure tensor P(x, i, t), by
P = %K, where c is the speed of light. When we come to use K& in Chapter 6, we
will take the magnitude of the tensor component of interest, a scalar quantity (as
we have described for flux in equations [2.4] and [2.5]).

2.4 SURFACE FLUX

For exoplanet atmospheres we are most interested in the flux emerging from the
planet surface. We call this kind of flux the surface flux. “Surface” refers to the
layers of the planet atmosphere where most of the radiation originates without fur-
ther interaction with gas, liquid, or solid particles. Surface flux is the outgoing
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Figure 2.3 The spherical polar coordinate system using ]Elt]tlldﬂ £ and lungltude ¢@. For flux
computed along the x-axis, i.e., where the x-axis is k, and fi - k is cos ©.

flux at a particular point on the planet’s surface. We will use Fs to distinguish the
surface flux from the flux / which may be defined in a small volume anywhere in
the planet atmosphere. Here we emphasize a subtle but important point. That is,
as described in Section 2.3, we take only the magnitude of the flux vector in the
outgoing direction of interest, a scalar quantity. So we will use the symbol Fjs to
denote surface flux in the outgoing direction of interest.

To describe the surface flux we first choose the spherical polar coordinate system
(r, 8, ¢) shown in Figure 2.3. In this coordinate system £ is the latitude and ¢
the longitude. This coordinate system is useful when considering a surface in a
planetary latitude and longitude system. For example, ¢ = 0 is defined according
to the planet-star ecliptic plane, so that (# = 0, ¢ = 0) corresponds to the planetary
substellar point, the point that receives the most stellar radiation. On Earth, the
equator (# = 0) is defined by the rotational axis of Earth.

We now go through the terms on the right-hand side of the flux definition equa-
tion [2.5] in order to derive an expression for the surface flux. In the spherical polar
coordinate system we replace the vector x with (r, &, ¢), where again ¢ and ¢ refer
to coordinates on the planetary surface. Furthermore, because we are only inter-
ested in the surface intensity, not the intensity at different altitudes in the planet
atmosphere, we drop the reference to r, implicitly assuming r = R,. Now, the
intensity /(x, i, v, t) has two vectors, one of which we have replaced by (8, ¢).
For the second vector, the direction of 1 , we use two more angles 6,, and ¢,,, with
origin at i. We now write the surface intensity as Is(¢, ¢, 8,,, o, v, t)

We now move to the second term in equation [2.5] and note that fi - k = cos e,..
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IJ The apherical polar coordinate system using colatitude ¥ and longitude ¢. For
Hux computed along the z-axis (the k direction), it - k = cos .

I/

Millﬂ' 2.4, and using the spherical cosine law, we have 1 - k = oS 0, =
L by Again, use of 6, and ¢, means we no longer need i or k in our
Hon of Intensity.

_'?i v the differential solid angle for surface flux ata given location on the planet
i defined by

dQ,, = cosf,,db, do,, . 2.7

IHI lnee Hux is

w.m.u ) f

|'l||ill here I'4(0, &, v, 1) is the scalar of the vector component of flux traveling
llwu direction. Into which direction is the flux traveling? In this example,
wiiee flux is traveling out from the planet along direction k. We have further
Sl that the flux is at location @, ¢.

A4 suine sltuations 1t is easier to solve for the surface flux (or surface intensity)
W conrdinite system with one of the angles originating at the z-axis, as shown
Pigiiie 2.4, The difference from the longitude-latitude spherical polar coordinate
i L that the colatitude @ = 90° — 6 is used instead of the latitude @ as one of
Wlependent variables, In this coordinate system, the substellar point is at the
I i the flux is specified along the z-axis, The benefit of this system is that

i« k = cos ©,, m cosdy. (2.9)

rr,.-"..!

w2
f Is(6, 9,6, b, v, t) cos d, cos® B,dfl, dpy,. | (2.8)
—7r )2

w2
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Furthermore, for problems symmetric in ¢ equations can be further simplified, T
surface flux in this colatitude coordinate system 18

-ﬁénn;ﬂfﬂ
Fo(d, ¢, v, t) = / j I3(0, &, 8, Pn, v, t) cosdy, sind,ditdd. | (2.1
0 Jo

We pause here to emphasize that the surface flux at (f, ¢) or (¥, ¢) is usual
written without reference to the surface coordinates, for example, by

72 /2
Fs(v,1) = f ; / ; Is(8, &, v, t) cos ¢ cos® OdOdegp. (2.1
—mj2 S =2

or
2r /2
Fg(v,t) = f / Is(d, ¢, v, t) cos U sinvditde. (2.1
o Jo

[ere @ and ¢ or ¥ and ¢ refer to the solid angle integration of the intensity, and ev
though the surface flux is for a specific surface element it is not specified. Althoug
less precise, for a planet with uniform surface intensity this surface flux descriptio
is adequate, and we will be guilty of adopting it.

As an example of surface flux, we will compute the surface fux for a planet wi
uniform intensity Ig(@, ¢, v, 1} = Ig(r,t). This uniform intensity may be pulle
out of the integrand in either equation [2.8] or equation [2.10] and the integra
performed to yield

Fy(v,t) = rls(w, ). (2.13

Sometimes it is useful to integrate the flux over all wavelengths, and we deno
this wavelength-independent Aux without a i-dependence

Fs(t) = [, Fs(v.t)dv. (2. 14

2.5 OBSERVED FLUX

What form of radiation are we able to measure at Earth? At Earth we see the plan
as a point source, that is, as spatially unresolved. All radiation from the exoplane
hemisphere is averaged into a single value of flux. Recall that the surface intensi
depends on location on the planet surface described by 6 and ¢. We must integratg
the surface intensity from each location on the planet into a quantity we can actuall
MEAsUre.

At Earth we are measuring the energy collected from a planet subtended by u
angle €2, by a detector of a given area, in a frequency interval, and during so
interval of time. We will denote the flux measured at the detector by Fg (v, 1).
derive Fg (v, 1) for a distant planet, we must realize that the integration over solif
angle is at the detector and not at the planet surface.

In order to derive the surface flux at Earth we return to the definition of flux
equation [2.5], and use Figure 2.5, In the derivation of the flux at Earth it is con
venient to use the colatitude spherical polar coordinate system (Figure 2.4). In thig
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Figure 2.5 Derivation of the planet flux observed at Earth, Fg (v, t).

coordinate system, the flux is defined as leaving the planet along the z-axis, and the
z-axis is pointing toward the detector at Earth. Recall that the angle ¢ is defined

about the z-axis. From the detector at Earth, the planet subtends the solid angle
defined by

27 pR,/Dg
()} = f / sin wdwdo. (2.15)
o Jo

A critical point in the derivation of measured flux is to recognize that the ¢ com-
ponent of angle subtended by the planet at Earth is equivalent to the angle ¢ in the
colatitude coordinate system on the planet (see the middle panel of Figure 2.5).
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In the coordinate system of the detector at Earth we have for the flux

27 pRy/Da
Fa(v,t) = ] f Ig(1, ¢, v, t) cos w sin wdwdg. (2.16)
0o Jo

Note that here we have retained the description of intensity in the coordinate system
of the planet rather than change to the coordinate system at the detector.

We now convert the term cos w sinwdw in equation [2.16] into the coordinate
system of the planet. Using Figure 2.5, we see that

W= g;; sin . (2.17)

Additionally, dw = (R,/Dga)cosddd. In the limit that R, < Dg, we have
w < 1 and can make some approximations. Using a Taylor expansion, sinw ~ w
and cosw ~ 1 —w?/2 ~ 1. In this limit of R, < Dg we can also approximate Dy,
as the distance from the surface of the star to the observer at Earth. Equation [2.16]
then becomes

R 2 M27 pw/2
Fal(v,t) = (D_;) /” ji: Is (¥, ¢, v, t) cos ¥ sin Vdde. (2.18)

We emphasize that F, (v, t) has the same dimensions as the surface flux in equa-
tion [2.10] and that in our limit that the planet is very distant from Earth the two
fluxes are related by (see equation [2.12])

R 2
Fo(v,t) = (D—;) Fs(v,t). (2.19)

2.6 LUMINOSITY AND OUTGOING ENERGY

Luminosity L(t) is defined as the rate at which a planet radiates energy in all direc-
tions. Another way to think about luminosity 1s as the summation of flux passing
through a closed surface encompassing the planet. For uniform flux Fg(#, ¢.1) =
F5(t) and for a planet that radiates equally in all directions,

L(t) = j Fs(t)dA, (2.20)
A
in units of J s—!, Using the surface element of a sphere
dA = Rﬁ sin Bdfdo, (2.21)
we have
2m g
L(t) = R f f Fs(t) sin 0dfdo, (2:23)
o Jo
and integrate to find
L(t) = 4wR; Fs(t). (2.23)
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Figure 2.6 Incident flux on a sphere and a disk. The star subtends an angle £2 as seen from
each location on the planet. To find the total energy per unit time incident on the
planet, the flux at each location must be summed up over the planet hemisphere.
Here a is semimajor axis.

For giant exoplanets L(f) is useful to describe the flux coming from the planet
interior that is incident on the lower boundary of the atmosphere. This interior flux
is considered to be uniform around the planet at the bottom of the atmosphere, and
originates from gravitational potential energy left over from the planet’s nascent
contraction. L(#) may also be used for the rate at which energy leaves the planet in
all directions. Often, however, we want to compute the total flux passing through
only one hemisphere of the planet, not the entire planet. This is because, when
observing any exoplanet, flux from only one hemisphere is visible to us at any
given time. For a planet that does not radiate uniformly in all directions from all
locations, we have to take care not to use the luminosity L(t), but instead to use
energy per unit time,

T puf2
Es(t) = R? / [ Fy(0, 6. t) sin 0d0do, (2.24)
JO S0

and, assuming uniform flux, integrate to find
Es(t) = 2r RZFs(t). (2.25)

We now turn from energy per unit time leaving the planet to energy per unit time
incident on the planet.

2.7 INCIDENT FLUX AND INCIDENT ENERGY

For exoplanets, the amount of radiation from the star reaching the planet is critical.
The radiation from the star heats the planet and ultimately governs the global en-
ergy balance. The stellar heating also drives mass motion in the planet atmosphere.
We therefore want to know the amount of flux or energy per unit time from the
parent star that falls on the planet surface. We call this incident radiation, incident
intensity, incident flux, or incident energy, depending on the context. More gener-
ally, we may sometimes even call the incident radiation “irradiation.” To derive an
expression for incident flux we want to consider the solid angle subtended by the
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star on a surface element of the planet, as shown in Figure 2.6. We want to compute
the flux from the star at a given location on the planet.

We use equation [2.18], an equation we previously derived for the planet’s flux
observed at Earth. We now want to know the flux of the star as observed from a
location on the planet. In equation [2.18], we therefore replace R, with R, and
D¢ with the planet semimajor axis a. We also replace the planet surface intensity
I's with the stellar surface intensity /s .,

R 2 27 pm/f2
Finc(P, ¢, 0,1) = ( ﬂ*) / / Is . (v, t)(1, @, 1, t) cos ¥ sin Ddidde.
o Jo
(2.26)

To simplify this equation, we can fairly assume that the stellar intensity is uniform
across the star’s surface, yielding

R 2
Fine(vst) = ( u“) wls . (v, t), (2.27)
where we recall that F(v, t) = 7l (v, t) from equation [2.13], and then also have
R\
Fincltn,t) = | — | Fs..(3,1). (2.28)

We have discussed the incident flux at one location of the planet (equations [2.27]
and [2.28]). For many applications we will want to know the teral incident energy
per unit ime, and we must integrate over the surface of the planet. We cannot
simply multiply by Eﬂ'Rfi, the surface area of the planet hemisphere. This is due to
the fact that only the substellar point on the planet receives the full amount of stellar
flux. The planet locations away from the substellar point receive an amount reduced
by i - k = cos© (see Figure 2.3). We are familiar with this concept on Earth
because the poles on Earth receive much less sunlight than the equatorial region.

We proceed to integrate equation [2.28] over the surface area of one hemisphere

Eiuc{”e f-} = (R*

il
to find

2 27 pw/2
) Fs .(v,t) / f R:‘; cos U sin ddddo, (2.29)
0 0

.

(L

2
Einc(v, t) =:TR‘§( ) Fs .(vt). (2.30)

We also define a total incident energy over all wavelengths by

R 2
Einelt) = wn‘;i( ) Fs .(1). (2.31)

{1

We have just introduced the total flux and total energy incident on an exoplanet.
For plane-parallel radiation from a distant point source, we will find use for a de-
scription of the incident stellar intensity as

I.(J,0,v,t) = Ind (P — ¥9)d(p — ¢hy). (2.32)

Here, the star is in the direction #. ¢y from the surface normal. We consider that
the star is far enough away from the planet so that the only the rays in one direction
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are incident on the planet. At each location on the planet, the star is in a different
position on the sky, and hence 8 and ¢ are different for each surface element. The
incident flux at a given location (€. ¢») on the planet surface is

B\ 2 a2y a2
Finc(?, ¢, v, 1) = ( r; ! f f Ind (¥ — Uy )d(d — @) cos ¥ sin dddde
o Jo
R.5"
= (—' cos g sin vy lp. (2.33)
a )

2.8 BLACK BODY INTENSITY AND BLACK BODY FLUX

Black body flux can be used to estimate both the flux incoming to and outgoing
from an exoplanet. We will assume that the reader is already familiar with a black
body radiator and the derivation of the intensity black body radiation. Here we aim
to describe the black body intensity and flux in our framework and its relevance
to exoplanetary atmospheres. A black body is a “perfect” radiator that absorbs all
radiation incident on it and reemits radiation in a frequency spectrum depending
only on its temperature 7". Black body radiation is furthermore isotropic and hence
has no n-dependence. The black body radiation depends only on temperature and
frequency and can be described by B(T, v).
The Planck function describes the intensity of black body radiation,

213 1
2 el /ET _1°

BT )= (2.34)

Here h is Planck’s constant, k is Boltzmann’s constant, and ¢ is the speed of light.
The black body intensity by definition has the same dimensions as the intensity [,
units of J m~2 sr—! s~! Hz~'. Because the temperature varies with location in
the planet atmosphere, and possibly with time, we can also write the black body
intensity as

2hy? 1

B[I, L-"} = 2 hufkT _ 1"

(2.35)

We emphasize that our description of black body radiation is radiation per fre-
quency bin (dr). Black body radiation per wavelength bin dA must include the
conversion factor dv = —¢/ M2d\, where the — sign can be absorbed into dA,

2he? 1
A5 ghe/ART _ 1°

B(T,)) = (2.36)

The black body flux can be computed from the black body intensity B using the
flux definition in equation [2.5]. Black body radiation 1s isotropic, that is, uniform
in all directions, so that outward from one hemisphere

Fs(T,v) = nB(T,v). (2.37)

We will always use I as black body intensity and 7 5 as black body flux.
Stellar and planet atmospheres can be approximated as black body radiators,
even though a black body is a highly idealized construct. Figure 2.7 shows the black
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il now expand on the conceptual description of a Lambert surface, by

Figure 2.7 Black body surface fluxes (in units of Jy = 1072 Wm~? Hz ') for aran : :
N ’ ( d ) thit o plane Lambert surface, illuminated from one direction perpendic-

temperatures. The black body fluxes are spaced by 100 K in the range 1

1000 K and by 1000 K in the range 1000 to 10,000 K. The Sun may be Ahe surface normal, has the same apparent brightness as viewed from any
sented by a 5750 K black body, while Earth can be approximated by a 300 i Figure 2.8 shows the intensity viewed by an observer looking perpendic-
black body. | | plane and an observer viewing at an angle ¥} from the surface normal.

fvers are viewing the same differential area dA on the Lambert surface.
that the distance to the observer is much greater than the size of the sur-
nt, From the definition of intensity (equation [2.1]) we have the intensity
by observer 1,

body surface flux for different temperatures. The effective temperature of s
with known planets ranges from 3000 to 6000 K, and known planets have effect
temperatures ranging from 60 to over 2000 K. The magnitude and frequency

of the black body flux increase with decreasing temperature. dEobs1

Iohe1l = - = (2.38)
dAdQops1 Dopsy - k

{lurly, the intensity measured by observer 2 is

\ dEobs2
10ba2 — N =
dAdQps2Nons - k

by definition of the coordinate system (Figure 2.8) that fi,ps; - k = 1and

& = cound). In other words, the solid angle subtended by the surface element
Wl ubserver 2 is smaller than the solid angle subtended by dA at observer 1.
1% ore easily apparent for the extreme case of 9 ~ 90° where the solid angle
ol approaches zero. We also have the relationship

AF 12 = cos VdEobe1, (2.40)

29 LAMBERT SURFACE
(2.39)

A Lambert surface is often used to approximate the reflectivity of planetary b¢
ies. Understanding a Lambert surface helps to understand the difference betw
two fundamental concepts: the intensity emanating from an object and the in
sity measured by a distant observer. A Lambert surface is a surface that scatt
intensity isotropically (i.e., equally in all directions).

What does it mean conceptually for a surface to scatter equal intensity in
directions? Equal intensity means that the apparent surface brightness of an :
element is the same from any viewing angle. As an example, consider a sheet
white paper illuminated from above. A piece of white paper is an approxim

plane Lambertian reflector. In other words, if you hold a sheet of paper up W tor Isotropic scattering the energy (or number of photons) drops off as

W away from the normal (i.e., away from the direction of incident radiation).
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Putting the above equations together, we have, from observer 2
I _ dEgpsy cost
o032 T dAd sz cOS T
From comparison with equation [2.38] we see that
I{ﬂr.'-:l = I{JI}HH' [242}

For a plane Lambert surface the intensity—or brightness—appears the same from
all directions: the smaller number of photons emerging by the slant direction is
compensated by the smaller subtended angle of an area element.

(2.41)

2.10 SUMMARY

We have presented fundamental definitions and concepts needed to describe radia-
tion traveling through a planetary atmosphere. We began with a precise definition of
the intensity and flux to be used throughout this book, quantities that have a variety
of definitions in the literature (see exercise 1). We made a careful investigation of
the surface flux on a planet as compared to the observed flux at Earth, and showed
that these are the same if the planet is far enough away and if the planet’s intensity
is uniform across the planet’s surface. Here the word “surface™ might refer to a
solid planetary surface like Earth’s, or, in the case of a giant planet, it might refer
to the deep atmosphere layers that become optically thick (akin to the photosphere
of the Sun). We continued to define the quantities of outgoing luminosity and in-
cident stellar flux, as well as the challenging concept of the Lambertian surface.
With a handle on the fundamental definitions and concepts we are ready to embark
on the task of understanding the basic physical characteristics and observables of
exoplanets, planetary temperatures, albedos, and flux ratios.
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Table 2.1 SI radiometry units.

Quantity SI unit (abbr.) Notes

Radiant energy J Energy

Radiant flux W Also called radiant power
Radiant intensity W sr—! Power per unit solid angle

Radiance Wsr!m™? Power per unit solid angle
per unit area

Irradiance W m 2 Power incident on a surface

Radiant exitance or

Radiant emitance W m? Power emitted from a surface

Radiosity W m—? Emitted + reflected power
from a surface

Spectral radiance Wsr~!m™3

or Wsr ! m 2 Hz!
Spectral irradiance W m~?
orWm 2 Hz !

Table adapted from [1].

EXERCISES

1. List the variables introduced in this chapter that describe radiation, including
their dimensions. The SI system has standard definitions for radiation terms
that differ from the ones conventionally used for exoplanets. Compare the
radiation terms used in this chapter to the SI radiation terms in Table 2.1

2. Explain the meaning of isotropic radiation. Show that for isotropic radiation
the flux integrated over a hemispheric solid angle i1s ¥ = «/ but that flux
integrated over a solid angle is F' = (. Show that for isotropic radiation
I=J.

3. Show that the intensity [ does not depend on distance in a medium with no
extinction or emission. Show that the flux F follows the inverse square law
F ~ 1/d*, where d is distance away from the source, and that this distance
dependency is not in conflict with the constancy of [.

4. Show that the general expression for solid angle (in units of steradians) i1s

1 i

1= —
Rr? Jy

2rRsin@Rdf = 2w (1 — cos ). (2.43)

What is the large-angle limit as @ — 7?7 What is the small-angle limit as
g — 07

5. Show that cos © = cos¢cosf in the spherical polar coordinate system in
Figure 2.3.
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6. Frequency or wavelength of maximum flux and energy from a black body.

a. Derive Wien’s Law as a function of frequency. Wien’s Law describes
the relationship between the peak of emission of a black body radiator and
frequency. Wien derived his law from thermodynamic arguments but you
may use the derivative of the black body radiation (equation [2.34]).

b. Repeat part a, beginning with equation [2.36], to derive Wien's Law as a
function of wavelength.

c. Use Wien’s Law to estimate the wavelength and frequency at which the
Sun’s emitted energy peaks. We will assume that the Sun’s emitted flux can
be approximated by a black body of temperature 5750 K. Are the frequency
and wavelength the same or different? Explain.

d. Repeat part b for an M star with a temperature of 3500 K.

. For incident radation from a star onto a planet, the expression for flux is

different for an extended source compared to a point source (Section 2.7.)
At what star-planet separation can the star reasonably be approximated as a
point source?



