
UNIVERSITY OF KANSAS
Department of Physics

ASTR 794 — Prof. Crossfield — Spring 2025

Problem Set 2: Transport, Distributions, Eqns of State
Due: Thursday, March 6, 2025, in class

This problem set is worth 70 points.

1. Saha equation and pure hydrogen [15 pts]. Consider a gas of pure hydrogen at fixed density and temperature.
The ionization energy of hydrogen is χ0 = 13.6 eV. You may assume that all the hydrogen atoms (whether
neutral or ionized) are in their ground energy state.

(a) Write down the Saha equation relating the number densities of neutral and ionized hydrogen (n0 and n1,
respectively). Make reasonable approximations to use numerical values for the partition functions.
Solution: It’s easy enough to write down the Saha equation:

n1

n0
=

2Z1

neZ0

(
2πmekT

h2

) 3
2

e−χ0/kT .

The partition function for neutral hydrogen is

Z0 = 2(1 + 22e−χ0(1−1/22)/kT + ...) ≈ 2 for kT << χ0.

The partition function for ionized hydrogen is 1 since there are two possible orientations of the free elec-
tron’s spin relative to the spin of the proton, and we’ve already written the factor of 2 in the Saha equation.
Thus we have

n1

n0
=

1

ne

(
2πmekT

h2

)3/2

e−χ0/kT .

(b) To find the individual densities, further constraints are required. Reasonable constraints are charge neu-
trality (ne = n1) and conservation of nucleon number (n1 + n0 = n), where the total hydrogen number
density n is a constant if the density ρ is fixed. Rewrite the Saha equation in terms of the hydrogen ion-
ization fraction x = n1/n, eliminating n1, n0, and ne. Does this equation have the expected limiting
behavior for T → 0 and T → ∞?
Solution: The two constraints are the conservation of charge and nucleon number, which can be written:
ne = n1 and n = n1 + n0. Writing x = n1/n, the Saha equation becomes

nx

n− nx
=

1

nx

(
2πmekT

h2

)3/2

e−χ0/kT

x2

1− x
=

1

n

(
2πm2kT

h2

)3/2

e−χ0/kT

From this equation we see that as T → 0, x → 0; i.e., no ionization occurs. And as T → ∞, x → 1,
indicating full ionization. These are the proper limiting behaviors.

(c) Use the relation ρ = mHn (where mH = 1 gm/NA, where NA = 6.023× 1023 is Avogadro’s number) to
replace n with ρ. Find an expression for the half-ionized (x = 0.5) path in the ρ-T plane. Plot this path on
a log-log plot for densities in the interesting range from 10−10–10−2 g cm−3
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Figure 1: Half ionization curve for pure hydrogen.

Solution: The mass density is given by ρ = mHn, where mH is the mass of hydrogen, 1/NA. To get the
half-ionization curve, set x = 0.5 in the Saha equation to obtain

ρ(T ) =
2

NA

(
2πmekT

h2

)3/2

e−χ0/kT .

This is the half-ionization curve shown in Figure 1.

2. Saha equation and pure helium [20 pts].
Consider a gas of pure helium at fixed density and temperature. The ionization energies for helium are χ0 =
24.6 eV (from neutral to singly ionized) and χ1 = 54.4 eV (from singly to doubly ionized). You may assume
that all the helium atoms (whether neutral, singly ionized, or doubly ionized) are in their ground energy state.
Let ne, n0, n1, and n2 be the number densities of, respectively, free electrons, neutral atoms, singly-ionized
atoms, and doubly-ionized atoms. The total number density of neutral atoms and ions is denoted by n. Define
xe as the ratio ne/n, and let xi be ni/n where i = 0, 1, 2. You should assume that the gas is electrically neutral.
The degeneracy factors you need for the atoms and ions are 2 for He, 4 for He+, and 2 for He2+.

(a) Construct the ratios n1/n0 and n2/n1 using the Saha equation. In doing so, take care in establishing the
zero points of energy for the various constituents.
Solution: The Saha equations are
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n1

n0
=

4

ne

(
2πmekT

h2

)3/2

e−χ0/kT

n2
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=

1

ne

(
2πmekT

h2

)3/2

e−χ1/kT

(b) Apply charge neutrality and nucleon number conservation (n = n0 + n1 + n2) and recast the above Saha
equations so that only x1 and x2 appear as unknowns. The resulting two equations have T and n [or,
equivalently, ρ = nmHe = n(4 gm/NA)] as parameters.
Solution: Charge conservation and nucleon number conservation can be written: n = n0 + n1 + n2 and
ne = n1 + 2n2, so that the Saha equations become

x1(x1 + 2x2)

1− x1 − x2
=

4

n

(
2πmekT

h2

)3/2

e−χ0/kT

x2(x1 + 2x2)

x1
=

1

n

(
2πmekT

h2

)3/2

e−χ1/kT

(c) Simultaneously solve the two Saha equations for x1 and x2 for temperatures in the range 4× 104 ≤ T ≤
2 × 105 K. Do this for a fixed density with the three values ρ = 10−4, 10−6, or 10−8 g cm−3. You may
find it more convenient to use the logarithm of your equations. Choose a dense grid in temperature because
you will soon plot the results. Once you have found x1 and x2, also find xe and x0 for the same range of
temperature. Note that this is a numerical exercise; you will want to use a tool like Mathematica or Matlab
for this.
Solution: The mass density is given by ρ = mHen = 4n/NA, where mHe = 4mH = 4/NA is the mass
of the helium. The two Saha equations can then be written

f(x1, x2) = x2
1 + 2x1x2 +

16

ρNA

(
2πmekT

h2

)3/2

e−χ0/kT (x1 + x2 − 1) = 0

g(x1, x2) = x1x2 + 2x2
2 −

4

ρNA

(
2πmekT

h2

)3/2

e−χ1/kTx1 = 0

This set of coupled, nonlinearn equations can be solved using nearly any multidimensional root-finding
technique. I used a simple Newton-Raphson method, which works similarly to the Newton-Raphson
method for solving a single equation. In this method, a guess is made for x =

(
x1

x2

)
and then the guess is

refined using

xnew = xold + δx,

where

δx =

[
δx1

δx2

]
=

[
∂f/∂x1 ∂f/∂x2

∂g/∂x1 ∂g/∂x2

] [
−f
−g

]
Here is the MATLAB code that implements this procedure:

function heionization (rho, Tstart, Tspace, Tfinal)

% Plots the abundance of neutral, slightly ionized, and doubly ionized

% helium, as well as the electrons.

%
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% x0 = n0/n, x1 = n1/n, x2 = n2/n, xe = ne/n, where n = rho * Na/4

%

% The temperature range is Tstart:Tspace:Tfinal % Constants

Na = 6.02214e23;

me = 9.1094e-28;

kB = 1.3807e-16;

h = 6.6261e-27;

kBeV = 8.617e-5;

chi0 = 24.6 ;

chi1 = 54.4 ;

x1 = [];

x2 = [];

%Loop through temperature for T = Tstart:Tspace:Tfinal

% Define A and B:

A = 16/Na/rho*(2*pi*me*kB*T/hˆ 2). ˆ (3/2). *exp(-chi0/kBeV./T);

B = 4/Na/rho*(2*pi*me*kB*T/hˆ 2). ˆ (3/2). *exp(-chi1/kBeV./T);

% Dumb initial guesses:

x1guess = 0.5;

x2guess = 0.5;

% Calculate f and g; correct until within tolerance 0.0001;

f = x1guess ˆ 2 + 2 * x1guess * x2guess + A * (x1guess + x2guess - 1);

g = x1guess * x2guess + 2 * x2guess ˆ 2 - B * x1guess;

err = max( abs(f), abs(g));

while (err > 0.0001)

M = [2*x1guess + 2*x2guess + A 2*x1guess + A; x2guess - B x1guess + 4

* x2guess];

dx = inv(M) * [-f -g];

x1guess = x1guess + dx(1);

x2guess = x2guess + dx(2);

f = x1guess ˆ 2 + 2 *x1guess *x2guess + A*(x1guess+x2guess-1);

g = x1guess * x2guess + 2 * x2guess ˆ 2- B*x1guess;

err = max(abs(f), abs(g));

end

% Add solutions to list;

x1 = [x1 x1guess];

x2 = [x2 x2guess];

end
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% Calculate xe and x0;

xe = x1 + 2 * x2;

x0 = 1 - x1 - x2 ;

Tvals = Tstart:Tspace:Tfinal ;

plot(Tvals, xe);

hold on;

plot(Tvals, x0, ’:’);

plot(Tvals, x1, ’--’);

plot(Tvals, x2, ’-.’;

return;

(d) Plot all your xs as a function of temperature for your chosen value of ρ. (Plot x0, x1, and x2 on the same
graph.) Identify the transition temperatures (half-ionization) for the two ionization stages.
Solution: Figures 2-4 show the ionization fraction for three densities. The half-ionization temperatures
(defined as the lowest temperature at which the ionization fraction of a species is 0.5) are:
ρ = 10−4 g/cm3: T(x1 = 0.5) = 3.2× 104 K, T(x2 = 0.5) = 8.1× 104 K
ρ = 10−6 g/cm3: T(x1 = 0.5) = 2.2× 104 K, T(x2 = 0.5) = 5.4× 104 K
ρ = 10−8 g/cm3: T(x1 = 0.5) = 1.7× 104 K, T(x2 = 0.5) = 4.0× 104 K

3. Stability against convection [10 pts]

(a) In lecture, we derived the condition ∣∣∣∣dTdr
∣∣∣∣ < T

P

(
1− 1

γa

) ∣∣∣∣dPdr
∣∣∣∣

for stability against convection. Using the appropriate equation(s) of stellar structure and noting the sign
of the radial gradients, show that this can be recast as a condition on the luminosity profile:

L(r) <

(
1− 1

γa

)
64πσSBT

4GM(r)

3κRP

Solution: We’ve derived the condition

ρ

γP

dP

dr
− dρ

dr
> 0

for stability against convection. Using the ideal gas law P = ρkT/µmp, we can calculate dρ/dr, and find

dρ

dr
=

ρ

P

dP

dr
− ρ

T

dT

dr
.

Substituting into the condition for stability and simplifying, we obtain:

dT

dr
>

(
1− 1

γ

)
T

P

dP

dr

Using the equation of radiative transport,

dT

dr
=

−3κRρL(r)

16πacT 3r2
,

and solving the inequality for L(r):
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Figure 2: Ionization fractions for pure helium, ρ = 10−4 g/cm−3.
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Figure 3: Ionization fractions for pure helium, ρ = 10−6 g/cm−3.
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Figure 4: Ionization fractions for pure helium, ρ = 10−8 g/cm−3.
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L(r) <
−16πacT 4r2

3κRρP

dP

dr

(
1− 1

γ

)
And substituting in the equation for hydrostatic equilibrium, we get

L(r) <

(
1− 1

γ

)
16πacT 4GM(r)

3κRP

L(r) <

(
1− 1

γ

)
64πσSBT

4GM(r)

3κRP

(b) Show that to avoid convection in a stellar region where the equation of state is that of an ideal monatomic
gas, the luminosity at a given radius must be limited by

L(r) < 1.22× 10−18µT
3

κRρ
M(r)

where µ is the mean molecular weight, T (r), κR is the Rosseland mean opacity, and M(r) is the mass
enclosed at radius r. All quantities are measured in the appropriate cgs units.
Solution: For an ideal monotomic gas, γ = 5

3 and P = ρkT/µmp. Plugging in these expressions, we
arrive at the desired result (in cgs units):

L(r) < 1.22× 10−18µT
3

κRρ
M(r)

4. Protons or photons? [10 pts]
At the center of the Sun, the density is approximately 150 g cm−3 and the temperature is about 15 × 106 K.
Which is larger: the number density of protons, or the number density of photons? Give an order of magnitude
estimate of each.

Solution: The number density of protons is roughly

np ≈ ρc
mp

= 9.03× 1025 cm−3 ,

where we have neglected the effect of He and considered a pure hydrogen composition. The number density of
photons is can be related to the temperature

nγ =

∫
uν

hν
dν =

∫
4πBν (T )

chν
=

16πk3BT
3

c3h3
ζ (3) ≈ 6.9× 1022 cm−3 ,

where ζ (3) ≈ 1.20 is the Reimann zeta function. The number density of protons is more than a thousand times
higher than the number density of photons.

5. The Eddington limit [15 pts]
A star with sufficiently high radiation pressure will spontaneously eject material from its surface. This sets a
practical limit on the maximum luminosity of a star of a given mass.

(a) [10 pts] Start with the radiative diffusion equation and the equation for hydrostatic equilibrium. Assume
the opacity to be frequency-independent, and show that the luminosity at which the radiation pressure
gradient equals the hydrostatic pressure gradient is given by

LEdd =
4πGMc

κ
, (1)

where M is the stellar mass. This is the “Eddington luminosity.”
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Solution: The second moment of the radiative transfer equation in spherical coordinates is (see problem
set 3, problem 8c)

c
dPν

dr
= −ρκνFν .

Integrating over frequency, using the fact that κ is independent of frequency, and using F = L/4πr2, we
find the radiation pressure gradient to be

dPr

dr
= − ρκL

4πr2c
.

If radiation pressure is the dominant source of pressure, then, using the equation of hydrostatic equilibrium,

− ρκL

4πr2c
= −GM

r2
ρ .

This holds when all of the pressure support is provided by radiation. In this case the luminosity no longer
depends on density or radius; it is simply

LEdd =
4πGMc

κ
.

(b) [5 pts] For ionized hydrogen, a minimum value for κ arises from Thomson scattering, which has cross-
section σT = 6.65× 10−25 cm2. Show that for this case

LEdd ≈ 3× 104 L⊙

(
M

M⊙

)
, (2)

where L⊙ = 3.839× 1033 erg s−1 and M⊙ = 1.989× 1033 g.
Solution: Since nσ = κρ, we have κT = nσT /ρ. Here n is the number density of scatterers (electrons),
but ρ is the mass density of the medium (mostly protons). From charge neutrality, ne = np, giving
κT = σT /mp. Plugging this and the solar mass into LEdd gives Eq. (2).
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